Inclusion properties for random relations under the hypotheses of stochastic independence and non-interactivity

S. Chen*, F. Tonon

University of Utah, Department of Geology and Geophysics, 135 South 1460 East, Salt Lake City, UT 84112, USA

Abstract

This paper investigates whether random set inclusion is preserved by non-interactivity and by stochastic independence. Let (X_1, x_1) , (X_2, x_2) be two random sets on U_1 and U_2 , respectively, and let (Y_1, y_1) , (Y_2, y_2) be two consonant inclusions of theirs. Let (Z_1, z_1) be the random relation on $U_1 \times U_2$ obtained from (X_1, x_1) and (X_2, x_2) under the hypothesis of stochastic independence, and let (Z_2, z_2) ((Z_3, z_3) , resp.) be the random relation on $U_1 \times U_2$ obtained from (Y_1, y_1) , (Y_2, y_2) under the hypothesis of non-interactivity (stochastic independence, resp.). We prove that these hypotheses do not imply that $(Z_1, z_1) \subseteq (Z_2, z_2)$, but imply that $(Z_1, z_1) \subseteq (Z_3, z_3)$.

Keywords: Random set; Relation; Inclusion; Non-interactivity; Stochastic independence

1. Introduction

Random set theory [1,2,3,4,5,6,7,8] provides a general paradigm for calculations with uncertain data. As illustrated in Fig. 1, let (Y_1, y_1) , (Y_2, y_2) be two consonant inclusions of (X_1, x_1) , (X_2, x_2) , two random sets on U_1 and U_2 , respectively. (Z₁, z_1) is the random relation for (X_1, x_1) and (X_2, x_2) using the hypothesis of stochastic independence, (Z_2, z_2) is the random relation for (Y_1, y_1) and (Y_2, y_2) using the hypothesis of non-interactivity and (Z_3, z_3) is the random relation for (Y_1, y_1) and (Y_2, y_2) v_2) using the hypothesis of stochastic independence. We prove that non-interactivity does not necessarily preserve inclusion and that stochastic independence preserves inclusion. The result has important consequences in the applications because consonant Cartesian random relations (which are equivalent to decomposable fuzzy relations) are much easier to handle from a computational viewpoint.

2. Inclusion of random set

Inclusion of random sets is defined as follows. Let (X_1, m_1) and (X_2, m_2) be two random sets: $(X_1, m_1) \subseteq (X_2, m_2)$ if and if only three conditions hold:

- (i) $\forall A \in X_1, \exists B \in X_2, A \subseteq B$ (1)
- (ii) $\forall B \in X_2, \exists A \in X_1, A \subseteq B$ (2)
- (iii) there is a non-negative assignment matrix W with entries W(A, B), $A \in X_1$, $B \in X_2$ such that:

$$\forall A \in X_1, m_1(A) = \sum_{B:A \subseteq B} W(A, B)$$
(3)

$$\forall B \in X_2, m_2(B) = \sum_{A:A \subseteq B} W(A, B) \tag{4}$$

where W(A, B) = 0 as soon as $A \not\subset B$.

Fig. 1. Schematic of the random sets used in the paper.

^{*} Corresponding author. Tel.: +1 (801) 585 1538; Fax: +1 (801) 585 1533; E-mail: song.chen@utah.edu

Dubois and Prade [6] showed that the inclusion of two random sets implies the inclusion of the [*Bel* (.), *Pl* (.)] interval:

$$(x_b m_1) \subseteq (x_2, m_2) \Rightarrow [Bel_1(A), Pl_1(A)] \subseteq [Bel_2(A),$$

$$Pl_2(A)]$$
(5)

but the reverse is not necessarily true. Therefore:

$$[Bel_1(A), Pl_1(A)] \not\subset [Bel_2(A), Pl_2(A)] \Rightarrow (X_1, m_1)$$

$$\not\subset (X_2, m_2) \tag{6}$$

3. Non-interactivity does not necessarily preserve inclusion

Let (X_1, x_1) and (X_2, x_2) be two marginal random sets respectively (Table 1). Following the procedure for inclusion of 1-D random sets given by Tonon [9], one obtains consonant random sets (Y_1, y_1) and (Y_2, y_2) , which include (X_1, x_1) and (X_2, x_2) , respectively (Table 2). Since each consonant random set (Y_i, y_i) is equivalent to a fuzzy set, F_i , focal elements A' and B' are also considered as α -cuts with α -levels $\mu_{F_1}(A')$ and $\mu_{F_2}, (B')$ for F_1 and F_2 , respectively (Table 2).

