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Abstract

In this paper, a frictional viscoplastic contact problem is studied. The damage, caused by excessive stress or strain is
also included and it is modelled by a parabolic differential inclusion. The variational formulation for this problem is

obtained and the existence of a unique solution is proved. Then, fully discrete approximations are introduced based on
the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives.
Error estimates are derived and, under suitable regularity assumptions, the linear convergence of the algorithm is
derived. Finally, a numerical test is provided.
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1. Introduction

Frictional contact problems are very common in
industry and everyday life. The contact of the tires with
the road is just a simple example. For this reason, the

engineering literature concerning this kind of problems
is rather extensive (see, e.g., Laursen [1], Wriggers [2]
and references therein).

The mechanical damage, caused by excessive stress or
strain induced by loading forces, appears in many
industrial problems involving frictional contact. Here,
we used the damage model derived by Frémond and

Nedjar [3] from thermodynamical principles. Recently,
other damage models have been studied (see, e.g.,
Angelov [4], Liebe et al. [5] and Nedjar [6]).

In this work, a viscoplastic contact problem including
friction and damage is considered. The friction is mod-
elled using classical Tresca’s law. The variational

formulation leads to a coupled system of nonlinear
variational inequalities. The existence of a unique weak
solution is stated using fixed point arguments and clas-

sical results on variational inequalities. Then, a fully
discrete scheme is introduced using the finite element
method to approximate the spatial variable and an Euler

scheme to discretize time derivatives. Using similar ideas
to those applied in Chau et al. [7] and Chen et al. [8], a

main error estimates result is proved from which, under
suitable regularity assumptions, the linear convergence
of the numerical scheme is deduced. Then, a numerical

algorithm, based on the penalization of the frictional
term, is implemented on an IBM RISC6000 computer,
and some numerical results are performed.

2. The mathematical model and variational formulation

Let S2 the space of second order symmetric tensors on
R
2, and we consider a viscoplastic body that occupies the

domain � � R
2. We denote by [O,T], T > 0, the time

interval of interest. The outer surface � = @� is
assumed to be Lipschitz continuous, and it is divided

into three disjoint measurable parts �D, �F and �C. For
a.e. x 2 �, we denote by � (x) and �(x) the unit normal
and tangential vectors outward to �, respectively. A

density of volume forces fB acts in � and surface trac-
tions of density fF are given on �F. The body is assumed
to be clamped on �D, and so the displacement field
vanishes there. Finally, the body is assumed to be in

contact with a foundation on the contact surface �C.
Since the material is assumed viscoplastic, the fol-

lowing constitutive law is considered (see, e.g., Ionescu

and Sofonea [9] and references therein):
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_� ¼ E"ð _uÞ þ Gð�; "ðuÞ; 
Þ ð1Þ

where u denotes the displacement field, "(u) is the line-
arized strain tensor, � is the respective stress tensor, and

E and G are the elastic tensor and the viscoplastic con-
stitutive function, respectively, whose properties will be
described below. Here, a dot above a variable represents

its partial time derivative.
The damage of the material, denoted by 
 in Eq. (1), is

defined in � and it measures the density of the micro-
cracks: when 
 = 1 the material is in its undamaged

state, when 
 = 0 the material is fully damaged and
when 0 < 
 < 1 there is partial damage.

According to Frémond and Nedjar [3], the evolution

of the damage is governed by the following parabolic
nonlinear differential inclusion:

_
 � k�
 þ @I½0;1�ð
Þ 3 �ð� ; "ðuÞ; 
Þ ð2Þ

Here, 4 is the Laplacian, � > 0 is the damage diffusion
constant, � is the damage source function and @I[0,1]
denotes the subdifferential of the indicator function I[0,1]
of the interval [0,1].

We turn now to describe the contact boundary con-
dition. We assume that the contact is bilateral and that it

is associated to Tresca’s law of friction. Therefore, we
have

uv ¼ u � v ¼ 0; ��j j � g
��j j < g) _u� ¼ 0
��j j ¼ g) there exists 	 > 0 such that �� ¼ �	 _u�

9=
;on�C � ð0;TÞ

(3)

where g represents a friction bound and u� = u � � , �� =
�� � � �

We denote by u0, �0 and 
0 the initial values of the

displacement, stress and damage fields, respectively, and
we assume that the inertia effects are negligible and that
the process is quasistatic.

