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Abstract

Many methods have been developed for the analysis of semi-infinite media in highly idealized situations where either

nonlinear behavior of the near field was neglected or a full nonlinear analysis was conducted with heavy computational
efforts. In this work, to model a half-space medium with various irregularities, a combination of finite and infinite
elements has been used. More problems arise when nonlinearities are going to be included in the system. The impedance

matrix of an infinite element is frequency dependent [1,2] while for nonlinear analyses the equations of motion should
be solved in time domain [3]. To overcome this difficulty the time-frequency representation of signals is utilized [4,5] to
investigate the behavior and frequency content of infinite elements’ responses and obtain the dominant frequencies of

their ends’ vibrations at each time interval. Using the weighted average approach, the effective stiffness, mass and
damping matrices of infinite elements are then assembled into the matrices of the system at each time interval. The
matrices of infinite elements will be piecewise constant, and hence they can be transferred easily into time domain.
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1. Introduction

Some of the most widely used methods in modeling
semi-infinite media are boundary elements, infinite ele-
ments, thin layer elements and simple constant stiffness–

damping methods. In some of these methods the impe-
dance matrix of the far field is approximated and then
transformed into time domain to develop nonlinear

analysis. The stiffness, mass and damping matrices
(including material damping and radiation damping) of
the far field are included in the impedance matrix. In this

research an infinite element method, which was devel-
oped by Zhao and Valliappan [6,2] is used. If the
frequency content of the response of these infinite ele-
ments in a given time interval is determined, then the

effective stiffness, mass and damping matrices of infinite
elements can be evaluated. In fact, due to the uncer-
tainty principle of signal analysis, if the resolution of

spectrum in time domain increases, the resolution in
frequency domain decreases and vice versa. A better way
is to obtain response spectrum in a time interval and

then make a judgment about dominant frequencies of

the response. It should be noted that, in this procedure,
time interval is different from time step of nonlinear

analysis. The response spectrum of each infinite element
changes with time. For the time–frequency representa-
tion (TFR) part, adaptive optimal-kernel time–

frequency representation of signals is used [7,8].

2. TFR based on adaptive optimal kernel

Time–frequency representations with fixed windows
or kernels are used in many applications, but perform
well only for limited classes of signals. However, repre-

sentations with signal-dependent kernels can overcome
this limitation [9]. This method is very flexible to
detect localized behaviors of signals and on-line

implementation.
To measure the frequency spectrum in a time interval,

there is no need to analyze the responses from the
beginning of excitation up to the current time. Simply, a

small tail of information from the response spectrum of
each infinite element should be processed. It significantly
reduces the computational cost in the TFR part. In each

time interval, the frequencies, which have more energy in*Corresponding author. E-mail: farahani@iis.u-tokyo.ac.jp
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the response spectrum, have more significant effects on
stiffness, mass and damping matrices of infinite

elements.
The method proposed by Jones and Baraniuk [7,8],

includes a signal-dependent TFR based on a radially

Gaussian kernel, which computes the ambiguity func-
tion (AF) of the entire signal and then determines the
optimal kernel based on that AF. The ambiguity func-

tion includes the frequency information of the entire
signal; therefore, in order to discover the local char-
acteristic of the signal, a proper window on the AF is
needed. This running-time algorithm is called short time

ambiguity function and is very helpful to detect the
characteristics of the signals that change over time.
Around the most recent time at which analysis has

been done, a short segment of response is selected and its
time-frequency spectrum is calculated. Therefore, the
frequency content of the response in that segment can be

obtained and the effective matrices will be produced by
this spectrum.

3. Frequency dependent infinite elements

To simulate non-reflecting boundaries for semi-infi-
nite media, the dynamic infinite element, developed by
Zhao and Valliappan, has been used [2]. Using this type

of infinite element, transmitting boundaries for P, SV,
SH and Rayleigh waves can be modeled. This is a 6-node
infinite element with a harmonic decaying exponential

shape function included inside its kernel to simulate the
decaying behavior in infinite direction (Fig. 1).

Fig. 1. Frequency dependent infinite element.