Using the hypothesis of stochastic independence, random relation (Z_1, z_1) for (X_1, x_1) and (X_2, x_2) was calculated (Table 3). Using the hypothesis of noninteractivity, consonant random relation (Z_2, z_2) for (Y_1, y_1) and (Y_2, y_2) was also calculated and shown in Table 4.

Let us calculate the Belief–Plausibility intervals to determine whether $(Z_1, z_1) \subset (Z_2, z_2)$. For $C_1 = D_1$, one obtains $[Bel_{z_1}(C_1), Pl_{z_1}(C_1)] = [0.14, 1]$ and $[Bel_{z_2}(C_1), Pl_{z_1}(C_1)] = [0.14, 1]$

Table 1 Random sets (X_1, x_1) , (X_2, x_2) with focal elements A, B

(X ₁ , <i>x</i>	1)	(X ₂ , <i>x</i>	2)
A	$x_1(A)$	В	\mathbf{x}_2 (B)
$A_1 = [5, 8]$	0.2	$B_1 = [3, 7]$	0.7
$A_2 = [3, 7]$	0.5	$B_2 = [2, 5]$	0.1
$A_3 = [2, 4]$	0.3	$B_3 = [1, 8]$	0.2

 $Pl_{z_2}(C_1)$ = [0.19998,1]. Since $Bel_{z_2}(C_1) > Bel_{z_1}(C_1)$, then $[Bel_{z_1}(C_1), Pl_{z_1}(C_1)] \notin [Bel_{z_2}(C_1), Pl_{z_2}(C_1)]$, one concludes that $(Z_1, z_1) \notin (Z_2, z_2)$ (Eq. 6)

4. Stochastic independence preserves inclusion

Let (Z_3, z_3) be the random relation obtained from marginals (Y_1, y_1) , (Y_2, y_2) under the hypothesis of stochastic independence (Fig. 1). In this section we first show in general terms that $(Z_1, z_1) \subseteq (Z_3, z_3)$, and then give a numerical example.

4.1. General case

One needs to show that the definition of inclusion given in Section 2 holds true.

(i) Recall that $(X_i, x_i) \subseteq (Y_i, y_i)$ (i = 1, 2) and that the focal elements of (Z_1, z_1) $((Z_3, z_3), \text{ resp.})$ are Cartesian products of the focal elements of (X_i, x_i) $((Y_i, y_i), \text{ resp.})$ under the hypothesis of stochastic independence, i.e.

$$Z_1 = \{C_k | C_k = A_i \times B_j, A_i \in X_l B_j \in X_2\}$$

$$\tag{7}$$

$$Z_{3} = \{ E_{k} | E_{k} = A'_{i} \times B'_{j}, A'_{i} \in Y_{l} B'_{j} \in Y_{2} \}$$
(8)

Let $C \in Z_1$ be such that $C = A \times B$, with $A \in X_1$, $B \in X_2$. Since $(X_i, x_i) \subseteq (Y_i, y_i)$, $\exists A' \in Y_1$, $B' \in Y_2$ such that $A \subseteq$

Table 3

Stochastically independent random Cartesian product (Z_1, z_1) with focal elements *C* obtained from (X_1, x_1) and (X_2, x_2)

$C = A \times B$	$z_1(C) = x_1(A) x_2(B)$
$C_1 = A_1 \times B_1 = [5,8] \times [3,7]$	0.14
$C_2 = A_1 \times B_2 = [5,8] \times [2,5]$	0.02
$C_3 = A_1 \times B_3 = [5,8] \times [1,8]$	0.04
$C_4 = A_2 \times B_1 = [3,7] \times [3,7]$	0.35
$C_5 = A_2 \times B_2 = [3,7] \times [2,5]$	0.05
$C_6 = A_2 \times B_3 = [3,7] \times [1,8]$	0.1
$C_7 = A_3 \times B_1 = [2,4] \times [3,7]$	0.21
$C_8 = A_3 \times B_2 = [2,4] \times [2,5]$	0.03
$C_9 = A_3 \times B_3 = [2,4] \times [1,8]$	0.06

Table 2

Random sets (Y_1, y_1) and (Y_2, y_2) with focal element A', B', respectively, and α -levels of their corresponding fuzzy sets F_1 and F_2 , respectively