Let us define the following variational spaces:

V ¼ f� 2 ½H1ð�Þ�2;� ¼ 0 on �D; �v ¼ � � v ¼ 0 on �Cg

Q ¼ f� ¼ ð�ijÞ2i;j¼1 2 ½L2ð�Þ�2�2; �ij ¼ �ji; i; j ¼ 1; 2g

K ¼ f
 2 H1ð�Þ; 0 � 
 � 1 a:e: in �g ð4Þ

Let us assume that the elastic tensor E : �� S2! S2 is
a fourth-order symmetric definite positive tensor.
Moreover, the viscoplastic function G: � � S2 � S2 � R

! S2 and the damage source function ø : � � S2 � S2 R

! R are assumed to be Lipschitz continuous, and the
body forces and surface tractions have the regularity

fB 2W1;2ð0;T; ½L2ð�Þ�2Þ; fF 2W1;2ð0;T; ½L2ð�FÞ�2Þ ð5Þ

Let g : �C! [0, +1) be given such that g E L1 (�C), g

� 0 a.e. on �C. Using Riesz’s representation theorem, let
f(t) 2 V be given by the relation

ðfðtÞ;�Þv ¼ ðfBðtÞ;�Þ½L2ð�Þ�2 þ ðfFðtÞ;�Þ½L2ð�FÞ�2 ; 8� 2 V

ð6Þ

Let us define the following bilinear form � : K � K ! R

by

að
;  Þ ¼k
Z

�

r
r dx; 8
; 2 K ð7Þ

and we denote by j: V ! R the functional (�� = � � �)

jð�Þ ¼
Z

�C

g ��j jda; 8� 2 V ð8Þ

Finally, let the initial data u0, �0 and 
0 be chosen in
such a way that u0 2 V, �0 2 Q, 
0, 2 K, and assume the
following compatibility condition:

ð�0; "ð�ÞÞQ þ jð�Þ � ðfð0Þ;�Þ;8� 2 V ð9Þ

Then, the following variational formulation is obtained:

Problem VP Find a displacement field u: [0, T] ! V, a

stress field � : [0, T]! Q, and a damage field �: [0, T]!
K such that u(0) = u0, �ð0Þ ¼ �0, �(0) = �0 and for all �
2 V, � 2 K and a.e. t 2 (0, T),

_�ðtÞ ¼ E"ð _uðtÞÞ þ Gð�ðtÞ; "ðuðtÞÞ; �ðtÞÞ
�ðtÞ;¼ "ð� � _uðtÞÞÞQ þ jð�Þ � jð _uðtÞÞ � ðfðtÞ; ��
ð _uðtÞÞV ð10Þ
ð�ðtÞ; "ð� � _uðtÞÞÞQ þ jð�Þ � jð _uðtÞÞ � ðfðtÞ;� � _uðtÞÞV
ð�ð�ðtÞ; "ðuðtÞÞ; 
ðtÞÞ; 
 � 
ðtÞÞL2ð�Þ

The following theorem states the existence of a unique
solution to Problem VP:

Theorem 1 Under the above assumptions, there exists a

unique weak solution {u, � , 
} to Problem VP with the
following regularity:

u 2W1;2ð0;T;VÞ; � 2W1;2ð0;T;QÞ;

 2W1;2ð0;T;YÞ \ L2ð0;T;H1ð�ÞÞ ð11Þ

The proof of Theorem 1 is done using fixed point

arguments and classical results on variational inequal-
ities (see Campo et al. [10] for details).

3. Numerical approximations

Let us assume that � is a polygonal domain and let T h

be a regular finite element triangulation of the domain �
compatible with the boundary partition � = �D [
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�F[�C. We denote by �h the triangulation induced by T h

on �C. Let us define the following variational spaces

approximating V, L2 (�) and Q:

Vh ¼ f�h 2 ½Cð ��Þ�2; �h
jT 2 ½P1ðTÞ�2 8T 2 Th; �h ¼ 0

on �D

vhvjc ¼ 0 8C 2 �hg

Yh ¼ f
h 2 Cð ��Þ; f
hjT 2 P1ðTÞ 8T 2 Thg;

Kh ¼ Yh \ K ð12Þ

Qh ¼ f�h 2 Q; �h
jT 2 ½P0ðTÞ�2�2 8T 2 Thg

Let PQ
h: Q ! Qh be the orthogonal projection

operator defined through the relation

ðPQh� ;�hÞQ ¼ ð� ;�hÞQ; 8� 2 Q; �h 2 Qh ð13Þ

In order to discretize the time derivatives, let 0 = t0 <
t1 < . . . < tN = T be a uniform partition of the time
interval [0, T] and denote by k the time step, k = T/N.

