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Abstract

This paper presents a finite element formulation of a three-dimensional piezoelectric beam which includes geometrical
and material nonlinearities. Based on the Timoshenko theory, an eccentric beam formulation is introduced which

provides an efficient model of piezoelectric multilayered structures. The geometrically nonlinear assumption allows the
calculation of large deformations including buckling behavior. A quadratic approximation of the electric potential
through the cross section of the beam ensures the fulfilment of the charge conservation law exactly. To account for the

material nonlinearities which arise in ferroelectric materials, the Preisach model is implemented in the finite element
formulation.
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1. Introduction

For the development of piezoelectric components, the
finite element method is a well suited tool. Due to the

rod like structures of many of such devices, it is rea-
sonable to use finite beam elements for an efficient
numerical simulation. In the literature different piezo-

electric beam models are found, see e.g. [1], which are
usually based on the linear theory. In recent years some
geometrically nonlinear formulations have been pub-

lished, see e.g. [2].
To model piezoelectric material nonlinearities one

may follow thermodynamically motivated approaches,
e.g. [3] or by using the phenomenological Preisach

model, e.g. [4]. The advantage of the latter model is its
simple numerical implementation and the experimental
determination of the material parameters [5].

This formulation presents a finite beam element that
includes both geometrical and material nonlinearities. It
provides a simulation tool which is characterized by high

efficiency and a wide range of applications. The essential
features of the proposed model are summarized as
follows:

. A three-dimensional, eccentric beam formulation
using the Timoshenko kinematic is introduced.

. A geometrically nonlinear formulation is considered,

which accounts for moderate rotations and allows

the investigation of buckling problems.
. A quadratic approximation of the electric potential

ensures the fulfillment of the charge conservation

law for bending loads.
. To take into account high electrical loads, a material

nonlinear model is implemented. The additional

remanent part of the polarization is determined by
employing the Preisach model.

2. Governing equations

On the basis of linear piezoelectricity the remanent

polarization ~Pi is included in the constitutive equations
to account for nonlinear ferroelectric behavior. The
nonlinear constitutive equations read

S ¼ C : E� e � ~E ð1Þ
~D� ~Pi ¼ e

T : Eþ � � ~E

Here, S, ~D, E and ~E are second Piola-Kirchhoff stresses,
dielectric displacements, Green-Lagrangean strains and
electric field. The material properties are defined by the
elasticity matrix C, the permittivity matrix � and the

piezoelectric matrix e which is now a function of the
electric field. The nonlinear strains E and the electric
field ~E are functions of the displacements u = [u, v, w]T

and the electric potential �:
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E ¼ 1

2
ðGrad uþGrad uT þGrad uTGrad uÞ ð2Þ

~E ¼ �Grad � ð3Þ

The mechanical and electrical field equations in the
reference configuration B0 are described by

DivPþ b ¼ 0 inB0 ð4Þ

Div ~D ¼ 0 inB0 ð5Þ

with the body forces b. The first Piola-Kirchhoff stress
tensor P may be expressed as P = F S where F = Grad
x is the deformation gradient and x the position vector

of the current configuration. The mechanical and elec-
trical boundary conditions are given as

S � n� �t ¼ 0 on @tB0 ð6Þ
~D � n� ð ��� ��iÞ ¼ 0 on @�B0 ð7Þ

in which �t is defined as the traction vector on the surface
@tB0 and n as the unit normal vector, �� represents the
free charge density on the surface @�B0, and ��i corre-
sponds to the surface charge due to ~Pi. The weak form is
derived by multiplication of Eqs. (4), (5) with the test
functions �u and �ff, integration over the domain B0 and
applying standard arguments leads to
Z

B0

S : �Eþ ~D � �~E dV�
Z

B0

b � �u dV�
Z

@�tB0

�t � �u d Sþ

Z

@�B0

~D � n �� dS ¼ 0 ð8Þ

Here the operator dS represents the integration over the
surface of the beam. In the geometrically nonlinear case

the weak form is solved within the finite element method
by applying the Newton-Raphson scheme. For constant

loading the linearization of Eq. (8) is derived as
Z

B0

�E : C : �E dVþ
Z

B0

��E : S dVþ
Z

0

�~E � eT : �E dV

þ
Z

B0

�Em : e ��~E dVþ
Z

B0

�~E � � ��~E dV

ð9Þ

In the case of material nonlinearities the quasi-Newton
method is employed.

