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Abstract

With the ultimate goal of eliminating a long history of issues that have plagued the structural mechanics community
such as the locking phenomenon, we analyze a family of discontinuous Galerkin methods for the Timoshenko beam

problem. We prove that the rate of convergence in the energy seminorm is p + 1/2 when polynomials of degree p are
employed to approximate the unknowns. The estimate is sharp and independent of the thickness-to-length ratio of the
beam, which shows that the method is free from shear locking.
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1. Introduction

In this paper, we introduce and numerically study

discontinuous Galerkin (DG) methods for Timoshenko
beams. The Timoshenko beam model, see [1], can be
written as: find w(x), �(x), M(x) and T (x) satisfying

w0ðxÞ ¼ �ðxÞ � d2TðxÞ; �0ðxÞ ¼MðxÞ;
M0ðxÞ ¼ TðxÞ; T0ðxÞ ¼ qðxÞ ð1Þ

for all x 2 � = (0, 1) and satisfying the boundary
conditions

wð0Þ ¼ w0 wð1Þ ¼ w1 �ð0Þ ¼ �0 �ð1Þ ¼ �1 ð2Þ

Here, the unknowns are the transverse displacement w,
the rotation of the transverse cross-section of the beam

�, the bending moment M, and the shear force T. The
parameter d is proportional to the thickness-to-length
ratio of the beam, therefore we assume without loss of
generality that 0 < d < 1. We are particularly interested

in the case where d 
 1, because for thin beams the
construction of finite element approximation is delicate.
Arnold [2] analyzed the continuous version of the finite

element method and proved that if no modifications are
made then the method exhibits locking. By using the so-

called reduced integration technique, he was able to
prove locking-free error estimates.
In the present, study we prove and numerically verify

that a wide class of DG methods overcomes locking. It is
worthwhile to point out that the h version is free from
locking even if all the unknowns are approximated by

piecewise constant functions. The main reason why these
methods are free from locking is the extra flexibility of
the approximating functions provided by their dis-

continuous nature.

2. The DG method and the main result

Let T = {Ij = (xj�1, xj), j = 1, . . ., N} be a trian-
gulation of the computational domain � = (0,1). Then,
we write

ð’;  Þ�h
:¼
XN
j¼1
ð’;  ÞIj where ð’;  ÞIj :¼

Z
Ij

’ðxÞ ðxÞ dx

ð3Þ

and �h = [j=1,. . .,NIj. We also write
R; ½½’n��h iEh :¼

P
N
j¼0 RðxjÞ ½½’n��ðxjÞ. Here, R is a function

defined on the set of nodes Eh := {x0, x1,. . ., xN}. The
jump of the function ’, ½½’n��, is defined as follows. If the
node e is in, Eoh :¼ fx1; x2; . . . ; xN�1g := {x1, x2,. . .,

xN�1}, then we take ½½’n��ðeÞ ¼ ’ðeþÞnþe þ ’ðe�Þn�e ,
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where ’(e�) := lim"#0 ’ðe� "n�e Þ and n�e ¼ �1. For the
boundary nodes, we take ½½’n��ð0Þ ¼ �’ð0þÞ;
½½’n��ð1Þ ¼ ’ð1�Þ. We denote by Hs (�h), the Sobolev
spaces of integer orders, and by k�ks,�h

the usual broken
norm in Hs(�h).

Following [3], the approximate solution (Th, Mh, �h,
wh) given by the DG method will be sought in the finite
dimensional space ½Vp

h�
4 where Vp

h :¼ fv : �h ! R: vjIj 2
Pp(Ij), j = 1, . . ., N}, and Pp (K) is the set of all poly-
nomials on K of degree not exceeding p. The
approximate solution is determined by requiring

�ðwh; v
0
1Þ�h

þ ŵh; ½½v1n��h iEh ¼ ð�h; v1Þ�h
� d2ðTh; v1Þ�h

�ð�h; v02Þ�h
þ �̂h; ½½v2n��
D E

Eh
¼ ðMh; v2Þ�h

ð4Þ

�ðMh; v
0
3Þ�h

þ M̂h; ½½v3n��
D E

Eh
¼ ðTh; v3Þ�h

�ðTh; v
0
4Þ�h

þ T̂h; ½½v4n��
D E

Eh
¼ ðq; v4Þ�h

hold for all vi 2 V
p
h for i = 1, 2, 3, 4. To complete the

definition of the method, we have to define the numer-
ical traces (T̂h; M̂h; �̂h; ŵh) at the nodes. It is through

them that the interaction between the degrees of free-
dom of different intervals is introduced and the
boundary conditions are actually imposed. Moreover,

their choice is crucial as it affects both the stability and
the accuracy of the method. We assume that the form of
these traces is as follows. For an interior node e 2 Eoh, we
take

