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Abstract

The global myocardium contraction relies on the local deformation of its contractile cells. These small structures are
rod-shaped and linked together by straight or Y-shaped junctions. A previous work introduced a discrete homo-

genization procedure that can be applied to the overall nonlinearly elastic lattice in order to derive an equivalent
macroscopic constitutive law. Recent experimental measurements on cardiomyocytes allow us to give physiological
grounds to the proposed method and to perform comparisons with well-known global laws.
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1. Introduction

This paper is a sequel to Mourad et al. [1] which was
presented at the Second MIT Conference on Computa-

tional Fluid and Solid Mechanics. In [1], we gave a brief
description of the discrete homogenization procedure
and explained the way it could, in principle, be used to
derive a constitutive law for the myocardium seen as a

repetitive structure. In the present work, we show that
when we incorporate in the derivation of the homo-
genized constitutive law data arising from experimental

measurements, we obtain results that are consistent with
well-known macrosopic laws.
We first recall some modeling principles both in the

framework of continuum mechanics and for elastic lat-
tices. Then, we give a summary of the discrete
homogenization procedure. We recall that it is aimed at

providing a macroscopic constitutive law from the
knowledge of the microscopical behavior. We emphasize
the fact that the resulting law is not explicit. Finally, we
use data due to Zile et al. [2] to define part of the

mechanical properties of the microscopical elements of
the network. We compare the resulting homogenized
constitutive law with Lin and Yin’s [3] law. Other

comparisons have been performed with data due to
Lacampagne [4].

2. Macroscopic laws

The fibrous structure of the myocardium has long
been recognized. In a simple purely hyper-elastic mod-

eling (thus neglecting several effects), passive laws have
to satisfy the principle of frame-indifference and the
invariance around the fiber direction. Let us first recall
the limitations such requirements impose on the energy

density.
Let a reference configuration for an elastic body be

given. From the frame-invariance, we know that the

energy density is a function W (x, �) of the right Cauchy-
Green tensor C. Following Spencer [5], some authors
rewrite W (x, �) as a function of C and of � � � where �
is the fiber direction. We choose to follow the classical
approach and to say that the existence of a preferred
direction � at point xmeans that all rotations with axis �
belong to the material symmetry group, or equivalently
that:

8C 2 S
þ
3 ; 8Q 2 SOð3Þ ð1Þ

such that

Q� ¼ �;Wðx;QTCQÞ ¼Wðx;CÞ ð2Þ

It is readily proved that the energy at point x reduces
to a function of the three principal invariants of C and
of the two extended invariants �4(C) = � � C� and

�5(C) = � � C2� . The fourth invariant has a clear
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geometrical meaning since it measures the fiber exten-
sion. No intuitive explanation of the fifth one seems to

be given in the literature. Similarly, it cannot be reached
in experimental measurements and it is classically
omitted. Many constitutive laws for the myocardium

have been proposed. We will concentrate here on Lin
and Yin’s [3] homogeneous law, which reads as follows
for the passive myocardium:

WðCÞ ¼ c1ðeQðCÞ � 1Þ ð3Þ

where

QðCÞ ¼ c2ð�1ðCÞ � 3Þ2 þ c3ð�1ðCÞ � 3Þð�4ðCÞ � 1Þ

þc4ð�4ðCÞ � 1Þ2 ð4Þ

Experimental values have been obtained by these
authors for seven rabbit specimens and are listed in

Table 1.

3. Elastic lattices

In this section, we present a simple description of

elastic lattices. Let us mention that the definitions we
choose here for elastic laws for tensions and moments
can be generalized. In particular, this formalism can be

extended to graphene sheets modeling where more
neighbors are taken into account.

3.1 Equilibrium

Let be given a lattice whose material elements consist

of nodes n 2 N and of bars b 2 B. The sets N and B can
be seen as a reference configuration. The modeling
Ansatz is that bars remain straight during deformation.

In this context, external loads can be balanced by
internal stresses T’(b), which are functions of the bars,
and by moments M’(c), which are functions of the pairs
of interacting bars (i.e. bars that meet in the same node).

