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Abstract

This paper studies the asymptotic limit bending problem of thin linearly elastic shells as the thickness goes to zero.

Such asymptotic bending problem makes sense whenever bending problems are admissible. Two alternate expressions
of the change of curvature tensor are presented, giving new formulations for the asymptotic bending problem. In the
case of cylinders and hyperbolic surfaces, we present some solutions, including analytic solutions. Such solutions can

constitute tests for membrane locking.
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1. Introduction

The natural trend for a very thin elastic shell is to
perform bendings as shown by the asymptotic analysis

of linear thin shells. Unlike the bendings in beams pro-
blems, bending deformation on a surface is not always
admissible: it depends on the boundary conditions and
the geometry [1]. Thin shells are thus classified as [with

bendings] inhibited or not-inhibited [2,3]. This classifica-
tion is also referred to as membrane dominated and
bending dominated [4]. These two very distinct asymp-

totic behaviors lead to strong difficulties in the numerical
finite element approximation of very thin elastic shells:
boundary layers, propagation and reflexion of singula-

rities, sensitivity within the inhibited case and numerical
(membrane) locking in the non-inhibited or bending
dominated case, see [2,3,5,6,7,8].

In this paper, the limit problem of thin non-inhibited
elastic shells, the asymptotic bending problem, is stu-
died, making sense whenever the set of kinematically
admissible infinitesimal bending is not reduced to trivial

bendings (rigid displacements).
With alternative formulations, the asymptotic bend-

ing problem simplifies greatly in some cases of cylinder

and hyperbolic shells and allows an easy analytical
solution, eventually.

Such solution can be used as a test, as in [9], to the

membrane locking that appears in the finite element

approximation of very thin elastic shell problems
[3,5,7,10].

2. The asymptotic bending problem

In this paper we will employ the Einstein convention
of summation on repeated upper or lower indices. The
Greek (resp. Latin) indices range over {1,2} (resp.

{1,2,3}). The partial derivatives with respect to variables
x� are denoted in lower indices preceded by a comma.
An overarrow is used to indicate space vectors. The

variables x1, x2 live in the bounded domain � � R
2.

Let S be a surface given by a map (�,~r), � 2 R
2 with

~r ¼ xðx1; x2Þ~e1 þ yðx1; x2Þ~e2 þ zðx1; x2Þ~e3 ð1Þ

The vectors ð~e1;~e2;~e3Þ constitute a Cartesian basis of
space R3 and the direction ~e3 will be referred to as the
vertical direction. The coefficients of the first and second

fundamental form are

a�� ¼ ~a�:~a� and b�� ¼ ~a3:~a�;� ð2Þ

where the tangent vectors ~a� ¼~r;� and the unit normal
vector ~a3 constitute the covariant basis on S. The cov-

ariant basis is associated with its dual basis: the
contravariant basis ð~a1;~a2;~a3Þ. We also have the coeffi-
cients a�� ¼ ~a� ~a� defining the inverse matrix to ða��Þ.
The Christoffel’s symbols are
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�
�
�� ¼ ~a

�:~a�;� ð3Þ

We let " denote the thickness so that the shell, the

midsurface of which is S, is defined as the set
f~rðx1; x2Þ þ x3~a3; x3 2 ½�"=2; "=2�g � R3

Let us consider a shell problem. The mechanical

problem in the space of kinematically admissible dis-
placements ~V and with external applied load L�, writes

find ~u" 2 ~V such that
a"ð~u";~vÞ ¼ L"ð~vÞ; 8~v 2 ~V

�
ð4Þ

where a" denotes the deformation energy bilinear form
which depends on the linearized variations of the fun-
damental forms of the surfaces, especially the symmetric

tensors ��� and ���, respectively the change of curvature
tensor and the membrane strain tensor. ��� and ��� are
the linearized variations of the coefficients a�� and b��.

Classically, we have the following asymptotic beha-
vior valid for thin shells linear models such as Koiter’s
or Naghdi’s [2,3,4]:

Theorem 2.1 If the (scaled) load L" (~v) depends on " as
L" (~v) = "3 L (~v), then the solutions ~u" of Eq. (4) con-
verge towards the solutions ~u0 of the asymptotic limit

bending problem

find ~u0 2 ~G such thatR
S
A��	�

12 ���ð~uÞ�	�ð~vÞ;¼ Lð~vÞ; 8~v� 2 ~G

�
ð5Þ

where ~G is the set of kinematically admissible infinitesimal
bendings (also called inextensional displacement). In the
case of homogeneous and isotropic material,

A��	� ¼ E

2ð1þ �Þ a�	a�� þ a��a�	 þ 2�

1� � a
��a	�

	 


ð6Þ

where E is the Young’s modulus and � the Poisson ratio.