�i ¼ Pi �ð Þ
1

2
1� �ð Þ i ¼ 1; 3; 5ð Þ

�i ¼ Pi �ð Þ
1

2
ð1þ �Þ i ¼ 2; 4; 6ð Þ

ð1Þ

In which:

P �ð Þ ¼ e��� C1e
�i�1� þ C2e

�i�2� þ C3e
�i�3�

� �
�i ¼ wave numbers for R� wave; S� wave and

P� wave

Ci ¼ constants ð2Þ

Constants Ci should be calculated from the method
proposed in [2].

Fig. 2. Modeling of semi-infinite media.

4. Wave input modeling in time domain for P and

SV-waves

To simulate wave scattering problems, the method
presented in [6] has been used. It is based on elastic wave

motion theory and superposition concept. In order to
obtain the response of the near field due to the incident
wave from the far field, the model shown in Fig. 2(a) can

be divided into two parts as shown in Figs. 2(b) and 2(c).
In Fig. 2(b), an artificial fixed boundary is added onto
the wave input boundary, so that the incident wave

reflects, and reaction forces � will appear on this fixed
boundary. Adding the opposite of � on the input
boundary in Fig. 2(c), the effect of the fixed boundary

can be eliminated. Generalized stresses vector due to SV
and P-wave incidence on the wave input boundary (Fig.
2) is represented as [6]:
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In which f SV� , f P� , f
SV
� and f P� are the stress factors [6].

E = Elasticity modules

v = Poison’s ratio
CSV = SV-wave velocity
Cp = P-wave velocity

! = Circular frequency
x = x coordinates of input nodes

The stresses and effective load vector on the wave

input boundary, which are produced by aforementioned
equations are frequency dependent, but transformable
into time domain by using inverse fast Fourier trans-
formation (IFFT).

5. Mean instantaneous stiffness, mass and damping

To transform matrices into time domain the weighted
average method is used. As it can be observed from Fig.
3 and 4, in a signal like an earthquake, at a specific time
inside the power spectrum diagram, just a few fre-

quencies are dominant. The effective stiffness matrix can
be calculated for this range of frequencies (Fig. 5). The
same method should be used to assemble effective mass

and damping matrices.

Fig. 3. Example of an earthquake excitation.

Fig. 4. Time dependent spectrum of excitation.

Fig. 5. Response spectrum of an infinite element in different

times.

Equation of motion of the system in frequency

domain is written as:
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Where:

K !ð Þ½ � ¼ KRe !ð Þ½ � þ î KIm !ð Þ½ � ð6Þ
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!
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�d = Hysteretic damping coefficient of the medium

[Z (!)] = Intermediate matrix for transforming damping
into time domain
{F (!)} = Load vector in frequency domain
Using weighted average scheme on matrices:
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To reduce the error estimation of frequency content, it

is better to evaluate response spectrum in the last time
interval �t (Fig. 6). Length of tail shows the largest
wavelength of signal’s components that should be
detected during vibration. The results of this method are

constant matrices in a sliced interval of time-dependent
spectrum. These piecewise constant matrices are called
mean instantaneous stiffness, mass and damping (Fig.

7), and should be added to matrices of finite element
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Fig. 6. On-line tracking of response in last time interval.

Fig. 7. Piecewise constant stiffness, mass and damping

matrices.

part. If the response spectrum of the far field is close
enough to the response spectrum by which instanta-
neous matrices were calculated, then the tail is shifted to

a new time otherwise the mean instantaneous matrices
should be updated by the new spectrum and the proce-
dure should be repeated. These steps are repeated until

the end of vibration. Nonlinearities in the near field are
included in the FEM part of the system.

6. Conclusion

The proposed method to model semi-infinite media

in time domain, is a combination of finite–infinite
elements and adaptive optimal kernel time–frequency

representation method. The merit of this method is that
the accuracy of infinite elements can be linked to the

simplicity of the method, which considers constant
stiffness and dashpot. In previous methods it is common
to consider real and imaginary parts of the impedance

matrix as an equivalent stiffness and damping matrices
in time domain respectively. This mixture is correct as
far as steady state waves are considered. But for tran-

sient waves it will produce inaccuracy, because the mass
has not been considered for the far field. The proposed
method introduces stiffness, mass and damping matrices
separately in time domain.
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