	(Y_1, y_1)		(Y ₂ , y ₂)			
$A' A_1' = [5, 8] A_2' = [3, 8] A_3' = [2, 8]$	$y_1(A') \\ 0.199998 \\ 0.5 \\ 0.300002$	$\mu_{F_1}(A')$ 1 0.800002 0.300002	$B' \\ B_1' = [3, 7] \\ B_2' = [2, 7] \\ B_3' = [1, 8]$	$y_2(B')$ 0.699998 0.1 0.200002	$\begin{array}{c} \mu_{F_2}(B') \\ 1 \\ 0.300002 \\ 0.200002 \end{array}$	

Table 4

Non-interactive random Cartesian product (Z_2 , z_2) with focal elements D_i obtained from (Y_1 , y_1) and (Y_2 , y_2) and its equivalent fuzzy sets

D = A' imes B'	$\mu_R(D)$	$z_2(D)$	
$D_1 = A_1' \times B_1' = [5,8] \times [3,7]$	1	0.199998	
$D_2 = A_2' \times B_1' = [3,8] \times [3,7]$	0.800002	0.5	
$D_3 = (A_1' \times B_2') \cup (A_2' \times B_2')$	0.300002	0.1	
$\cup (A_3' \times B_1') \cup (A_3' \times B_2') = [2,8] \times [2,7]$			
$D_4 = (A_1' \times B_3') \cup (A_2' \times B_3') \cup (A_3' \times B_3') = [2,8] \times [1,8]$	0.200002	0.200002	

Table 5

Stochastically independent random Cartesian product (Z_3 , z_3) with focal elements E_i obtained from (Y_1 , y_1) and (Y_2 , y_2)

$E = A' \times B'$	$z_3(E) = y_1(A') y_2(B')$
$\overline{E_1 = A_1' \times B_1' = [5,8] \times [3,7]}$	0.139998200004
$E_2 = A_1' \times B_2' = [5,8] \times [2,7]$	0.0199998
$E_3 = A_1' \times B_3' = [5,8] \times [1,8]$	0.039999999996
$E_4 = A_2' \times B_1' = [3,8] \times [3,7]$	0.349999
$E_5 = A_2' \times B_2' = [3,8] \times [2,7]$	0.05
$E_6 = A_2' \times B_3' = [3,8] \times [1,8]$	0.100001
$E_7 = A_3' \times B_1' = [2,8] \times [3,7]$	0.210000799996
$E_8 = A_3' \times B_2' = [2,8] \times [2,7]$	0.0300002
$E_9 = A_3' \times B_3' = [2,8] \times [1,8]$	0.060001000004

A' and $B \subseteq B'$. Therefore, $C = A \times B \subseteq A' \times B' = E \in \mathbb{Z}_3$.

(ii) Similar to (i).

(iii) First, the concept of convex sum of inclusion relationships [6] must be introduced. Consider a set Φ of 3-tuples $\{(A_i, B_i, W(A_i, B_i)) \ i = 1, ..., k\}$, in which $W(A_i, B_i) > 0$ for $A_i \subseteq B_i$ and $\sum_i W(A_i, B_i) = 1$. The two random sets (X, m) and (X', m') defined by $m(A) = \sum\{W(A_i, B_i) A_i = A\}$ and $m'(B) = \sum\{W(A_i, B_i) B_i = B\}$, are such that $(X, m) \subseteq (X', m')$. Hence this notion of inclusion corresponds to a convex sum of classical inclusion relationships. Note that the 3-tuples $(A_i, B_i, W(A_i, B_i))$ need not be distinct.

Second, the inclusions $(X_i, x_i) \subseteq (Y_i, y_i)$ (i = 1, 2)imply that there exist two matrices, say $W_1(A_i, A'_i)$ and $W_2(B_j, B'_j)$, respectively, which satisfy the definition of inclusion. Define the weight $W_3(A_i, B_j, A'_i, B'_j)$ as $W_1(A_i, A'_i) \bullet W_2(B_j, B'_j)$ and consider the set

$$\{((C_k = A_i \times B_j), (E_k = A'_i \times B'_j), W(A_i, B_j, A'_i, B'_j)) | A_i \in X_I, B_j \in X_2, A'_i \in Y_I, B'_j \in Y_2\}$$
(9)