3. Resolution of the asymptotic bending problem

The limit bending problem in Eq. (5) is a constrained

problem, thus one can try to solve it with a mixed form-
ulation. However, at least two alternate formulations
of the asymptotic bending problem, leading to impor-

tant simplifications, permit its resolution in specific
cases. The first is based on the notion of infinitesimal
rotation field associated with an inextensional displace-
ment and has been developed in [9] exhibiting some

solutions for hyperbolic surfaces. The second is based on
a new expression of the tensor ��� with only one
component of the displacement, in the case of an inex-

tensional bending. Both methods take advantage of

properties of infinitesimal bendings, for which we recall
some properties.

The infinitesimal bendings or inextensional displace-
ments are displacements leaving the linearized variation
of the first fundamental form, that is the intrinsic metric,

unchanged. This variation is given by the membrane
strain tensor

���ð~uÞ ¼
1

2
ð~u;�:~r;� þ~r;�:~u;�Þ ð7Þ

Definition 3.1. A displacement ~u is an inextensional dis-
placement if ���(~u) = 0. Any inextensional displacement
~u defines a unique vector field ~!, called associated infini-
testimal rotation field satisfying the relations:

~u;1 ¼ ~! ^~a1 and ~u;2 ¼ ~! ^~a2 ð8Þ

Let us introduce the notation ~w� ¼ w��~a� for the
partial derivatives of a rotation field ~!:

~w� ¼ ~!;� ð9Þ

It has been shown that such vector fields are tangent
to the surface and their components satisfy a partial
differential system, the characteristics of which coincide

with the asymptotic lines of the surface [9]:

w1
1;2 þ �1

2	w
	
1 ¼ w1

2;1 þ �1
1	w

	
2 ð10Þ

w2
1;2 þ �2

2	w
	
1 ¼ w2

2;1 þ �2
1	w

	
2 ð11Þ

b12w
1
1 þ b22w

2
1 ¼ b11w

1
2 þ b12w

2
2 ð12Þ

w1
1 þ w2

2 ¼ 0 ð13Þ

3.1. The tensor of curvature variation for inextensional

displacements

We give here two alternative expressions for the ten-
sor of curvature variation in the case of inextensional

displacements. One is based on the associated rotation
field, and the second is based on only one cartesian
component of the displacement.

Proposition 3.2. Let ~u be an inextensional displacement
on the considered surface S and let ���(~u) be the tensor of

curvature variation. If we denote by !	� the contravariant
components of (~w1, ~w2), the partial derivatives of the
associated rotation field ~!, we have:

�11ð~uÞ ¼ �w2
1

ffiffiffi
a
p

�22ð~uÞ ¼ þw1
2

ffiffiffi
a
p

�12ð~uÞ ¼ 1
2ðw1

1 � w2
2Þ

ffiffiffi
a
p

8<
: ð14Þ

Obtaining Eq. (14) is quite straightforward writing the
variation of the coefficients of the second fundamental
form b�� and replacing the derivatives of an inexten-

sional displacement with its associated rotation field.
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Another expression is based on the possibility to
reconstruct a surface for a given first fundamental form

and one component of its mapping [1]. Transposing this
property to inextensional displacements gives the fol-
lowing expression of ���:

Proposition 3.3. For any infinitesimal bending ~u = (u1,
u2, u3), in Cartesian components, the linearized change of

curvature tensor ���(~u) depends only on the surface
coefficients and one component of the displacement:

���ð~uÞ ¼ ���ðu3Þ ¼ N
1
2 u3 �� þNðz;	u3;�a	�Þz

�� ��
��

h i
ð15Þ

with N ¼ 1

1� z;	z;�a	�
and z �� ¼ z;�� � ��

��z;�

���

The two expressions for ��� in Eqs. (14) and (15) allow
simplification and resolution of the asymptotic bending

problem in Eq. (5) for specific cases.

