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Abstract

A new method called the random factor method (RFM) for the dynamic analysis of stochastic truss structures is

presented in this paper. Using the RFM, the structural physical parameters and geometry can be considered as random
variables. The structural stiffness and mass matrices can then be respectively divided into the product of two parts
corresponding to the random factors and the deterministic matrix. Computational expressions for the numerical

characteristics of the natural frequencies and mode shapes are derived using the algebra synthesis method. The
influences of the randomness of the structural parameters on the dynamic characteristics are demonstrated using a truss
structure.
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1. Introduction

It is very important to compute the dynamic char-
acteristics of structures with uncertainty in their
structural parameters arising from manufacturing tol-

erances, material defects and variation in operating
conditions. In many cases, the Monte-Carlo simulation
method [1] and the perturbation method [2] have often

been used for structural dynamic analysis. However, the
Monte-Carlo method needs a large amount of compu-
tation. The perturbation method can not reflect the

effect of the individual parameters on the structural
dynamic response.

In this paper, the dynamic characteristics analysis of

stochastic structures is investigated, and a new method
called the random factor method is proposed. Truss
structures are used to illustrate examples of this method,
in which the randomness of the structural physical

parameters (Young’s modulus and mass density) and
geometry (length and cross-area of bar) are considered.

The procedure for the random factor method (RFM)

is as follows. Firstly, a structural parameter variable
with uncertainty is expressed as a random factor multi-
plied by the mean value of this structural parameter.

Secondly, the structural mass and stiffness matrices are

expressed as random factors of the structural parameters
multiplied by their mean value respectively. Finally, the
dynamic characteristics are expressed as the functions of
these random factors. Therefore, the effect of the ran-

domness of the structural parameters on the natural
frequencies and mode shapes can be easily identified,
and compared to other methods, the computational

work to obtain the dynamic characteristics is very small.

2. Dynamic characteristics analysis using the random

factor method

Suppose that there are n elements in the truss struc-
ture under consideration. The mass matrix [M] and
stiffness matrix [K] of truss structure in global coordi-

nates can be respectively expressed as:

M½ � ¼
Xn
e¼1

Me½ � ¼
Xn
e¼1

1

2
�eAele I½ � ð1Þ

K½ � ¼
Xn
e¼1

Ke½ � ¼
Xn
e¼1

EeAe

le
G½ � ð2Þ

where [Ke] and [Me] are the stiffness and mass matrices,

and Ee, Ae, le and �e are the Young’s modulus, cross-
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sectional area, length and mass density respectively of
the eth element. [I] is a sixth-order identity matrix, and

[G] is a 6 � 6 matrix.
The structural physical parameters (�e, Ee) and the

geometric dimensions (Ae, le) are simultaneously con-

sidered as random variables. However, the randomness
of the eth element is considered to be the same for all
elements. Hence, the Young’s modulus, mass density,

length and cross-sectional area can be written respec-
tively as: Ee = ~E �E, �e = ~���, le = ~l �le and Ae = Ã �Ae

(e=1, . . ., n). �E and �� are the mean values of the
Young’s modulus and density respectively. �le and �Ae are

the mean values that denote the nominal length and
cross-sectional area of the eth bar respectively. ~E, ~�, ~l
and Ã are the random variable factors of the Young’s

modulus, density, length and cross-sectional area
respectively. The random variable factors are each given
a mean value (�) and a mean variance (�), for example,
~E = �~E � �~E. In this analysis, the mean values of the
random variable factors are taken to be 1.0, that is,
�~E = �~� = �~l = �Ã = 1.0.

From Eq. (1), it is easily seen that when �e, Ae and le
are random variables, [Me] and [M] are also random
variables. Let:

Me½ � ¼ ~� ~A ~l �Me

� �
ð3Þ

where [ �Me] is the deterministic part of the mass matrix
[Me]. The expression shows that the mass matrix [Me]

can be divided into the product of two parts, corre-
sponding to the random variables ~�, Ã, ~l, and the
constant matrix [ �Me]. The randomness of [Me] is only

dependent on the random variable factors ~�, Ã and ~l.
Constructing the deterministic matrix [ �Me] is same as
constructing the mass matrix in Eq. (1) for the eth ele-
ment, and taking the parameters as le = �le, Ae = �Ae,

�e = ��. Hence, [M] in Eq. (1) can now be written as:

