
Computational method for mapping continuum deformations to

crystal lattices containing defects

Peter W. Chung*, John D. Clayton

US Army Research Laboratory, AMSRL-CI-HC, Aberdeen Proving Ground, MD 21005, USA

Abstract

Computational multiscale methods that perform concurrent simulations of atoms and solid continua generally rely

on classical assumptions for kinematics, such as the Cauchy-Born approximation, for deformations of perfect crystals.
For the treatment of crystal defects, such assumptions do not apply and one is left only with performing full-scale
atomistic energy minimizations. We present interim progress on an approach based on homogenization to enable

continuum notions of deformations to apply to defected lattices. Using a decompositional kinematical representation,
we present a single parameter line search method for the minimization procedure, with the intent of substantially
reducing the computational cost.
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1. Introduction

The rational approach for treating deforming crystals
is to apply continuum deformation quantities, such as
the the deformation gradient, to atomic vector and
tensoral variables. This way of mapping deformations is

classically due to Cauchy [1] and later to Born [2]. For
perfect, defect-free systems this type of mapping has
been shown to ably represent the correct configurations

[3] even for complex lattice deformations such as twins
[4]. However, the Cauchy and Born assumptions are not
without limitations when considering physical phenom-

enology such as lattice instabilities [5]. But for most
applications and numerical methods [6] the assumptions
have yielded successful multiscale calculations.

Unfortunately, materials with localized point or edge
defects are fundamentally inconsistent with the
assumptions of Cauchy and Born, even for small strain
elasticity. Existing numerical methods therefore rely on

full atomic scale minimizations to handle anharmonic
crystal regions. The continuum, therefore, is inherently
assumed to be a perfect lattice and distributed networks

of defects more representative of realistic engineering
materials would therefore be prohibitive or intractable.
With increasing interest in solid mechanics with full

atomic resolution, it is desireable to have methods that
can accurately capture defect mechanisms without hav-

ing to perform full minimizations of the atoms. In an
effort to increase engineering utility and realism, we
extend an earlier homogenization method [7, 8] based on
a single parameter minimization procedure while incor-

porating finite deformation concepts to handle larger
classes of atomic-to-continuum multiscale problems.

2. Preliminaries

The kinematics and constitutive definitions are
defined in the standard way. Let us assume that a body

B � <3 has points X 2 B in regular cartesian space (with
respect to the coordinate base E) that get mapped to
points x 2 S (coordinate base e) through �(X, t) : B ! S.
At the moment, we only assume � to be at least C1, or
that it is differentiable at least once. In the context of
lattice and atomistic mechanics, this presupposes that all

considerations are for diffusionless mechanisms. This
tight restriction is assumed throughout our develop-
ments. In the numerical implementation, however, this
restriction is relaxed and only loosely enforced by

invoking an incremental procedure.
The deformation gradient F is formally defined as the

mapping of tangent bundles in B or, stated differently,

the tangent of �, F = T�. In order to use this point
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mapping, one must supply a restriction of F to a tangent
on B at a point X. Namely:

FðXÞ ¼ ðFÞaAðXÞ ¼
@�a

@XA
ðXÞ ð1Þ

The Green deformation tensor is defined as

C ¼ FTF ð2Þ

or in indicial form

CAB ¼ ðFTÞAa F a
B ð3Þ

which is symmetric and positive definite. To complete
the preliminary kinematical definitions, we define the

rate of deformation tensor D as:

DðX,tÞ ¼ @

@t
CðX,tÞ ð4Þ

As is customary for the definition of a stress and, in

particular, the Cauchy stress we first assume the exis-
tence of a vector field t (x, t, n), called the Cauchy stress
vector, where x specifies its position in space, t its

position in time and n its orientation. It physically
represents the force per unit area exerted on a surface
element, whether a fictitious surface within a body or the
bounding surface of the body itself, oriented normal to

n. It can subsequently be shown that there is a second-
order tensor field � defined by:

tðx,t,nÞ ¼ �ðx,tÞ � n ¼ �ðx,tÞ, nh i ð5Þ

where the definition of the vector inner product is also
shown. The tensor � is called the Cauchy stress tensor.
In indicial form, we may write:

t aðx,t,nÞ ¼ �acðx,tÞgbcnb ¼ �abnb ð6Þ

From here, we also define the first Piola-Kirchoff stress

tensor as:

PaA ¼ JðF�1ÞAb �ab ð7Þ

and the second Piola-Kirchoff stress tensor as:

SAB ¼ ðF �1ÞAb PaB ¼ JðF�1ÞAb ðF�1Þ
B
b �

ab ð8Þ

We next assume the existence of an identifiable free
energy function �. We assume an underlying theory of
hyperelasticity in the manner of Marsden and Hughes

[9] and begin with the conventional equations of
Lagrangian continuum mechanics. This entails the fol-
lowing set of equations:

