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Abstract

The current work attempts to develop a non-ambiguous polyhedron/polyhedron contact algorithm within the
energy-based theoretical framework, in which all of the contact characteristics, including the normal/tangential contact
direction/plane and contact point are defined uniquely, thereby circumventing the numerical difficulties normally

associated with the modelling of polyhedron/polyhedron contact.
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1. Introduction

This paper is the extension of our previous work [1] on

the development of an energy-based polygon/polygon
contact model to three-dimensional (3D) polyhedron/
polyhedron contact. The employment of polyhedra in
3D discrete element simulations is an underdeveloped

area and only limited research is reported. This is not
because polyhedra are too complicated geometric enti-
ties but because the procedures to establish the actual

contact of two polyhedra and to further apply proper
contact forces are surprisingly complex. The funda-
mental problem lies in the fact that a substantial number

of special cases may need to be processed individually.
Even worse, the contact force directions are more diffi-
cult to determine and often are not evolved in a smooth
way but present a discontinuous jump when only a small

relative movement occurs between the two polyhedra in
contact. This numerical defect often introduces a certain
amount of artificial energy into the computation, which,

when accumulated and propagated, could cause severe
numerical errors or result in a total simulation failure.
Although it might be possible to design a scheme that

could consider all possible contact scenarios [2], it is very
unlikely that such a scheme will resolve completely the
ambiguity of normal contact directions for all cases;

furthermore, the implementation will be extremely
tedious. In addition, the commonly used nodal/facet

contact model in the finite element community has also
proved to be inadequate to tackle general polyhedral
contact situations.

A notable effort towards overcoming the above-
mentioned numerical difficulties in 3D is Cundall’s work
[3] on the ‘common plane’ model when dealing with the
contact computation of two polyhedral blocks in geo-

mechanics applications. This model presents a unified
way of defining the contact plane/norm and can sig-
nificantly improve the contact geometric computation.

However, the ‘common plane’ is defined in a rather
heuristic manner, and, more importantly, the model
cannot guarantee a smooth evolution of the normal

contact direction during the continuous relative move-
ment of a contact pair.
The current work attempts to develop a non-ambig-

uous polyhedron/polyhedron contact algorithm within

the energy-based theoretical framework proposed in our
previous work [1], in which all the contact character-
istics, including the normal/tangential contact direction/

plane and contact point are defined uniquely, thereby
circumventing the numerical difficulties mentioned
above.

2. Contact energy-based normal contact law

Consider two rigid polyhedra I and II overlapping, at
an arbitrary time instant, to form a typical polyhedron-
to-polyhedron contact situation with two penetrating

vertices p and q, as shown in Fig. 1. Assume that there
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are only three edges and three surfaces attached to each
penetrating vertex p or q and two sets of the unit vectors

of the three edges connected to p or q are p1, p2, p3 and
q1, q2, q3, respectively. The two polyhedra overlap to
form a six-sided polyhedron, and its volume is defined as
the overlap volume V. Also assume that the normal unit

vectors and the areas of the surfaces of the overlapping
volume associated with bodies I and II are, respectively,
n
p
i and Ap

i , and n
q
i and Aq

i (i = 1, 2, 3).

Introduce a contact energy potential W(V) that is a
monotone increasing function of the overlap volume V.
Then the normal contact force, Fp

n, exerted on object I at

the point p is defined as

Fp
n ¼ �

@WðVÞ
@xp

¼ � d WðVÞ
d V

@V

@xp
¼ �W0ðVÞrxpV

¼ Fp
n

�� ��n ð1Þ

where

n ¼ �
rxpV

rxpV
�� ��withrxpV ¼

@V

@xp
ð2Þ

Fp
n

�� �� ¼W0ðVÞ rxpV
�� �� ð3Þ

and n defines the direction along which Fp
n should be

applied to the object. As rXp V is the gradient of V with

respect to the translational move of p or the body I, Eq.
2 reveals the fact that, geometrically, n is the direction by
which moving the body along reduces the overlap

volume V most effectively. Physically, the normal force
Fp
n applied in this direction can decrease the contact

energy W (V) with the maximum rate.
It has been established [1] that a moment, Mp

�, asso-

ciated with the rotational movement about p must be
present at the point p, which is defined as follows

M
p
� ¼ �

@WðVÞ
@�p

¼ � d WðVÞ
d V

@V

@�p
¼ �W0ðVÞrp

�V ð4Þ

where

rp
�V ¼

@V

@�p

and �p is an arbitrary rotational vector about the point
p. rp

�V can be viewed as the gradient of V with regards

to a rotational motion about the point p.
The pair of the normal contact force Fq

n and the
moment Mq

� acting at point q on the body II also can be
defined in a similar manner as

Fq
n ¼ �W0ðVÞrxqV; M

q
� ¼ �W

0ðVÞrq
�V ð5Þ

Similar to the polygon/polygon contact case, the pair
fFp

n; M
p
�g acting at point p (or fFq

n; M
q
�g at q) can be

equivalently replaced by a single force Fp
n (or F

q
n acting at

a different position without the presence of the moment.