Submitted to loads f’(n) that, for simplicity, act on
nodes only, the lattice undergoes a one-to-one defor-
mation ’ : N 7! R

3. Assume, for simplicity again,

Dirichlet boundary conditions on a subset N 0. Letting

V = {v : N ! R
3; 8 n 2 N 0, v(n) = 0} and N 1 = N \N 0

the variational formulation of the equilibrium system

reads:

8� 2 V;�
X
b2B

T’ðbÞ ���ðbÞþ
X
n2N1

f’ðnÞ � �ðnÞ ¼ 0 ð5Þ

8! : B7!R
3; �

X
c2C

M’ðcÞ � r!ðcÞþ
X
b2B
ð�’ðbÞ^

T’ðbÞÞ � !ðbÞ ¼ 0 ð6Þ

where we make use of the discrete gradient notation for
deformation or velocity vectors �v(b) = v(E(b)) �
v(O(b)), and for angular velocity vectors H!(c) =

!(S(c)) � !(F(c)), where O(b) and E(b) denote the origin
and the end of bar b, and F(c) and S(c) denote the first
and second bars of pair c. It can be noticed that if the

axial components T’a (b) of the tension vectors and the
moments are known, then so are the transverse com-
ponents of the tension vectors by means of the above

system.

3.2 Axiom of material indifference

This principle is the discrete analogue of the 3-D
axiom of material indifference. It first states that stress

vectors and moments rotate accordingly to a prescribed
rigid body deformation. This reads

8Q 2 SOð3Þ;8q 2 R
3; 8b 2 B;8c 2 C;TqþQ’ðbÞ ¼ QT’ðbÞ

ð7Þ
and

MqþQ’ðcÞ ¼ QM’ðcÞ ð8Þ

Obvious evidence shows that, unlike 3-D bodies, lat-
tices can undergo deformations that do not preserve

orientation. It is then required that

8b 2 B; 8c 2 C;T�’ðbÞ ¼ �T’ðbÞ ð9Þ

and

M�’ðcÞ ¼M’ðcÞ ð10Þ

3.3. Elastic constitutive laws

We will say that a lattice is an elastic lattice if the local
behavior of its mechanical components is governed by
laws of the following form:

. there exists N̂b : R3nf0g7! R such that
T’a ðbÞ ¼ N̂bð�’ðbÞÞe’ðbÞ;

. there exists M̂c : S2 � S2 7! R such that

M’ðcÞ ¼ M̂cðe’ðFðcÞÞ; e’ðSðcÞÞÞ; where e’ (b)
denotes the unit vector of �’(b).

As previously mentioned, more complicated laws can

be considered, for instance for graphene sheets. Let us

Table 1

Experimental values in Lin and Yin’s [3] law expressed in

g cm�2

Rabbit

specimen

1 2 3 4 5 6 7

c1 1.01 2.42 9.86 2.92 2.62 1.67 6.85

c2 3.05 12.13 4.62 3.21 2.40 1.70 2.88

c3 �2.24 0.63 2.37 �2.60 �0.89 1.90 �0.76
c4 1.92 1.05 0.09 2.01 2.01 0.38 0.38
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simplify even more by allowing an identical behavior to
all bars and to all pairs of bars: N̂b = N̂ independent of

b and M̂c = M̂. We can show that the axiom of material
indifference is equivalent to the fact that the constitutive
function N̂ resumes to a function depending on the

Euclidean norm of the bars only, which means that

8z 2R3nf0g; N̂ðzÞ ¼ �Nð zk kÞ (11)

and to the fact that the constitutive function M̂ has the
very specific following form:

8ðz1; z2Þ 2 S2 � S2; M̂ðz1; z2Þ ¼ �Mðz1 � z2Þz1 ^ z2 ð12Þ

Two features have to be underlined. First, in order to
obtain Eq. (12), it is necessary to use Eqs. (9) and (10);

Eqs. (7) and (8) by themselves are not sufficient. Second,
it does not look surprising that, as stated by Eq. (12),
moments are colinear to the wedge product of bars; this

is actually a classical property. Nevertheless, we
emphasize the fact that is not an Ansatz, but the con-
sequence of material invariance.

