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Abstract

An incremental symmetric boundary integral formulation for the problem of bodies connected by non-linear cohesive
interface is here presented. The numerical solution example of the incremental problem is achieved by the symmetric

Galerkin boundary element method (SGBEM). Numerical results of FRP-concrete delamination failure, obtained by
coupling the incremental SGBEM system with a local arc-length constraint, are presented and compared with the FEM
solution.
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1. Introduction

The cohesive forces acting at the interface between
bodies are actually one of the most important con-
stitutive parameters, determining the strength and

stability of structures. For example, displacement-soft-
ening interface responses often imply a global strain-
softening structural response. In the calculation process,

to follow the quasi-static equilibrium path beyond the
onset of snap-trough or snap-back, the basic idea for a
flexible incrementation control technique is that the step
is specified by a constraint equation, which involves

both the problem unknowns and the load multiplier.
Since failure is localized along the interfaces, global
constraint equations including all the problem

unknowns seem to be redundant to produce a conver-
ging solution, essentially because they involve unknowns
that are not responsible for the equilibrium instabilities

[1].
Boundary integral equations (BIEs) are very attractive

for such problem, because all non-linearities are loca-
lized on the boundary of assumed linear elastic domains.

The integral operator that governs the problem, as was
formulated in [2], is proved to be linear with respect to
the rate unknown fields and symmetric with respect to a

classical bilinear form in the presence of a holonomic

interface law. The numerical solution of the incremental
problem is then achievable by the SGBEM.

The enlarged system of equations, obtained coupling
the incremental SGBEM system equations with a local
arc-length constraint, becomes singular only at bifurca-

tion points [3]. Numerical examples of FRP-concrete
delamination failure, obtained with this technique, are
presented and compared with the FEM solution.

2. Boundary integral formulation

We begin this section with a very brief review of BIEs
for elasticity, their approximation via the symmetric-
Galerkin procedure. The reader is asked to consult the

cited references for further details.
Consider, in a right-hand Cartesian reference system

(x1, x2)
t � x, an elastic homogeneous and isotropic

material occupying the finite simply connected domain
� � R

2, with a piecewise smooth boundary � = �u [ �p,
where �u, �p are open disjoint subsets of � (�u \ �p =
=0). Assuming small strains and displacements, consider,

in absence of body force, its response to quasi-static
external actions: traction �p on �p, displacements �u on �u.
For this problem we may derive for the Cauchy data (u,

p)t a system of BIEs:
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using the single-layer potential

ðVpÞ‘ðxÞ ¼
Z

�

U‘mðx; yÞpmðyÞ dsy;

V : H�1=2ð�Þ ! H1=2ð�Þ ð2Þ

the double-layer potential

ðKuÞ‘ðxÞ ¼
Z

�

TyU‘mðx; yÞumðyÞ dsy;

K : H1=2ð�Þ ! H1=2ð�Þ ð3Þ

and the hypersingular integral operator

ðDuÞ‘ðxÞ ¼ Tx

Z
�

TyU‘mðx; yÞumðyÞ dsy;

D : H1=2ð�Þ ! H�1=2ð�Þ ð4Þ

K is defined by Cauchy singular integrals and D is

defined by a hypersingular finite part integral in the
sense of Hadamard (see [4]). In Eq. (1) the operator K 0 is
the adjoint of K with respect to the natural duality

<.,.> between the Sobolev space H1/2(�) and its dual
H�1/2(�) [5]. The definition of all these boundary
potentials is based on a fundamental solution, which is
given by the Kelvin solution Um‘ (x, y) [3].

In Eqs (3) and (4) Ty denotes the traction operator on
� with differentiations with respect to y and TyU(x, y) is
the boundary stress tensor of the fundamental solution.

If we write the first equation on �u and the second one
on �p, inserting boundary data: �u on �u, �p on �p, we
obtain a system of two BIEs of first kind for the

unknown Cauchy data p on �u and u on �p, of the form:

Vuu �Kpu

K 0up Dpp

� �
p

u

� �
¼ �Vpu

1
2Iþ Kuu

1
2I� K 0pp Dup

� �
�p
�u

� �

ð5Þ

where the boundary integral operators subscripts ab

mean integration over �a and evaluation over �b, with
a, b = u, p.