3. Beam formulation

The kinematic description of the beam model is based
on the Timoshenko theory. The displacement vector

u = [u, v, w]T is a function of the beam displacement
vector v and the matrix A and reads

uðx; y; zÞ ¼ Aðy; zÞ vðxÞ ð10Þ

A ¼
1 0 0 0 z �y
0 1 0 �z 0 0
0 0 1 y 0 0

2
4

3
5 and v ¼

u0
v0
w0

’x

’y

’z

2
6666664

3
7777775

ð11Þ

u0, v0, w0 represent the displacements and ’x, ’y, ’z are
rotations, see Fig. 1. The beam strain Eb = [E11, 2 E12, 2
E13]

T is decomposed as

Fig. 1. Eccentric beam model.
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Eb ¼ Aðy,zÞ ÊðxÞ ð12Þ

where Ê is defined by

Ê ¼

u0,x þ 1
2ðv0,xÞ

2 þ 1
2ðw0,xÞ2

v0,x � ’z

w0,x þ ’y

’x,x
’y,x
’z,x

2
6666664

3
7777775

ð13Þ

This assumption does not consider all nonlinear parts of

Eq. (2) but is sufficient to account for moderate rota-
tions and buckling behavior.
For the electric potential the following distribution is

assumed:

�ðx,y,zÞ ¼ �aTðy,zÞ ðxÞ ð14Þff

with

�aðy,zÞ ¼

1
y
z

ðb24 � ~y2Þ
ðh24 � ~z2Þ

2
66664

3
77775 and ðxÞ ¼

c1
c2
c3
c4
c5

2
66664

3
77775 ð15Þff

The constants c1 to c5 are unknown and correspond to
the electrical degrees of freedom. Using the approx-

imations of Eq. (14) in Eq. (3), the electric field is
decomposed as

~Eðx,y,zÞ ¼ �Aðy,zÞ ~̂EðxÞ ð16Þ

with

�A ¼ �
0 0 0 0 0 1 ~y ~z b2

4 � ~y2
� �

h2

4 � ~z2
� �

0 1 0 �2 ~y 0 0 0 0 0 0
0 0 1 0 �2 ~z 0 0 0 0 0

2
64

3
75

ð17Þ

and

~̂E ¼ ½c1,c2,c3,c4,c5,c1,x,c2,x,c3,xc4,x,c5,x�T ð18Þ

Following common assumptions in beam theory, the
stress state is reduced to Sb = [S11, S12, S13]

T whereas

Sc = [S22, S33, S23]
T = 0 is assumed. Partitioning Eq. (1)

by consideration of Eb = [E11, 2 E12, 2 E13]
T and Ec =

[E22, E33, 2 E23]
T results in

Sb

Sc
~D� ~Pi

2
4

3
5 ¼

Cb Cbc �eb

CTbc Cc �ec

eT
b eT

c �

2
4

3
5 Eb

Ec
~E

2
4

3
5 ð19Þ

and leads to the condensed material matrices ~C, ~e and ~�,
which are derived as

~C ¼ Cb � CbcC
�1
c C

T
bc ~e ¼ eb � CbcC

�1
c ec

~� ¼ �þ e
T
c C
�1
c ec ð20Þ

The weak form of the beam formulation is obtained by
substituting the material matrices Eq. (20) and Eb into

Eq. (8). This holds analogously for the linearized weak
form, Eq. (9).