This set defines a convex sum of inclusion relationships because $W(A_i, B_j, A'_i, B'_j) > 0$ implies $W_1(A_i, A'_i) > 0$ and $W_2(B_j, B'_j) > 0$, which implies $A_i \subseteq A'_i$ and $B_j \subseteq B'_j$, which finally implies $A_i \times B_j \subseteq A'_i \times B'_j$. Now, one can conclude that

$$\sum_{A_{i} \times B_{j} = C_{k}} \left(\sum_{A'_{i}: A_{i} \subseteq A'_{i}} W_{1}(A_{i}, A'_{i}) \cdot \sum_{B'_{j}: B_{j} \subseteq B'_{j}} W_{2}(B_{i}, B'_{j}) \right) = \sum_{A_{i} \times B_{j} = C_{k}} x_{1}(A_{i}) \cdot x_{2}(B_{j}) = z_{1}(C_{k})$$
(10)

Similarly,

$$\sum \{ W_l(A_i, A'_i) \bullet W_2(B_j, B'_j) | A'_i \times B'_j = E_k, A_i \in X_l, B_j \in X_2 \} = Z_3(C'_k)$$
(11)

From (i–iii) above, one concludes that $(Z_1, z_1) \subseteq (Z_3, z_3)$.

4.2. Numerical example

Requirements (i) and (ii) in the definition for random set inclusion can be easily checked using the first columns in Tables 3 and 5. A matrix W that satisfies requirement (iii) was found using a MATLAB optimization toolbox. Table 6 gives the zero and non-zero entries of matrix W. Table 7 is our exact $W(C_i, E_j)$ that meets the definition of inclusion of random sets (Z_1, z_1) $\subseteq (Z_3, z_3)$.

5. Conclusion and discussion

This paper shows that inclusion is not necessarily preserved by non-interactivity and that inclusion is preserved by stochastic independence.

From our result, one can find it is not possible to use the hypotheses of non-interactivity and stochastic independence interchangeably. If the inclusions are true, then the Belief–Plausibility intervals calculated with (Z_2, z_2) and (Z_3, z_3) include the Belief–Plausibility intervals calculated with (Z_1, z_1) . If these bounds are interpreted as upper and lower probabilities, then probability bounds calculated with (Z_2, z_2) and (Z_3, z_3) include the probability bounds calculated with (Z_1, z_1) . These bounds may be enough to make a decision on a system of interest and may grant substantial computational savings and robustness. For example, Tonon and Bernardini [10,11] used the hypothesis of non-interactivity

Table 6 Zero and non-zero entries in matrix $W(C_i, E_j)$

C_1	$W(C_1,E_1)$	$W(C_1, E_2)$	$W(C_1, E_3)$	$W(C_1, E_4)$	$W(C_1, E_5)$	$W(C_1, E_6)$	$W(C_1, E_7)$	$W(C_1, E_8)$	$W(C_1, E_9)$	0.14	$z_1(C_1)$
C_2	0	$W(C_2, E_2)$	$W(C_2, E_3)$	0	$W(C_2, E_5)$	$W(C_2, E_6)$	0	$W(C_2, E_8)$	$W(C_2, E_9)$	0.02	$z_1(C_2)$
C_3	0	0	$W(C_3, E_3)$	0	0	$W(C_3, E_6)$	0	0	$W(C_3, E_9)$	0.04	$z_1(C_3)$
C_4	0	0	0	$W(C_4, E_4)$	$W(C_4, E_5)$	$W(C_4, E_6)$	$W(C_4, E_7)$	$W(C_4, E_8)$	$W(C_4, E_9)$	0.35	$z_1(C_4)$
C_5	0	0	0	0	$W(C_5, E_5)$	$W(C_5, E_6)$	0	$W(C_5, E_8)$	$W(C_5, E_9)$	0.05	$z_1(C_5)$
C_6	0	0	0	0	0	$W(C_6, E_6)$	0	0	$W(C_6, E_9)$	0.1	$z_1(C_6)$
C_7	0	0	0	0	0	0	$W(C_7, E_7)$	$W(C_7, E_8)$	$W(C_7, E_9)$	0.21	$z_1(C_7)$
C_8	0	0	0	0	0	0	0	$W(C_8, E_8)$	$W(C_8, E_9)$	0.03	$z_1(C_8)$
C_9	0	0	0	0	0	0	0	0	$W(C_9, E_9)$	0.06	$z_1(C_9)$
	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8	E_9		
$z_3(E)$	0.139998200004	0.0199998	0.0399999999996	0.349999	0.05	0.100001	0.210000799996	0.0300002	0.060001000004		

Table 7 Exact $W(C_i, E_j)$ that meets the definition of inclusion for random sets $(Z_1, z_1) \subseteq (Z_3, z_3)$