Now we consider two-dimensional homogeneous

elastic bodies occupying the domains �1 and �2, boun-
ded by exterior boundaries �1, �2 with outward unit
normal n1 and n2, respectively, and connected by an
interface �i = �1 \ �2 (see Fig. 1). Quasi static external

tractions �pj (t, x) are imposed on the Neumann boundary
�j
p and displacements �uj (t, x) on the Dirichlet boundary

�j
u of each domain �j ð�j

u [ �j
p ¼ �jn�i; �j

u \ �j
p ¼

0=Þ; j ¼ 1; 2. All are given functions of the time-like
parameter t. Small displacements and strains hypothesis
implies: n1 _¼ n(x1) = �n(x2) _¼ �n2 with xj 2 �j

i, where

we denoted �j
i the outline �i in � j. Moreover the fol-

lowing assumptions are adopted herein: the known a
priori interface �i is the locus of possible displacement

discontinuites: w(t, x) = u1(x1(t)) � u2(x2(t)), xj (t)

2 �j
i; j ¼ 1; 2; equilibrate tractions act: p1 (t, x) = �p2(t,

x) and n(x) = n1(x).
The incremental form of Eq. (3) on Dirichlet and

Neumann boundaries on the jth domain reads:

Vj
uu _pj � Kj

pu _uj þ Vj
iu _pj � Kj

iu _uj ¼
1

2
_�uj � Vj

pu
_�pjþ

Kj
uu

_�uj _¼ f ju x 2 � j
u; j ¼ 1; 2 ð6Þ

�K 0 jup _pj þDj
pp _uj � K 0 jip _pj þDj

ip _uj ¼ �
1

2
_�pj þ K 0 jpp

_�pj�

Dj
up

_�uj _¼ f jp x 2 � j
p; j ¼ 1; 2 ð7Þ

The overhead dots denote the derivative with respect to
time-like parameter t. The previous equations (dis-
placement and traction BIEs) are written for the two

faces of the interface:

� 1

2
_uj þ Vj

ui _pj � Kj
pi _uj þ Vj

ii _pj � Kj
ii _uj ¼ �V

j
pi

_�pjþ

Kj
ui

_�uj _¼ f
j
iðuÞ x 2 � j

iðuÞ; j ¼ 1; 2 ð8Þ

1

2
_pj þ K 0 jui _pj þD j

pi _u� K 0 jii _pj þDj
ii _uj ¼ K 0 jpi

_�pj�

Dj
ui

_�uj _¼ f
j
iðpÞ x 2 � j

iðpÞ; j ¼ 1; 2 ð9Þ

As a further assumption, traction p and relative opening
displacement w are related by non-linear cohesive law

p(w(t,x)), for all x 2 �i. The interface constitutive
equation can be written in an incremental form making
use of the tangent matrix of the cohesive law, denoted

with DT:

_pðt; xÞ ¼ DTðwðt; xÞÞ _wðt; xÞ ð10Þ

Equations (8) and (9) are related together in order to
achieve a symmetric formulation. In fact a direct

exploitation of these equations will not lead to a

Fig. 1. Two domains connected by a non-linear cohesive

interface.
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symmetric formulation. For this reason we define two
new vectors on the interface: the mean displacement _v
and the half opening displacement _z:

_vðt; xÞ ¼ 1

2
ð_u1ðxðtÞÞ þ _u2ðxðtÞÞÞ;

_zðt; xÞ ¼ 1

2
ð_u1ðxðtÞÞ � _u2ðxðtÞÞÞ ¼

1

2
_wðt; xÞ ð11Þ

BIEs written for each domain can be put together for
use in an overall analysis by employing the conditions of

equilibrium of traction components and incremental
cohesive opening traction-displacement relationship.
Now combining Eqs (8) and (9) on the interface �i

and having set _p (t, x) = DT (w(t, x)) _w(t,x) =
D̂T (z(t,x))_z(t,x), we obtain the following system of BIEs
(see [3]):