4. Material nonlinear model

The implemented material model is restricted to fer-

roelectric nonlinearities. Nonlinear effects caused by
high stresses are not considered. The ferroelectric hys-
teresis is approximated by using the Preisach model, see

e.g. [5]. The basic idea of the Preisach model states that a
hysteresis loop is composed by the superposition of
different simple elementary hysteresis operators, see Fig.
2. It is defined by the up- and down-switching values 
and � and the output value �̂� (u) that is + 1 or � 1
and depends on the input value u. The global output
value f(u(t)) is expressed as an integral over the output of

all elementary operators

fðuðtÞÞ ¼
Z Z

>�

�ð; �Þ �̂�ðuðtÞÞ d d� ð21Þ

The expression �(, �) is called the Preisach function

and describes the distribution of the elementary hyster-
esis operators. In the presented formulation, ~Ez

represents the input value and~Pi
z the output value. After

the evaluation of the remanent polarization, the piezo-
electric matrix ~e is updated with respect to the current
value of ~Pi

z. Therefore ~e is multiplied by the normalized

polarization ~Pi
z=Psat with Psat as saturation polarization.

A detailed description of the Preisach model may be
found in [5].

Fig. 2. Elementary hysteresis operator.
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5. Finite element approximation

The displacements and the electric potential are
approximated with linear shape functions NI. This leads
to a two node finite beam element with six mechanical

degrees of freedom vI = [u0, v0, w0, ’x, ’y, ’z]
T and five

electrical degrees of freedom ffI = [c1, c2, c3, c4, c5]
T for

each node I. The interpolation of the displacements, the

electric potential, their derivatives, virtual and linearized
quantities are approximated as follows:

uh ¼ A N v, �uh ¼ A N �v, �uh ¼ A N �v,

uh,x ¼ A N,x v ð22Þ
�h ¼ �a �N ff ��h ¼ �a �N �ff, ��h ¼ �a �N �ff,

�h,x ¼ �a �N,xff

with the vectors vT ¼ ½vT1 ,vT2 � and ffT ¼ ½ffT
1 ,ff

T
2 �. The

matrices N and �N are given as

N ¼ ½N1,N2�, �N ¼ ½ �N1, �N2�, with NI ¼ NI 16�6,

�NI ¼ NI 15�5 ð23Þ

where N 1 ¼ 1� x
L and N 2 ¼ x

L. With respect to Eqs. (12),
(13), (16) and (18) the approximations of the beam
strains and of the electric field are derived as

�Eh
b ¼ A B �v �Eh

b ¼ A B �v ð24Þ
�~Eh ¼ �A �B �ff �~Eh ¼ �A �B �ff

with B = [B1, B2] and �B = [ �B1, �B2]. The matrices BI and
�BI are determined as

BI ¼

NI,x v0,xNI,x w0,;xNI,x0 0 0 0

0 NI,x 0 0 0 �NI

0 0 NI,x 0 NI 0

0 0 0 NI,x 0 0

0 0 0 0 NI,x 0

0 0 0 0 0 NI,x

2
666666664

3
777777775

�BI ¼

NI 0 0 0 0

0 NI 0 0 0

0 0 NI 0 0

0 0 0 NI 0

0 0 0 0 NI

NI,x 0 0 0 0

0 NI,x 0 0 0

0 0 NI,x 0 0

0 0 0 NI,x 0

0 0 0 0 NI,x

2
6666666666666666664

3
7777777777777777775

ð25Þ

Considering Eqs. (22), (24) in (8) and (9), the approx-
imation of the weak form and its linearization on

element level reads

Ge ¼ �v
�

� 	T Ke
vv �Ke

v�

Ke
�v Ke

��

� 	
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ke

�v
�

� 	
|fflfflffl{zfflfflffl}

�de

� Fe

�Qe

� 	
|fflfflfflffl{zfflfflfflffl}

Re

0
BBB@

1
CCCA ð26Þff ff

with

Ke
vv ¼

Z

Le

BT

Z

Ae

AT ~C A dA

0
@

1
A B dsþ Ge ð27Þ

Ke
v� ¼

Z

Le

BT

Z

Ae

AT ~e �A dA

0
@

1
A �B ds ¼ K T

�v ð28Þ

Ke
�� ¼

Z

Le

�BT

Z

Ae

�AT ~� �A dA

0
@

1
A �B ds ð29Þ

Here dA describes the integration through the cross
section and ds the integration along the beam axis. In

Eq. (26) Ke denotes the tangent stiffness matrix and Re is
the load vector. The expression Ge represents the initial
stress stiffness matrix and is given as