ŵh ¼ ffwhgg þ C11½½whn�� þ C12½½�hn�� þ C13½½Mhn��þ
C14½½Thn��

�̂h ¼ ff�hgg þ C21½½whn�� þ C22½½�hn�� þ C23½½Mhn��þ
C24½½Thn�� ð5Þ

M̂h ¼ ffMhgg þ C31½½whn�� þ C32½½�hn�� þ C33½½Mhn��þ
C34½½Thn��

T̂h ¼ ffThgg þ C41½½whn�� þ C42½½�hn�� þ C43½½Mhn��þ
C44½½Thn��

where ff’ggðeÞ :¼ 1
2ð’ðeþÞ þ ’ðe�ÞÞ. At x = 0 and x =

1, we take

ŵhð0Þ ¼ w0

�̂hð0Þ ¼ �0 ð6Þ

M̂hð0Þ ¼Mhð0þÞ þ C31ð0Þ ðw0 � whð0þÞÞþ
C32ð0Þ ð�0 � �hð0þÞÞ

T̂hð0Þ ¼ Thð0þÞ þ C41ð0Þ ðw0 � whð0þÞÞþ
C42ð0Þ ð�0 � �hð0þÞÞ

ŵhð1Þ ¼ w1

�̂hð1Þ ¼ �1
M̂hð1Þ ¼Mhð1�Þ þ C31ð1Þ ðwhð1�Þ � w1Þ þ C32ð1Þ
ð�hð1�Þ � �1Þ

T̂hð1Þ ¼ Thð1�Þ þ C41ð1Þ ðwhð1�Þ � w1Þþ
C42ð1Þ ð�hð1�Þ � �1Þ

The definition of the DG method is now complete. One

can prove that [4] if

C21 ¼ C43; � C22 ¼ C33; C24 ¼ C13; C31 ¼ C42;

C34 ¼ C12; � C11 ¼ C44 ð7Þ
C14; �C23 � 0; �C32; C41 > 0 ð8Þ

then the method has a unique solution.
We define what we call the energy seminorm in which

we measure the error of the approximation:

ð’1; ’2; ’3; ’4Þj j2Ah
¼ ’2k k0þd2 ’1k k0þ�jumps ð9Þ

where

�jumps ¼
X
e2Eh
ðC14½½’1n��2 � C23½½’2n��2 � C32½½’3n��2þ

C41½½’4n��2Þ ðeÞ ð10Þ

Let us state our error estimate.

Theorem 2.1. Let q 2 Hs(�h) and let (T, M, �, w) 2 Hs+1

(�h) � Hs+2(�h) � Hs+3(�h) � Hs+2(�h) be the solution
of Eqs. (1) and (2). Suppose that the coefficients Cij

satisfy Eqs. (7) and (8). Suppose further that C14, C23,

C32, C41 are O(1).
Let ðTh;Mh; �h;whÞ 2 ½Vp

h�
4 be the approximate DG

solution. Then the following error estimate holds

ðeT; eM; e�; ewÞj jAh
� C

hminðp;sÞþ1=2

maxf1; pgsþ1=2
�k ksþ3;�h

þ wk ksþ2;�h

� �

ð11Þ

for some constant C independent of d, h and p.
Proof. See [3].
Since the constant C is independent of the parameter

d, the method is locking-free. There is a positive order of

convergence even for piecewise constant approxima-
tions. The estimate in the Ah-seminorm is sharp for the
h-version of the method because they are actually

achieved in our numerical experiments.

3. A numerical experiment

In this section we display some numerical results
verifying our theoretical findings. We solve Eq. (1) with

q(x) = sin �x and w0 = w1 = �0 = �1 = 0. Numerical
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traces are defined by setting C14(x) = �C23(x) =
�C32(x) = C41(x) = 1 for all x 2 Eh and the remaining

Cij’s are zero at all nodes of the mesh. We display
numerical results for d = 10�1 through d = 10�8. In
Table 1 we present the convergence rates of the h version

of the the method in the energy seminorm of the error
jejAh

. The first column shows the polynomial degree p
used for approximating all the variables. The second

column represents the mesh number, where mesh = i
means we used a uniform mesh with 2i elements in our
approximation. The remaining columns indicate the
convergence rates for the corresponding error in the

energy seminorm. Since the convergence rates are iden-
tical for all values of d we deduce that the performance
of the method is independent of this parameter, as was

proved in Theorem 2.1. From Table 1 we see that the
error estimate proved in Theorem 2.1 is sharp in the
energy seminorm.

4. Conclusion

We devised and studied, both theoretically and
numerically, a family of DG methods for the Timosh-
enko beam problem. The method converges to a unique

solution even when piecewise constant approximation
functions are employed for all the unknowns. Locking-
free a priori hp error estimates are proved in the energy

seminorm. This estimate is sharp for the family of
methods we took into consideration. The error estimate
holds independent of the parameter d, which is pro-

portional to the thickness-to-length ratio of the beam.
We displayed numerical results for a wide range of this
parameter, 10�8 � d � 10�1. The robustness of these
results verify that the method is free from locking effects

as predicted by Theorem 2.1.

Acknowledgment

This work is funded in part by the Army High Per-

formance Computing Research Center (AHPCRC)
under contract DAAD19–01–2004. The content does

not necessarily reflect the position or the policy of the
government, and no official endorsement should be
inferred.

References

[1] Timoshenko SP. On the correction for shear of the dif-

ferential equation for transverse vibrations of prismatic

bars. Phil Magazine 1921;41:744–746.

[2] Arnold DN. Discretization by finite elements of a model

parameter dependent problem. Numer Math 1981;37:405–

421.

[3] Celiker F, Cockburn B, Güzey S, Kannapady R, Soon SC,
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Table 1

Convergence rates for the energy seminorm of the error

p mesh d = 10�1 d = 10�2 d = 10�4 d = 10�8

4 0.44 0.44 0.44 0.44

0 5 0.48 0.48 0.48 0.48

6 0.49 0.49 0.49 0.49

4 1.57 1.57 1.57 1.57

1 5 1.53 1.53 1.53 1.53

6 1.52 1.52 1.52 1.52

4 2.45 2.45 2.45 2.45

2 5 2.48 2.48 2.48 2.48

6 2.49 2.49 2.49 2.49

4 3.57 3.57 3.57 3.57

3 5 3.53 3.53 3.53 3.53

6 3.52 3.52 3.52 3.52

4 4.45 4.45 4.45 4.45

4 5 4.48 4.48 4.48 4.48

6 4.49 4.49 4.49 4.49
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