V1
uu _p1 � K1

pu _u1 � K1
iu _vþ ðV1

iuD̂T � K1
iuÞ_z ¼ f1u

x 2 �1
u

�K 01up _p1 þD1
pp _u1 þD1

ip _v� ðK 01ip D̂T �D1
ipÞ_z ¼ f1p

x 2 �1
p

V2
uu _p2 � K2

pu _u2 � K2
iu _vþ ðV2

iuD̂T � K2
iuÞ_z ¼ f2u

x 2 �2
u

�K 0 2up _p2 þD2
pp _u2 þD1

ip _v� ðK 0 2ip D̂T �D2
ipÞ_z ¼ f2p

x 2 �2
p

�K 0 1ui _p1 þD1
pi _u1 þ K 0 2ui _p2 �D2

pi _u2 þ ðD1
ii þD2

iiÞ_vþ

�ðK 0 1ii D̂T �D1
ii � K 0 2ii D̂T þD2

iiÞ_z ¼ f1iðpÞ � f2iðpÞ ð12Þ

x 2 �i

ðD̂ t
TV

1
ui � K 0 1ui Þ_p1 � ðD̂ t

TV
2
ui �D1

piÞ_u1�

ðD̂ t
TV

2
ui þ K 0 2ui Þ_p2 þ ðD̂ t

TK
2
pi þD2

piÞ_u2þ

�ðD̂ t
T �D1

ii þ D̂ t
TK

2
ii �D2

iiÞ_vþ

ðD̂T � D̂ t
TÞ þ ðD̂ t

TV
1
iiD̂T � D̂ t

TK
1
ii � K 0 1ii

h
D̂T þD1

iiÞþ

ðD̂ t
TV

2
iiD̂T � D̂ t

TK
t
ii � K 0 2iiD̂T þD2

iiÞ
i
_z ¼

D̂ t
Tðf1iðuÞ � f2iðuÞÞ þ f1iðpÞ � f2iðpÞ x 2 �i

The boundary integral equations (12) can be expressed
in the condensed form:

Nð
ðtÞÞ _
ðtÞ ¼ Fð
ðtÞÞ ð13Þ

The unknown vector _
 is made of tractions _p on

Dirichlet boundaries �j
u, displacements _u on Neumann

boundaries �j
p, mean displacements _v and relative half

opening displacements _z on the cohesive interface �i.

The following variational statement holds.

Proposition [2] If the tangent matrix of the cohesive law
DT is symmetric, i.e. DT ¼ Dt

T , the integral operator N :

H ! K is symmetric with respect to the bilinear form:

Bðh0; k0Þ _¼
Z

�

h0 � k0 ds h0 2 H; k0 2 K ð14Þ

3. Numerical solution

Consider the non-linear incremental problem (13)
where the structural response 
 is obtained for �p varying

from a null initial value and evolving quasi statically in
time by means of a load factor �(t), i.e. F(
(t)) =
_�(t)f(
(t)), supposing that � at least initially increases.
The problem under consideration may present limit

points, and conventional incremental algorithms, based
on a fixed value of load increment, may fail to overcome
such points. Hence, path-following techniques must be

used whereby the load factor � is added to the set of
unknowns. Problem (14) becomes therefore:

Nð
ðtÞÞ _
ðtÞ ¼ _�ðtÞfð
ðtÞÞ ð15Þ

The arc-length method is based on the introduction of a
control function giving a measure of the evolution of the

loading process. The form of the constraint equation,
proposed originally in [6], reads:

_

�� ��2þ _�2 ¼ cð�; 
Þ2 ð16Þ

where c represents the arc-length of the equilibrium
path. In the present paper, a local control function,
analogous to that proposed in [7], is used. Differently

from other papers, the present formulation is differential
in time, whereby the solution is reached by (explicit)
time integration strategies (see [3]).

The proposed model has been used to simulate some
FRP – concrete delamination test. Figure 2 shows a
typical pull–pull delamination test. Left and bottom
sides have been constrained in order to have no dis-

placements in the direction normal to the surface and
free displacements tangent to it with reference to this
setup. The behaviour of the bond between concrete and

Fig. 2. FRP-concrete delamination test.
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reinforcement can be characterized by a relationship
between shear stress locally transferred between concrete

and reinforcement to slip [8] with a linear elastic branch
until the maximum shear stress value is reached and by a
linear softening branch up to delamination:

p ¼
k w ifw � w0
w1�w
w1�w0

�p2 ifw0 � w � w1

0 ifw � w1

8<
: ð17Þ

where w0, w1 and �p2 are given quantities.
The geometrical, mechanical properties of materials

and interface parameters are reported in [9]. In Fig. 3

load-displacement curves obtained via BEM and via
FEM are reported for three different points: uA, uB, uC
(see Fig. 2). The methods, whose discretizations are
presented in Fig. 4, give practically the same results. In

Table 1 are reported discretization data and the number
of matrix evaluations. We adopted an explicit second-
order scheme, otherwise in the FEM context an incre-

mental-iterative scheme is used [1].
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Table 1

Discretization data for FRP delamination test

Nodes Elements Degrees

of

freedom

Interface

nodes

Matrix

evaluation

BEM 219 220 643 101 144

FEM 1830 1881 3680 101 163

Fig. 4. FEM and BEM discretizations.

Fig. 3. BEM and FEM solutions.
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