3.2. Case of a hyperbolic paraboloid

Let S be a hyperbolic paraboloid and be defined by
the mapping in Eq. (1) with

x ¼ x1; y ¼ x2; z ¼ x1x2 ð16Þ

The covariant and contravariant basis and various
coefficients of the surface are

~a1 ¼ ð1; 0; x2Þ a11 ¼ 1þ x22 a11 ¼ 1þ x22
a

b11 ¼ 0 �1
12 ¼

x2
a

~a2 ¼ ð1; 0; x1Þ a12 ¼ x1x2 a12 ¼ x1x2
a

b12 ¼
1ffiffiffi
a
p �2

12 ¼
x1
a

~a3 ¼
1ffiffiffi
a
p ð�x2;�x1; 1Þ a22 ¼ 1þ x21 a22 ¼ 1þ x22

a

b22 ¼ 0 ��
�� ¼ 0 ð17Þ

a ¼ 1þ x21 þ x22

and the elasticity coefficients for homogeneous and iso-
tropic elastic shells are

A1111 ¼ Eð1þ x21Þ
2

12ð1� �2Þa2 A1122 ¼ Eðx21x22 þ �aÞ
12ð1� �2Þa2

A2222 ¼ Eð1þ x22Þ
2

12ð1� �2Þa2 ð18Þ

The simplifications easily give the set of associated
rotation fields and thus the set of inextensional dis-

placements on a hyperbolic paraboloid [9]:

Proposition 3.4. For any inextensional displacement ~u
on the hyperbolic paraboloid S, there is a unique couple

ð�~u2; �~u1Þ 2 L2
y � L2

x, such that modulo a rigid displace-
ment, we have

~uðx1; x2Þ ¼ Rð�~u2; �~u1Þ ¼ ½x2�~u1ðx1Þ ��~u2ðx2Þ�~e1þ
½�~u1ðx1Þ � x1�~u2ðx2Þ�~e2 � ½�~u1ðx1Þ � ½�~u2ðx2Þ�~e3 ð19Þ

where the functions �~u� and  ~u� are defined with �~u� by
quadrature:

�~u�ðx1Þ ¼
Z x

0

�~u�ðzÞ ðx1 � zÞdz and �~u�ðx1Þ ¼
Z x

0

�~u�ðzÞz ðx1 � zÞdz ð20Þ

with �11ð~uÞ ¼ �
ffiffiffi
a
p

�~u1; �12ð~uÞ ¼ 0; and �22ð~uÞ ¼
ffiffiffi
a
p

�~u2

As an example, if we set � = [0, 1]2 and suppose the
hyperbolic paraboloid is clamped along the boundary

x = 0. This condition imposes that �~u1 = 0 in Eq. (19).
The asymptotic bending problem simplifies then to a
one-dimensional problem: with a unitary localized ver-

tical loading on the point (0,1), we have

find �x~u 2 L2
xð½0; 1�Þ such thatR 1

0 ��~u�~vdx1 ¼ �~vð1Þ ¼
R 1
0 �~vðx1Þð1� x1Þdx1 ð21Þ

8�~v 2 L2
xð½0; 1�Þ

8<
:
where

�ðx1Þ ¼
Z 1

0

A1111ðx1; x2Þa
ffiffiffi
a
p

dy ð22Þ

This immediately gives the solution

�~uðx1Þ ¼
1� x1
�ðx1Þ

and u3ð1; 0Þ ¼
Z 1

0

ð1� zÞ2

�ðzÞ dz ð23Þ

With E = 1 and � = 1/3, we obtain u3 (1, 0) = 3.5534.

3.3. Case of a cylinder

Let us assume now that S is a cylinder. Let S be
defined by the mapping in Eq. (1) with

x ¼ x1; y ¼ x2; z ¼ ’ðx1Þ: ð24Þ

The curve (x1, 0, ’(x1)) is a directrix and the curves
(straight lines) at x1 = constant are the generatrix. The
covariant and contravariant basis and various coeffi-

cients of the surface are

~a1 ¼ ð1; 0; ’0ðx1ÞÞ; a11 ¼ a; b11 ¼
’00ffiffiffi
a
p

�1
11 ¼

’0’00

a
; a11 ¼ 1

a
;
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~a2 ¼ ð1; 0; 0Þ; a12 ¼ 0; b12 ¼ 0;

�2
11 ¼ 0; a12 ¼ 0; ð25Þ

~a3 ¼
1

a
ð�’0ðx1Þ; 0; 1Þ; a22 ¼ 1; b22 ¼ 0;