For a continuous function z(t), we use the notation zn =
z(tn) and, for a sequence {wn}

N
n=0, we denote by �wn =

(wn�wn�1)/k. In this section, no summation is con-

sidered over the repeated index n and, everywhere in the
sequel, c will denote positive constants which are inde-
pendent of the discretization parameters h and k.
Let uh0, �

h
0 and 
h0 be appropriate approximations of

the initial conditions u0, �0 and 
0, respectively. The
fully discrete approximation is based on the forward
Euler scheme and has the following form:

Problem VP
hk Find a discrete displacement field

uhk ¼ fuhkn g
N
n¼0 � Vh; a discrete stress field

�hk ¼ f�hk
n g

N
n¼0 � Qh; and a discrete damage field


hk ¼ f
hkn g
N
n¼0 � K h such that; uhk0 ¼ uh0; �

hk
0 ¼ �h

0;


hk0 ¼ 
h0 ; and for n ¼ 1; � � � ;N; ��hk
n ¼ PQhE"ð�uhkn Þþ

PQhGð�hk
n�1; "ðuhkn�1Þ; 
hkn�1 ð14Þ

ð�hk
n ; "ðvh � �uhkn ÞÞQ þ jðvhÞ � jð�uhkn Þ � ðfn; vh � �uhkn ÞV;

8vh 2 Vh

ð�
hkn ; 
h � 
hkn ÞY þ að
hkn ; 
h � 
hkn Þ � ð�ð�hk
n�1;

"ðuhkn�1Þ; 
hkn�1; 
h � 
hkn ÞY; 8
h 2 Kh

Using classical results on variational inequalities, we
obtain that Problem VPhk admits a unique solution.
Moreover, in Campo et al. [10] the following error

estimates result was obtained:

Theorem 2 Let the assumptions of Theorem 1 still hold.

Let the initial conditions uh0;�
h
0 and 
h0 be defined by

uh0 ¼ �hu0; �h
0 ¼ PQh�0; 
h0 ¼ �h
0 ð15Þ

where �h : Cð��Þ ! Yh is the standard finite element
interpolation operator and �h ¼ ð�hi Þ

2
i¼1 : ½Cð��Þ�2 ! Vh.

We also assume that

u 2 C1ð½0;T�; ½H2ð�Þ�2Þ; � 2W1;1ð0;T; ½H1ð�Þ�2�2Þ;

�� 2 Cð½0;T�; ½L2ð�Þ�2Þ

 2 C½0;T�;H2ð�ÞÞ \H2ð0;T;L2ð�ÞÞ;

_
 2 L2ð0;T;H1ð�ÞÞ ð16Þ
u 2 H2ð0;T;V�; u� jC 2 H1ð0;T;H2ðCÞÞ 8C 2 �h

Then, the linear convergence of the algorithm is obtained,

i.e.

max
0�n�N un � uhkn

�� ��
V
þ �n � �hk

n

�� ��
Q
þ 
n � 
hkn
�� ��

L2ð�Þ

n o

� cðhþ kÞ ð17Þ

4. A numerical example with a large friction bound

In order to verify the performance of the numerical

scheme described in the above section, the problem
depicted in Figs. 1 has been considered.
The viscoplastic function G is a version of the con-

stitutive function given by Maxwell:

Gð� ; "ðuÞ; 
Þ ¼ �ð1� 
Þ�ð�Þ ð18Þ

where �:S2 ! S2 is a truncation operator defined by

8� ¼ ð�ijÞ2i;j¼1 2 S2; ð�ð�ÞÞij ¼
L if �ij > L
�ij if �ij 2 ½�L;L�
�L if �ij < �L

8<
:

ð19Þ

Here, L = 1000 is used.

The elastic tensor E is assumed homogeneous and
satisfying the plane stress hypothesis with Young’s
modulus E = 103 N/m2 and Poisson’s ratio r = 0.37.

The following data has been used:

Fig. 1. An example with a large friction bound.
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T ¼ 1 S; fNðx; tÞ ¼ ð55; 0Þet N=m2; g ¼ 1000N=m2;

u0 ¼ 0m; 
0 ¼ 1 ð20Þ

The deformed mesh at final time and the initial config-

uration are plotted in Fig. 2, while the von Mises stress
norm and the damage field at final time are shown in
Figs. 3 and 4.

5. Conclusions

In this paper, a frictional viscoplastic contact problem

has been studied. The effect due to the damage of the

material was also considered. The variational formula-
tion led to a system of nonlinear variational inequalities,

and the existence of a unique weak solution was stated
using fixed point arguments.
The aim was to provide a numerical analysis of the

problem and to develop an efficient algorithm for sol-

ving it. A fully discrete scheme was introduced using the
finite element method and the forward Euler scheme.
Error estimates were derived and, as a consequence,

under suitable regularity conditions, the linear con-
vergence was obtained. The code was found to behave
well and the numerical simulations seem accurate and

interesting.

Fig. 2. Deformed mesh at final time and initial configuration.

Fig. 3. Von Mises stress norm at t = 1s.

Fig. 4. Damage field at t = 1s.
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