M½ � ¼
Xn
e¼1

Me½ � ¼
Xn
e¼1
ð ~� ~A ~l �Me

� �
Þ ¼ ~� ~A ~l �M

� �
ð4Þ

Likewise, from Eq. (2), [K] is a random variable and can
be written as:

K½ � ¼
Xn
e¼1

Ke½ � ¼
Xn
e¼1
ð

~E ~A

~l
�Ke

� �
Þ ¼

~E ~A

~l
�K
� �

ð5Þ

where [ �Ke] and [ �K] are the deterministic part (mean

values) of the stiffness matrices [Ke] and [K] respectively.
In the perturbation stochastic finite element method

(PSFEM) and perturbation method, the stiffness and

mass matrices can also be expressed as, [M] = [ �M] + "1
[ �M], [K] = [ �K] + "2 [ �K]. However, these small para-
meters "1 and "2 are not random variables, so they

cannot directly reflect the randomness of the individual

structural parameters. In the random factor method
(RFM), the structural parameter variable and its ran-

dom factor obey the same probabilistic distribution.
Hence, unlike the PSFEM and perturbation method,
using the random factor method, the randomness of the

individual parameters (E, A, l and �) can be examined.
By using the random factor method, the jth natural

frequency !j and mode shape {�}j can be respectively

written as:

!j ¼ ~!j �!j f�gj ¼ ~�jf ��jg ð6Þ

By using the Rayleigh quotient expression, the jth
natural frequency can be obtained:

!2
j ¼

�f gTj K½ � �f gj
�f gTj M½ � �f gj

¼
~�j ~E ~A ~�j
~�j ~� ~A ~l2 ~�j

��
� �T

j
�K
� �

��
� �

j

��
� �T

j
�M

� �
��

� �
j

¼

~E

~� ~l2

�Kj

�Mj

¼
~E

~� ~l2
�!2
j ; !j ¼

ffiffiffiffi
~E

~�

s
�!j

~l
; ~!j ¼

ffiffiffiffi
~E

~�

s
1

~l
ð7Þ

where �Kj, �Mj, �!j are all deterministic quantities corre-

sponding to the jth-order stiffness, mass and natural
frequency of the structure when the parameters are Ae =
�Ae, le = �le, Ee = �E and �e = ��. From the deterministic
stiffness and mass matrices [ �K] and [ �M], the deterministic

values (mean values) of every order natural frequency �!j
can be obtained by means of the conventional dynamic
analysis method.

The numerical characteristics of the natural fre-
quencies can be obtained by the algebra synthesis
method [3,4]. It can be seen from Eq. (7) that the natural

frequencies are not dependent on variation of the cross
sectional area (�Ã), and are only dependent on the mean
variance of the other parameters corresponding to �~E, �~�

and �~l.

From the modal analysis theory, the modal matrix [�]
has the orthogonal property as follows:

�½ �T M½ � �½ � ¼ ~�2 ~� ~A ~l ��
� �T �M

� �
��
� �
¼ I½ �;

�½ �T K½ � �½ � ¼ ~�2
~E ~A

~l
��
� �T �K

� �
��
� �
¼ �½ � ¼

~E

~� ~l2
diag �!2

� �

ð8Þ

From Eq. (8), we can obtain the same result for the
random component of each mode shape:

~�j ¼ ~� ¼ 1ffiffiffiffiffiffiffiffi
~� ~A ~l

q ð9Þ

It can be seen from Eq. (9) that the mode shapes are
not dependent on randomness of the Young’s modulus
(�~E), and are only dependent on the mean variance of
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the other parameters corresponding to �~�, �Ã and �~l.
The numerical characteristics of the mode shapes can be

obtained by the algebra synthesis method [3,4].

3. Examples

The conventional dynamic characteristics of the
deterministic truss structures can be analyzed by any

FEM analysis software. In the following simulation, an
8-meter antenna structure shown in Fig. 1 is used as an
example, with the material properties of steel. The mean

values of the Young’s modulus and density are respec-
tively and �E = 2.058 � 105(MPa) and �� = 7.65 �
103(kg/m3). The antenna is a 96-node and 336-element

space truss structure, with 12 elements. The mean values
of the cross-sectional area of each element are given in
Table 1.