��
�2 ¼ 0; a22 ¼ 1

with a = 1 + (’0)2. The elasticity coefficients are

A1111 ¼ E

12a2ð1� �2Þ ; A1112 ¼ 0; A1212 ¼ E

að1þ �Þ
ð26Þ

In the following we shall suppose that ’} doesn’t vanish,
in other words that S is not a plane. Then, it can be

shown that the displacement u3 is necessarily a poly-
nomial in x2 of degree 1:

u3 ¼ gðx1Þ þ x2hðx1Þ ð27Þ

where g and h are arbitrary functions of x1. Then,

�11 ¼ N
1
2ðu3;11 � �1

11u3;1 þNz;1u3;1a
11ðz;11 � �1

11z;1ÞÞ;

�12 ¼ N
1
2u3;12; �22 ¼ 0 ð28Þ

Furthermore, as we have

Na11’0ð’00 � �1
11’
0Þ � �1

11 ¼ 0; ð29Þ

we state:

Proposition 3.5. Let ~u be an infinitesimal bending on the
cylinder in Eq. (18), then u3 = g(x1) + x2h(x1) and

�11ð~uÞ ¼ N
1
2ðg00 þ x2h

00Þ �12ð~uÞ ¼ N
1
2h0 �22ð~uÞ ¼ 0

ð30Þ

Actually, in the case of inextensional displacement, it is
possible to construct the components u1 and u2 from u3
by quadratures from the equations of the bending sys-

tem. Thus it is possible to express L(~u) = L(u3). The
asymptotic bending problem in Eq. (5) can then be
written as a variational problem of two functions of one
variable:

Find u3 ¼ gðx1Þ þ x2hðx1Þ 2 ~G

R
S

1
12

�11

2�12

" #T
A1111 0

0 A1212

" #T
��11

2��12

" #
¼ Lðu�3Þ

8u�3 ¼ g�ðx1Þ þ x2h
�ðx1Þ 2 ~G

8>>>>><
>>>>>:

ð31Þ

It is then possible, for any cylindrical shells, to reduce
the constrained problem to a one-dimensional differ-
ential problem.

As an example, consider � ¼ �
ffiffi
2
p

2 ;
ffiffi
2
p

2

h i
� ½�0:5; 0:5�

and the cylinder defined with z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21

q
, clamped on

the boundary x1 ¼ �
ffiffi
2
p

2 . It is easy to find that such

configuration admits infinitesimal bending: all vertical
displacements u3 = g(x1) + x2h(x1) satisfying the
boundary conditions g(0) = g0(0) = h(0) = h0(0) = 0

define admissible infinitesimal bendings. This geometry
is also referred as a Scoderlis-Lo roof. The shell is sub-
mitted to a localized vertical force ~F ¼ F~e3 on the point

p3 ¼ ð
ffiffi
2
p

2 ; 0:5;
ffiffi
2
p

2 Þ:
In this case, we don’t have the exact analytical solu-

tion, but the reduced asymptotic bending problem in Eq.
(5) is very simple, and it suffices to implement a standard

one-dimensional finite element to solve it. We then
obtain the value of the vertical component of the dis-
placement on p3 by numerical approximations,

independent of the thickness. With E = 1, � = 1/3, F =
1, we have u3 (p3) = 2.1168107.

4. Concluding remarks and membrane locking

Only two examples have been given here, but it is not
difficult to construct more, with different shapes and
loadings. These solutions can constitute tests for mem-

brane locking: we compare with numerical results given
by finite element schemes at given mesh for different
thicknesses (going to 0).

Membrane locking in finite element computation of
thin shells is the deterioration of the approximation for a
fixed mesh when the thickness goes to 0 [10]. It is shown
in [7] that any conformal finite element method is subject

to membrane locking. Actually, the proof is also valid
for some non-conformal methods such as DKT, but for
non-conformal methods such as proposed in [11],

including MITC [3], further analysis is needed. In the
author’s opinion, as convergence needs consistency,
such methods should not be strictly locking-free, and the

same applies to conformal methods, even though they
seem to perform very well with respect to membrane
locking [11].
In the particular case of localized loading, the defor-

mation energy is given by the displacement at the
loading point. It is easy then to compare the deforma-
tion energy: the asymptotic bending energy is necessarily

smaller than the deformation energy for a given thick-
ness. If present, the locking can then be detected in the
specific case.
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[5] Pitkäranta J. The problem of membrane locking in finite

elements analysis of cylindrical shells. Numerische Math-

ematik 1992;61:523–542.
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