Ge ¼ G11 G12

G21 G22

� 	
with GIK ¼

0 0 0 0 0 0
0 GIK 0 0 0 0
0 0 GIK 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

ð30Þ

and

GIK ¼
Z
Le

NI,x

Z
Le

S11 dA

0
B@

1
CANK,xds ð31Þ

The mechanical load vector Fe and the charge vector Qe

are defined as

Fe
I ¼

Z
@Le

NTAT �t dSþ
Z
Le

NT

Z
Ac

ATb dA

0
B@

1
CAds�

Z
Le

BT

Z
Ae

ATSb dA

0
B@

1
CAds
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Qe
I ¼

Z
@Le

ð ��� ��iÞ NI �a dSþ
Z
Le

�BT

Z
Ae

�AT~Pi dA

0
B@

1
CAds

ð32Þ

After assembly over all elements

KT ¼ Anelm
e¼1 K

e, R ¼ Anelm
e¼1 Re and �D ¼ Anelm

e¼1 �de one
obtains the following global equation;

KT�D� R ¼ 0 ð33Þ

6. Numerical examples

6.1. Simple test for hysteresis loops

To verify the implemented material nonlinearities, this
example considers a piezoelectric cantilever, see Fig. 3. It
consists of barium titanate ceramic material that is
polarized in z-direction. With respect to [6], the material

parameters are given as

C11 ¼ 166 GPa C33 ¼ 162 GPa C44 ¼ 42:9 GPa

C66 ¼ 44:8 GPa C12 ¼ 76:6 GPa C13 ¼ 77:5 GPa

e31 ¼ �4:4C=m2 e33 ¼ 18:6C=m2
e15 ¼ 11:6C=m2

�11 ¼ 1:12 � 10�8 C
Vm

�22 ¼ 1:12 � 10�8 C
Vm

�33 ¼ 1:26 � 10�8 C
Vm

ð34Þ

The coercive field strength is assumed as Ec = 1000 [V/
mm] and the saturation polarization as Psat = 0.26 [C/
m2]. An electric field ~Ez (t) = 2000 � sin(t) [V/mm] as a
function of time t is applied. The Preisach function is

assumed as

�ð; �Þ ¼ 50

�
eð�25ðþ�Þ

2�25ð��þ1Þ2Þ ð35Þ

The cantilever is modelled with one finite element, see
Fig. 3. Fig. 4(a) shows the typical dielectric hysteresis
that appears in piezoelectric materials. The dotted line

represents the irreversible part of the polarization ~Pi
z.

The continuous line shows the dielectric displacements

~Dz. It consists of an irreversible part that is caused by~Pi
z

and an additional reversible part from linear piezo-

electricity. In Fig. 4(b) the displacement u2 is plotted
versus the electric field. The result is a typical butterfly
hysteresis curve that is commonly found in literature.

6.2. Clamped bimorph beam

In the second example a cantilever beam that consists

of an aluminium and a barium titanate layer is analyzed.
The geometry data are given in Fig. 5. The barium
titanate is polarized in the z-direction, and the material
parameters are taken from the previous example. For

the aluminium layer E = 70.3 GPa and 
 = 0.345 are
assumed. The barium titanate layer is loaded with an
electric field ~Ez that is increased from zero to 1000 [V/

mm]. For the finite element calculation the beam is
discretisized with 20 elements. In Fig. 5, the tip dis-
placement in the z-direction is plotted versus the electric

field for the case of material linear and nonlinear
behavior. Both calculations lead to the same deflection
wTip if ~Ez is much smaller than ~Ec. At higher loading, the
material nonlinear model accounts for domain switching

effects. The reorientation of the domains leads to sig-
nificant differences in the load deflection curves.

7. Conclusion

A finite element formulation for a piezoelectric beam
model is introduced that considers geometrical or

material nonlinearities. The numerical examples
demonstrate the applicability for material nonlinear
behavior and for layered beam structures.
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Fig. 3. Geometry and finite element model.
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Fig. 5. Geometry of the cantilever and load deflection curve.

Fig. 4. Hysteresis curves.
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