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Abstract

We study some superconvergence properties of discontinuous Galerkin methods for convection-diffusion problems in

one space dimension. We show that the nodal error converges with order 2p + 1 if polynomials of degree p are used.
The theoretical results are verified by numerical experiments.
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1. Introduction

In this note, we investigate the superconvergence

properties of the hp-version of the DG method for
convection-diffusion problems. We consider a steady-
state model problem in one dimension. The method

allows arbitrary meshes and arbitrary polynomial
degrees. The main result of the paper is that for a par-
ticular choice of the numerical fluxes the error at the
nodes converge with order 2p + 1 if polynomials of

degree p are used. This superconvergence property, with
possibly slightly lower order, holds for general numer-
ical fluxes as well. Analogous results were obtained by

Douglas and Dupont [1] for the continuous version of
the finite element method.

2. The problem and the main result

Consider the following model steady state convection-
diffusion problem

�"u00 þ cu0 ¼ f in � ¼ ð0; 1Þ;
uð0Þ ¼ uDð0Þ; uð1Þ ¼ uDð1Þ ð1Þ

We assume that c � 0 and " > 0. This can be rewritten
as

q ¼ "u0; �ðq� cuÞ0 ¼ f in�;

uð0Þ ¼ uDð0Þ; uð1Þ ¼ uDð1Þ ð2Þ

Let T = {Ij = (xj�1, xj), j= 1, . . ., N} be a triangulation
of the computational domain � = (0, 1). The element
width is defined as hj := xj � xj�1 and we set h = max
N
j¼1hj. We define �h := [j=1, . . ., NIj, (’,  )Ij :=

R
Ij
’ ,

(’,  )�h
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P
Ij	�

h
ð’;  ÞIj ; h’,  ni@�h
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P

N
j¼1’ 

xj
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For k � 0 we define the broken Sobolev seminorm

j’jk;�h
:=

P
N
j¼1ð’ðkÞ; ’ðkÞÞIj

� �1
2

. The approximate DG

solution (uh, qh) 2 V
p
h�V

p
h is determined by requiring

that

�ð"uh; v0Þ�h
þ "ûh; vnh i@�h

¼ ðqh; vÞ ð3Þ

ðqh � cuh;w
0Þ�h

� q̂h � c ^̂uh;wn
D E

@�h

¼ ðf;wÞ�h

for all v, w 2 Vp
h := {v :�h ! R: vjIj 2 Pp(Ij), 8Ij 2 T },

and Pp(K) is the set of all polynomials on K of degree
not exceeding p. The numerical fluxes are defined

ðûh; ^̂uh; q̂hÞ ðxjÞ ¼
ðu0; u0; qhð0þÞ j ¼ 0;
ðuhðx�j Þ; uhðx�j Þ; qhðxþj ÞÞ 1 � j � N� 1;
ðu1; uhð1�Þ; qhð1�Þ � �ðuhð1�Þ � u1ÞÞ j ¼ N:

8<
:

(4)

where � = � max{1, p}/hN.
Let xi be an arbitrary but fixed interior node, define

(’i, �i) by the conditions �i = ’0i, (��
0
i + c’0i) = 0,

’i(0) = ’i(1) = 0 where ’i and �i are continuous on �
except that �i has a jump discontinuity of magnitunde 1/�
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Theorem 2.1. Consider the DG method defined by the
weak formulation (3) and the numerical traces (4). Assume

that (u, q) 2 Hs+2(�h) � Hs+1(�h) for some s � 0. Then
for any interior node xi we have

ðu� ûhÞ ðxiÞj j � C uj j�þ2;�h
max ’ij jpþ1;�h

; �ij jpþ1;�h

n o
ð5Þ

ðq � q̂h � cðu � ^̂uhÞÞ ðxiÞ
���

��� � C uj j�þ2;�h

max  ij jpþ1;�h
; �ij jpþ1;�h

n o

for all 0 � � � min (s,p), where

C ¼ Csð4"þ
ffiffiffiffiffi
c"
p
þ cÞ hminð�;pÞþpþ1

maxf1; pg�þpþ2
ð6Þ

and Cs is a constant depending solely on s.
Proof. See [2]. &

This high order superconvergence at the nodes of the
mesh can be exploited to obtain a better approximation

which converges with order 2p + 1 in the L2(�)� norm.
For some numerical examples of local (elemeny-by-ele-
ment) postprocessing techniques we refer to [2]. It is
worth noting that even though the original DG solution

is discontinuous on � and converges with order p+ 1 in
the L2(�)-norm, the postprocessed solution is in C1(�)
and converges with order 2p + 1.

We also note that this superconvergence phenomenon
is also valid for more general numerical fluxes, for
details see [2].

3. A numerical experiment

In this section we display some numerical results
confirming Theorem 2.1. We consider (1) with u(0) =
u(1) = 0, c = 1, � = 0.1, f(x) = ex. In Table 1 we

display convergence rates of the errors in the numerical
fluxes. The first column shows the polynomial degree p
we used to approximate the unknowns uh and qh. The

second column displays the mesh number, where
mesh = i means we used a uniform mesh with 2i ele-
ments. The numerical traces ûh and q̂h � c^̂uh
superconverge with order 2p + 1, as was predicted by
Theorem 2.1.

4. Conclusion

In this paper, we investigated the superconvergence

properties of the hp version of the DG method for a
model convection-diffusion equation. We proved that, if

the exact solution is sufficiently smooth, then the
numerical fluxes converge with order 2p + 1 when

polynomials of degree p are used. Our numerical
experiments verify this result and the optimality of it.
Even though we considered a particular form of the
numerical fluxes in this paper, the results are valid for

more general DG methods. We also noted that the
superconvergence phenomenon at discrete points can be
exploited to obtained better approximations which

converge globally with order 2p + 1. Moreover, we can
choose the postprocessed solution a smooth function in
the overall computational domain, unlike the original

DG solution which is only piecewise continuous.
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Table 1

Convergence rates for c = 1, � = 0.1 and f(x) = ex

u � ûh q � q̂h � c(u � ^̂uh)

Degree Mesh Error Order Error Order

0 4 1.73E-01 0.77 3.23E-03 0.70

5 9.52E-02 0.86 1.72E-03 0.91

6 5.07E-02 0.91 8.81E-04 0.97

7 2.62E-02 0.95 4.45E-04 0.99

1 4 2.02E-03 2.90 1.25E-06 3.04

5 2.75E-04 2.88 1.56E-07 3.00

6 3.56E-05 2.95 1.95E-08 3.00

7 4.55E-06 2.97 2.44E-09 3.00

2 4 8.28E-06 4.92 8.98E-09 4.93

5 2.76E-07 4.91 2.92E-10 4.94

6 8.83E-09 4.97 9.36E-12 4.96

7 2.80E-10 4.98 2.96E-13 4.98

3 4 1.69E-08 6.94 2.11E-11 6.94

5 1.39E-10 6.92 1.70E-13 6.96

6 1.11E-12 6.97 1.35E-15 6.97

7 8.75E-15 6.98 1.07E-17 6.99

4 4 2.06E-11 8.95 2.61E-14 8.95

5 4.23E-14 8.93 5.23E-17 8.97

6 8.38E-17 8.98 1.04E-19 8.98

7 1.65E-19 8.99 2.04E-22 8.99
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