3.4 Existence results

As soon as both constitutive laws satisfy the principle
of material invariance, the system consisting of the

equilibrium equations (5) and (6) can be equivalently
written as the Euler–Lagrange equation of a minimiza-
tion problem. More precisely, letWb be a primitive of �N,

let w be a primitive of � �M and define
Wcðz1; z2Þ ¼ wð z1

z1k k �
z2
z2k kÞ. Then, introduce the total

energy

Ið’Þ ¼
X
b2B

Wbð�’ðbÞÞ þ
X
c2C

Wcð�’ðFðcÞÞ; ð�’ðDðcÞÞÞ

�
X
n2N1

f’ðnÞ � ’ðnÞ ð13Þ

The derivative of I is given by

I0ð’ÞðvÞ ¼
X
b2B

N̂ð�’ðbÞÞ �’ðbÞ
�’ðbÞk k ���ðbÞþ

X
c2C

M’ðcÞ�r!ðcÞ �
X
n2N1

f’ðnÞ � �ðnÞ ¼0 ð14Þ

where !ðbÞ ¼ �’ðbÞ
�’ðbÞk k2 ^�� (b). Equation (14) is an

equivalent form to Eqs. (5) and (6), once the transverse

components of the tensions are eliminated. Assuming
that N0 is nonempty and choosing reasonable assump-
tions on the energies (for instance, there exist �> 0 and

�0 2 R such that 8b 2 B, Wb (kzk) � � kzk2 � �0 and Wc

is nonnegative), one can prove that I is coercive and that
the minimization problem associated with I has a

solution.

4. Homogenization procedure and resulting law

The homogenization procedure has been described at
length in Caillerie et al. [6] and in Mourad [7]. It applies
to lattices whose reference configurations are repetitive

and whose bar lengths are small. In other words, we
mean that there is an elementary reference brick made of
N R nodes and of BR bars whose repetition along a given
scale describes the whole of the lattice. Numerical

simulations have been performed either with the ele-
mentary brick given in Fig. 1, for application to the
myocardium, or with a Y-shaped brick, which generates

a hexagonal lattice for application to carbon nanotubes.
Following the general homogenization technique, we
include a given lattice with aspect ratio – say � – into a

sequence of lattices indexed by � whose sets of nodes are
given by N " = N R � Z" where Z� = {� 2 Z

3, �� 2 !}, !
being a given subset of R3, and we perform asymptotic
expansions with respect to ". The resulting equilibrium

equations are, as expected, equations for a continuous
medium; this is indeed the general motivation of
homogenization techniques. However, the ouput we are

actually interested in is the macroscopic constitutive law
it provides.
This nonhomogeneous law is obtained in an implicit

way. Let be given three vectors (G1, G2, G3) in R
3 which

represent the deformation gradient G. From the whole
development of the homogenization procedure, we have

at our disposal a set of equations that provides the three
stress vectors in R

3 associated with G. This set of
equations contains a nonlinear system, which, as cus-
tomary in homogenization, is set on the reference brick.

The number of its vectorial unknowns equals Card N R.
It is solved by means of Newton’s method.
For the validation of the homogenized law, we use

experimental data obtained on isolated passive feline
cardiomyocytes by Zile et al. [2] by means of a gel stretch
method. Denoting by � the extension ratio of the car-

diomyocyte and by � the stress measured in kNm�2,

Fig. 1. Elementary pattern.
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these authors suggest scalar laws �= �(�), where � can
be the polynomial function �= 300 �+ 1020 �2 or the

exponential function � = 14, 5(e14,5� � 1). These two
laws are actually really close for small �. These experi-
mental data enter the framework of Eq. (11) by letting,
for l0 the length at rest and V0 the cardiomyocyte

volume,

�NðlÞ ¼ �ðl� l0
l0
ÞV0

l0
ð15Þ

No experimental data on moments seem to be avail-
able and we use a simple law of the form �M (z1, z2) = k�
(� – �0), where �0 is the angle at rest between z1 and z2,
and � is the deformed angle.

5. Numerical results and discussion

Using the homogenized constitutive law (with fitted
moment stiffness), we carried out numerical tests of
uniaxial traction along the fiber direction, i.e. along the

preferred direction of the reference brick, and we
checked our results against values provided by Lin and
Yin’s [3] laws.

In Fig. 2, we plot the strain energy function with
respect to the fiber extension ratio 	f. The continuous
line corresponds to the homogenized law, and the sym-

bols correspond to Lin and Yin [3] experimental results.
Good agreement is obtained. A next step could consist
in performing comparisons between an homogenized
law for an active state with experimental active laws.

Such an attempt requires simulating mechanical data on
activated isolated cardiomyocytes since actual experi-
mental data seem to be lacking.
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Fig. 2. Comparison with specimen 4 (left) and specimen 7 (right).

D. Caillerie et al. / Third MIT Conference on Computational Fluid and Solid Mechanics130