In the results, values from both the deterministic and
random models are presented. In the deterministic
model, the mean values of the random variables are

unity, and their mean variance is zero. In the random
model, in order to investigate the effect of the random
variables E, �, l, and A on the structural dynamic

characteristics, different combinations are presented.
The computational results (mean value and mean var-
iance (standard deviation)) for the first natural

frequency and mode shape are given in Tables 2 and 3

respectively. In addition, in order to verify the effec-
tiveness of the random factor method, the
computational results that obtained by Monte-Carlo

simulation method are also given in Tables 2 and 3, in
which 3000 simulations are used.
Comparing the first two rows in Table 2, it can be seen

that randomness of the cross-sectional area does not
have any effect on the mean natural frequency, as

Fig. 1. Quarter of 8-meter caliber antenna (unit: mm).

Table 1

The mean value of the cross-sectional area of each element

Elements A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Areas

(�10�4 m2)

3.0 4.0 6.0 2.0 3.0 3.0 6.0 2.0 3.0 4.0 6.0 2.0

Table 2

The computational results for the natural frequency

Mean variance �!1
(Hz) �!1

(Hz)

� ~E = �~� = �~l = �Ã = 0

(deterministic model) 22.818 0

�Ã = 0.1 � ~E = �~� = �~l = 0 22.818 0

� ~E = 0.1 �~� = �~l = �Ã = 0 22.818 1.1417

�~� = 0.1 � ~E = �~l = �Ã = 0 22.818 1.1360

�~l = 0.1 � ~E = �~� = �Ã = 0 22.818 2.2275

� ~E = �~� = �~l = �Ã = 0.1 22.818 2.5233

� ~E = �~� = �~l = �Ã = 0.2 22.818 4.7588

� ~E = �~� = �~l = �Ã = 0.2* 22.904* 4.6992*

*Monte-Carlo simulation method

Table 3

The computational results for the mode shape

Mean variance ��11
(� 10�3) ��11

(� 10�3)

� ~E = �~� = �~l = �Ã = 0

(deterministic model) 2.1190 0

� ~E = 0.1 �~� = �~l = �Ã = 0 2.1190 0

�~� = 0.1 � ~E = �~l = �Ã = 0 2.1190 0.1835

�Ã = 0.1 � ~E = �~� = �~l = 0 2.1190 0.1835

�~l = 0.1 � ~E = �~� = �Ã = 0 2.1190 0.1835

� ~E = �~� = �~l = �Ã = 0.1 2.1190 0.4493

� ~E = �~� = �~l = �Ã = 0.01 2.1190 0.0449

� ~E = �~� = �~l = �Ã = 0.01* 2.1219* 0.0460*

*Monte-Carlo simulation method
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expected from Eq. (7). In rows 2 to 4 in Table 3, it is
shown that when the mean variation of the parameters

�, l and A are the same, the mean variance of mode
shape value is also unchanged, as expected from Eq. (9).
In both Tables 2 and 3, comparisons of the results

obtained from the RFM with the Monte-Carlo method
are very similar, by which the validity of the RFM is
verified.

4. Conclusions

In this paper, the effect of uncertainty in the material
parameters and structural dimensions on the random-
ness of the dynamic characteristics is presented using a

new technique called the random factor method. The
results from this method are in very good agreement
with results obtained from the Monte-Carlo simulation

method. In this work, the randomness of the eth element
of a truss structure was considered to be the same for all
elements. Future work will investigate randomness of

the individual structural elements, and the effect on the
natural frequencies and mode shapes.

References

[1] Singh BN, Yadav D, Iyengar NGR. Natural frequencies

of composite plates with random material properties using

higher-order shear deformation theory. Int J Mech Sci

2001;43(10):2193–2214.

[2] Kaminski M. Perturbation based on stochastic finite ele-

ment method homogenization of two-phase elastic

composites. Comput Struct 2000;78(6):811–826.

[3] Gao W, Chen JJ, Ma J, Liang ZT. Dynamic response

analysis of stochastic frame structures under non-sta-

tionary random excitation. AIAA Journal

2004;42(9):1818–1822.

[4] Gao W, Chen JJ, Zhou YB. Dynamic response analysis of

closed loop control system for random intelligent truss

structure under random forces. Mech Syst Signal Process

2004;18(4):947–957.

W. Gao / Third MIT Conference on Computational Fluid and Solid Mechanics 227