<i>C</i> ₁	0.139 9982 0000	0.000 00002 68624 3	0.000 0000 9562 753	0.000 0001 2088 093	0.000 0003 3094 530	0.000 0003 1375 302	0.000 0001 4774 336	0.000 0007 3732	0.000 0000 2686 243	0.14	$z_1(C_1)$
<i>C</i> ₂	0	0.019 99977 31375 7	0.000 0000 2686 243	0	0.000 0000 8173 371	0.000 0000 6454 143	0	0.000 0000 2686 243	0.000 0000 2686 243	0.02	$z_1(C_2)$
<i>C</i> ₃	0	0	0.039 9998 7750 604	0	0	0.000 0000 9563 153	0	0	0.000 0000 2686 243	0.04	$z_1(C_3)$
C_4	0	0	0	0.349 9988 7911 907	0.000 0002 8918 742	0.000 0000 7199 115	0.000 0007 0597 750	0.000 0000 2686 243	0.000 0000 2686 243	0.35	$z_1(C_4)$
<i>C</i> ₅	0	0	0	0	0.049 9992 9813 357	0.000 0004 8094 530	0	0.000 0000 2686 243	0.000 0001 9405 870	0.05	$z_1(C_5)$
<i>C</i> ₆	0	0	0	0	0	0.099 9999 7313 757	0	0	0.000 0000 2686 243	0.1	$z_1(C_6)$
<i>C</i> ₇	0	0	0	0	0	0	0.209 9999 4627 514	0.000 0000 2686 243	0.000 0000 2686 243	0.21	$z_1(C_7)$
C_8	0	0	0	0	0	0	0	0.029 9993 5522 928	0.000 0006 4477 072	0.03	$z_1(C_8)$
<i>C</i> ₉	$\begin{array}{c} 0 \\ E_1 \end{array}$	$\begin{array}{c} 0 \\ E_2 \end{array}$	$\begin{array}{c} 0 \\ E_3 \end{array}$	$\begin{array}{c} 0 \\ E_4 \end{array}$	$\begin{array}{c} 0 \\ E_5 \end{array}$	$\begin{array}{c} 0 \\ E_6 \end{array}$	$\begin{array}{c} 0 \\ E_7 \end{array}$	$\begin{array}{c} 0 \\ E_8 \end{array}$	$0.06 \\ E_9$	0.06	$z_1(C_9)$
<i>z</i> ₃ (<i>E</i>)	0.139 9982 0000 4	0.019 9998	0.039 9999 9999 6	0.349 999	0.05	0.100 001	0.210 0007 9999 6	0.030 0002	0.060 0010 0000 4		

in the formulation of a single multi-objective optimization of engineering systems. For more engineering applications of inclusion properties, please refer to the papers of Tonon et al. [9,12,13].

References

- Robbins HE. On the measure of a random set, I. Ann Math Statist 1944;15:70–74.
- [2] Robbins HE. On the measure of a random set, II. Ann Math Statist 1945;16:342–347.
- [3] Kendall DG. Foundations of a theory of random sets. In: Harding EF, Kendall DG, editors, Stochastic Geometry. New York: Wiley, 1974, 322–376.
- [4] Matheron G. Random Sets and Integral Geometry. New York: Wiley, 1975.
- [5] Dubois D, Prade H. Fuzzy sets, probability and measurement. European J Operational Res 1989;40:135–154.
- [6] Dubois D, Prade H. Random sets and fuzzy interval analysis. Fuzzy Sets and Systems 1991;42:87–101.
- [7] Goodman IR, Nguyen HT. Uncertainty Models for

Knowledge-Based Systems. Amsterdam: Elsevier Science Publishers, 1985.

- [8] Goutsias J, Mahler RPS, Nguyen HT (editors) Random Sets: Theory and Applications. New York: Springer, 1997.
- [9] Tonon F, Bernardini A, Mammino A. Reliability analysis of rock mass response by means of random set theory. Reliability Eng System Safety 2002;70:263–282.
- [10] Tonon F, Bernardini A. A random set approach to the optimization of uncertain structures. Comput Struct 1998;68:583–600.
- [11] Tonon F, Bernardini A. Multiobjective optimization of uncertain structures through fuzzy set and random set theory. Comput-Aided Civil Infrastructure Eng 1999;14:119–140.
- [12] Tonon F, Bernardini A, Mammino A. Multiobjective optimization under uncertainty in tunneling: application to the design of tunnel support/reinforcement with case histories. Tunneling and Underground Space Tech 2002;17(1):33–54.
- [13] Tonon F, Bernardini A, Mammino A. Determination of parameters in rock engineering by means of random set theory. Reliability Eng System Safety 2002;70:241–261.