�o ¼ �J ð9Þ

�o
dV

dt
¼ DIVPþ �oB ð10Þ

S ¼ ST ð11Þ

�o
@E

@t
þDIVQ ¼ �oRþ S : D ð12Þ

�oN
@�

@t
þ @�

@t
� S : Dþ 1

�
Q;GRAD�h i � 0 ð13Þ

E ¼ �þN� ð14Þ

where � and �o are the respective spatial and material

densities, V is the material velocity, DIV is the diver-
gence operator in the material frame, P is the first Piola-
Kirchoff stress, N is the entropy, S is the second Piola-

Kirchoff stress, E is the internal energy density per unit
mass, Q is the material heat flux vector, R is the internal
power generated per unit mass, D is the rate of defor-

mation tensor, � is the free energy, � is the absolute
temperature, and the operator d/dt is the material deri-
vative defined by:

dV

dt
¼ dVa

dt
¼ @V

a

@t
þ �abcVbVc ð15Þ

where � is a Christoffel symbol for the Riemann metric g
in the spatial configuration.
Equation (9) is the equation of mass conservation

where J is the Jacobian relating the original to current
volume. Equation (10) is the conservation of linear
momentum equation involving the material derivative in

Eq. (15) due to the Lagrangian framework. The sym-
metry of the stress tensor is assured by the conservation
of angular momentum in Eq. (11). The energy balance is

given in Eq. (12). The thermodynamic laws are satisfied
through the inequation in Eq. (13) and the definition for
internal energy in Eq. (14).
In the absence of temperature effects the free energy is

exactly equal to the stored energy function W. In this
discussion, however, we will maintain generality by
assuming nonisothermal conditions. However, where

convenient, we will remove this general treatment in
favor of the simpler isothermal (or even zero tempera-
ture) case.

With the assumption of an existing free energy func-
tion, �, the stress tensors may be given by:

� ¼ 2�
@�

@g
ð16Þ

P ¼ �o
@�

@F
ð17Þ

S ¼ 2�o
@�

@C
ð18Þ

where we have taken some liberties in a nonrigorous
definition of functional dependencies in �, namely that
� can be a function of g, F or C interchangeably with

some modification. The indicial counterparts of these
forms are given by:
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� a b ¼ 2�
@�

@gab
ð19Þ

PA
a ¼ �o

@�

@F a
A

ð20Þ

SAB ¼ 2�o
@�

@CAB
ð21Þ

As the current developments are based on funda-

mental principles stemming from the invocation of an
incremental numerical implementation (to be discussed
later), the material property tensors can be viewed as
tangents of the actual nonlinear material. Insofar as

hyperelasticity applies to the classes of problems in
which we are interested, we may write the elasticity
tensors in the following way1. Let us assume that P and

S are used in the functional forms of Eqs. (7) and (8),
respectively, that is, that they have functional depen-
dence on some kinematic variable. Then the first and

second elasticity tensors are respectively defined as:

A ¼ @P
@F

, C ¼ @S

@C
ð22Þ

or in indicial form:

AaA B
b ¼

@PaA

@F b
B

CABCD ¼ @SAB

@CCD
ð23Þ

These may also be related to the free energy function �
by substituting Eqs. (17) and (18) (or 20 and 21) into

Eqs. (22) (or 23) to obtain:

A A B
a b ¼ �o

@2�

@Fa
A@F

a
B

, CABCD ¼ 2�o
@2�

@CAB@CCD

ð24Þ

3. Classical kinematics

As our more immediate intent is to develop a kine-
matical mapping procedure for crystals containing a
defect, we start with the classical mapping approxima-

tion used commonly for perfect single crystals – the so-
called Born hypothesis. Originally due to Cauchy [1] and
Born [2], the essential definition is as follows [4]. Given a

reference multi-lattice L with a corresponding Bravais
lattice R generated from lattice vectors �EI, the deformed
Bravais lattice R0 due to deformation from an admis-

sible macroscopic homogeneous gradient F : R ! R0
can be generated by lattice vectors �E0i such that:

�E0 i ¼ mI
iF

�EI ð25Þ

where mi
I is from the set of all invertible 3 � 3 matrices

with integer coefficients, i.e. this is the three-dimensional

integer multiplier to generate the space filling crystal.

A more restrictive form of this rule, which we refer to
as the Cauchy-Born rule, is often found in multiscale

methods for complex multi-lattices [6, 10, 11] in which
the motion of shift vectors pk for k interpenetrating
Bravais lattices, is also controlled in the deformation in

addition to the primitive lattice vectors. This is denoted
by saying that all points given by X = mI�EI + pk with
mI being any integer maps point by point to x such that:

x ¼ FX ð26Þ

As one may expect, in general, the range of strains in

which Eq. (26) is applicable is significantly smaller than
for Eq. (25) because of the additional constraint of the
shift vectors.