This preferable position is again referred to as the
(reference) contact point. In what follows, the explicit
expressions of rxpV; r

p
�V; rxqV and rq

�V are estab-

lished in detail for general contact situations of two
convex polyhedra.

2.1. Normal direction and normal contact forces

The three outward unit normals to the surfaces

associated with object I are defined by

n
p
1 ¼

p2 � p3

p2 � p3j j ; n
p
2 ¼

p3 � p1

p3 � p1j j ; n
p
3 ¼

p1 � p2

p1 � p2j j

Suppose that object I is moved along the direction p1 by
a distance �p1, as shown in Fig. 2a. Then, the change of

the overlap volume, �V, is

�V ¼ A
p
1ðn

p
1 � p1Þ�p

thus

dV

dp1
¼ Ap

1n
p
1 � p1

As

dV

dp1
¼ rxpV � p1

it has

rxpV � p1 ¼ Ap
1n

p
1 � p1 ð6Þ

Similarly,

rxpV � p2 ¼ Ap
2n

p
2 � p2 ð7Þ

rxpV � p3 ¼ A
p
3n

p
3 � p3 ð8Þ

Fig. 1. A typical corner/corner contact.
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It can be proved that Hxp
V should have the following

form:

rxpV ¼ A
p
1n

p
1 þ A

p
2n

p
2 þ A

p
3n

p
3 ð9Þ

In fact, since

n
p
i � pj ¼ �ijn

p
i � pi ði; j ¼ 1; 2; 3Þ

it follows immediately that

rxpV � pi ¼ ðA
p
1n

p
1 þ A

p
2n

p
2 þ A

p
3n

p
3Þ � pi ¼ A

p
i n

p
i � pi

ði ¼ 1; 2; 3Þ

which are Eqs [6–8], and therefore Eq. [9] is proved.

The establishment of the expression in Eq. (9) pro-
vides a feasible means of commutating the normal
direction n

n ¼ ðAp
1n

p
1 þ Ap

2n
p
2 þ Ap

3Þ= Ap
1n

p
1 þ Ap

2n
p
2 þ Ap

3

�� ��
and the force Fp

n :

Fp
n ¼ �W0ðVÞ ðA

p
1n

p
1 þ A

p
2n

p
2 þ A

p
3n

p
3Þ ð10Þ

Similarly, Hxq
V can be defined as

rxqV ¼ Aq
1n

q
1 þ Aq

2n
q
2 þ Aq

3n
q
3 ð11Þ

and thus the normal force Fq
n is

Fq
n ¼ �W0ðVÞ ðA

q
1n

q
1 þ Aq

2n
q
2 þ Aq

3n
q
3Þ ð12Þ

It is not difficult to prove that

ðAp
1n

p
1 þ A

p
2n

p
2 þ A

p
3n

p
3Þ þ ðA

q
1n

q
1 þ A

q
2n

q
2 þ A

q
3n

q
3Þ ¼ 0

i.e.

rxpVþrxqV ¼ 0

or

Fp
n þ Fq

n ¼ 0 ð13Þ

i.e. the normal contact forces acting on the two con-

tacting bodies are a pair of action and reaction forces, as
expected.

2.2. Contact moments

By rotating the object I around the edge p1 by an
angle ��p1, the volume change �V can be computed as

(referring to Fig. 2b):

�V ¼ ðAp
1d

p
11 þ Ap

2d
p
21 þ Ap

3d
p
31Þ��

p
1

where dp11; d
p
21 and dp31 are, respectively, the (signed)

distances of the three surface centres, c
p
1; c

p
2 and c

p
3, to

the edge p1, which can be obtained by

dpi1 ¼ ðri � niÞ � p1 ði ¼ 1; 2; 3Þ

Thus,

dV

d�p1
¼ ðAp

1r
p
1 � n

p
1 þ A

p
2r

p
2 � n

p
2 þ A

p
3r

p
3 � n

p
3Þ � p1

As

Fig. 2. Volume change due to: (a) translation along p1 and (b) rotation about p1.
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dV