4. Homogenization

At this point, we invoke the basic assumptions of
simple two-scale asymptotic expansion homogenization
[12], which are that two coordinate systems, X and Y,
that have the same basis exist and that all variables

defined in Y are Y-periodic. The ‘simple’ homogeniza-
tion procedure is to assume an absence of finite rotations
such that the spatial coordinate systems, x and y, can be

defined with respect to the same material frame basis. In
particular, we will look for functions u� which are the
displacements, such that:

u"ðx,yÞ ¼ uð0ÞðxÞ þ "uð1Þðx,yÞ þ "2uð2Þðx,yÞ þ � � � ð27Þ

where � is the asymptotic scaling parameter, y = x/�.
The finite rotation form of this derivation will be

reserved for a later paper that will more carefully
address arbitrary bases.
With our present assumption of simplicity, we may

write the usual deformation gradient, F, as:

F ¼ IþH" ð28Þ
¼ Iþr"u" ð29Þ

¼ Iþ rX þ 1

"
rY

� �
ðuð0ÞðxÞ þ "uð1Þðx,yÞþ

"2uð2Þðx; yÞ þ � � �Þ ð30Þ

¼ IþHð0Þ þ "Hð1Þ þ "2Hð2Þ þ � � � ð31Þ

where I is the second order identity tensor and

HðnÞ ¼ rXuðnÞ þ rYuðnþ1Þ ð32Þ

and the gradient operators are defined by HX = @/@X
and HY = @/@Y.
We now propose the following. If �F is the minimizer

of the free energy function � and �Fo is the Cauchy-Born
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rule deformation gradient, then there exists a decom-
position of �F such that:

�FðX,YÞ ¼ �F
�ðX,YÞ �F

oðXÞ: ð33Þ

The proof of Eq. (33) is in the remaining task of deter-
mining �F* with respect to our assumptions of

homogenization. It also remains to define the appro-
priate computational method for determining each of
the terms in Eq. (33) numerically.

Let us first remark that that other terms in Eq. (33)
can be readily defined. The Cauchy-Born deformation
gradient is defined ‘simply’ by:

�F
oðXÞ ¼ IþrXuð0ÞðxÞ ð34Þ

The homogenization procedure of [7, 8] can be gen-
eralized for finite strain to obtain:

�F ¼ IþHð0Þ ð35Þ

Combining these two results then readily leads to:

�F
� ¼ ð�FoÞ�1�F

¼ Iþ ðIþrXuð0ÞÞ�1rYuð1Þ ð36Þ

The generalization that leads to Eq. (35) will be detailed
in the final conference paper. The procedure for

obtaining u
(1) has been shown in earlier related works

[7].
The decomposition approach for multiscale applica-

tions have been considered before [13,14]. The basic idea
presently used falls back to early thoughts on plasticity
[15] of decomposing deformations that separates lattice

slip from bulk motions. The point of departure in this
work is that in deforming lattices containing defects,
molecular motions, due to their high degree of non-
linearity, undergo subsequent point-wise relaxations

that we presume have a structure representable in some
variational form. The minimization problem in the
smaller of the two scales is essentially a harmonic

extension of the atomistic problem, or the so-called
‘umbrella’ potential problem. The connection to dis-
tributed networks of defects is achieved through the

simple Y-periodicity argument, which, at first, appears
overly simplistic but remains powerful through sub-
sequent computational developments.

Finally, we must also remark that the instantaneous

harmonic assumption needed to get the result in Eq.(35)
is non-trivial and restrictive. In fact, it can be shown
that, owing to this caveat, �F is not a true minimizer of �.

A better minimizer involves a scalar parameter � such
that

�FðX,YÞ ¼ ��F
�ðX,YÞ �F

oðXÞ ð37Þ

which we present here without proof. Therefore, the

nonlinear multibody atomistic problem is now replaced
by a linear minimization of the harmonic equations plus

a single parameter line search.

Notes

1 In general, the connection to atomistics is precarious since

much remains to be said for the substitution of an atomistic

functional in place of the free energy �, in part or in whole, and

the interpretation of t as atomic forces per unit area. However,

we can still meaningfully use tangent stiffnesses obtained from

derivatives of the atomistic ‘free energy’ since one can show

locality and invariance properties are generally satisfied for

these potentials in a crystallographic sense. One can also show

that for zero temperature molecular statics/dynamics and finite

temperature dynamics, either as trajectory simulations or quasi-

static quenching simulations, the second thermodynamic law is

satisfied. In fact, p. 191 of Marsden and Hughes [9] proves that

by using hyperelastic constitutive laws we can implicitly assume

this.
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Oeuvres Complètes, Tome 20, Exercices de Mathéma-
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