d�p1
¼ r�V � p1

it has

rp
�V � p1 ¼

X3
j¼1

r
p
j � n

p
j

 !
� p1 ð14Þ

Similarly

rp
�V � p2 ¼ A

p
1d

p
12 þ A

p
2d

p
22 þ A

p
3d

p
32 ð15Þ

rp
�V � p3 ¼ Ap

1d
p
13 þ Ap

2d
p
23 þ Ap

3d
p
33 ð16Þ

or collectively

rp
�V � pi ¼

X3
j¼1

A
p
j d

p
ji ði ¼ 1; 2; 3Þ ð17Þ

where

d
p
ij ¼ ðr

p
j � n

p
j Þ � p1

It is obvious that rp
�V should be of a form

rp
�V ¼ A

p
1r

p
1 � n

p
1 þ A

p
2r

p
2 � n

p
2 þ A

p
3r

p
3 � n

p
3 ð18Þ

and thus the moment M
p
� can be determined by

M
p
� ¼ �W0ðVÞ ðA

p
1r

p
1 � n

p
1 þ A

p
2r

p
2 � n

p
2 þ A

p
3r

p
3 � n

p
3Þ
ð19Þ

Similarly, rq
�V can be established as

rq
�V ¼ Aq

1r
q
1 � n

q
1 þ Aq

2r
q
2 � n

q
2 þ Aq

3r
q
3 � n

q
3 ð20Þ

and the moment Mq
� can be defined as

M
q
� ¼ �W

0ðVÞ ðAq
1r

q
1 � n

q
1 þ A

q
2r

q
2 � n

q
2 þ A

q
3r

q
3 � n

q
3Þ
ð21Þ

2.3. Contact plane and (reference) contact point

With the definition of the normal contact direction, n,
the contact (tangential) plane can be defined as the plane

with n as its normal and passing through the mass centre
of the overlap volume, cm (with coordinates xm):

ðx� xmÞ � n ¼ 0

Although the preceding discussion has established

that the two force-moment pairs, Fp
n; M

p
�

� �
and

Fq
n; M

q
�

� �
, should be applied at points p and q, respec-

tively, it is desirable, at least practically, if only the

normal forces Fp
n andMq

n need to be applied. As a matter
of fact, this is the direct consequence of the current
contact model, as will be demonstrated below.

Let

f
p
i ¼ �W0ðVÞA

p
i n

p
i ; f

q
i ¼ �W0ðVÞA

q
i n

q
i ði ¼ 1; 2; 3Þ

be the forces acting at the six surface centres of the

overlap volume, as shown in Fig. 3. Then

Fp
n ¼ f

p
1 þ f

p
2 þ f

p
3; M

p
� ¼ r

p
1 � f

p
1 þ r

p
2 � f

p
2 þ r

p
3 � f

p
3

ð22Þ
Fq
n ¼ f

q
1 þ f

q
2 þ f

q
3; M

q
� ¼ r

q
1 � f

q
1 þ r

q
2 � f

q
2 þ r

q
3 � f

q
3

ð23Þ

It can be proved that Fp
n; M

p
�

� �
and Fq

n; M
q
�

� �
toge-

ther are an equilibrium force-moment system and
therefore can be replaced by an equilibrium pair of
forces Fp

n; F
q
n acting at a different point c, termed the

(reference) contact point, but on the two different bod-

ies. Assuming its coordinates are xc, this contact point
can be determined by the condition that the total
moment produced by Fp

n and Fq
n about this point should

vanish, i.e.

r
p
1c � f

p
1 þ r

p
2c � f

p
2 þ r

p
3c � f

p
3 þ r

q
1c � f

q
1 þ r

q
2c � f

q
2þ

r
q
3c � f

q
3 ¼ 0 ð24Þ

where r
p
ic and r

q
icði ¼ 1; 2; 3Þ are, respectively, the position

vectors from points cpi and cqi to c. The contact point

satisfying the above condition is, however, not unique.
In fact, if x0 is a solution to Eq. (24), then any point on
the line defined by

x ¼ x0 þ �n

where � is an arbitrary parameter, will be the solution as
well. The contact point is actually chosen to be the

intersection point of this line with the contact plane, i.e.

Fig. 3. An equilibrum distributed contact force system.
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the coordinates Xc satisfy the following additional
condition

ðxc � xmÞ � n ¼ 0

By the definition of both the tangential contact plane
and the contact point, the tangential contact forces such
as the frictional forces can be further determined based
on proper tangential contact laws.

2.4. Choice of contact energy function W (V)

The magnitude of the normal force Fp
n is dependent on

W 0 (V). Several possible options for W (V) or W 0(V) are
listed in Table 1, in which the parameter kn is the penalty

coefficient.

3. Final remarks

Based on the assumption that contact of two poly-
hedra is associated with a contact energy function, then

a complete normal contact law for a polyhedron/poly-
hedron contact has been derived fully; in particular, no
distinction between node/node, node/edge, edge/edge,

edge/surface and surface/surface contact scenarios is

required and also no overlap distance/gap is present in
the model.

The proposed contact model also suggests a proce-
dure to numerically compute all the contact
characteristics. The main computational efforts asso-

ciated with the model are the determination of the
surface areas of the overlap volume and the overlap
volume, if required. As very effective algorithms are

available for such operations (see, for instance, Pre-
parata and Shamos [4]), the corresponding
computational costs are relatively small.
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Table 1

Several forms of W (V)

W (V) W0 (V)

Linear knV kn
Hertz-type 2

3knV
3=2 knV

1/2

Power knV
m/m knV

m�1
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