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A nonlinear piezoelectric 3D-beam finite element formulation
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Abstract

This paper presents a finite element formulation of a three-dimensional piezoelectric beam which includes geometrical
and material nonlinearities. Based on the Timoshenko theory, an eccentric beam formulation is introduced which
provides an efficient model of piezoelectric multilayered structures. The geometrically nonlinear assumption allows the
calculation of large deformations including buckling behavior. A quadratic approximation of the electric potential
through the cross section of the beam ensures the fulfilment of the charge conservation law exactly. To account for the
material nonlinearities which arise in ferroelectric materials, the Preisach model is implemented in the finite element

formulation.
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1. Introduction

For the development of piezoelectric components, the
finite element method is a well suited tool. Due to the
rod like structures of many of such devices, it is rea-
sonable to use finite beam elements for an efficient
numerical simulation. In the literature different piezo-
electric beam models are found, see e.g. [1], which are
usually based on the linear theory. In recent years some
geometrically nonlinear formulations have been pub-
lished, see e.g. [2].

To model piezoelectric material nonlinearities one
may follow thermodynamically motivated approaches,
e.g. [3] or by using the phenomenological Preisach
model, e.g. [4]. The advantage of the latter model is its
simple numerical implementation and the experimental
determination of the material parameters [5].

This formulation presents a finite beam element that
includes both geometrical and material nonlinearities. It
provides a simulation tool which is characterized by high
efficiency and a wide range of applications. The essential
features of the proposed model are summarized as
follows:

e A three-dimensional, eccentric beam formulation
using the Timoshenko kinematic is introduced.
e A geometrically nonlinear formulation is considered,
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which accounts for moderate rotations and allows
the investigation of buckling problems.

e A quadratic approximation of the electric potential
ensures the fulfillment of the charge conservation
law for bending loads.

e To take into account high electrical loads, a material
nonlinear model is implemented. The additional
remanent part of the polarization is determined by
employing the Preisach model.

2. Governing equations

On the basis of linear piezoelectricity the remanent
polarization P'is included in the constitutive equations
to account for nonlinear ferroelectric behavior. The
nonlinear constitutive equations read

—

S  —c:E—e-F (1)
D-P=eT:E+e E

Here, S, 5, E and E are second Piola-Kirchhoff stresses,
dielectric displacements, Green-Lagrangean strains and
electric field. The material properties are defined by the
elasticity matrix C, the permittivity matrix € and the
piezoelectric matrix e which is now a function of the
electric field. The nonlinear strains E and the electric
field E are functions of the displacements u = [u, v, w]T
and the electric potential ¢:
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1

E= 3 (Grad u + Grad u” + Grad «”Grad u) (2)
E=—Grad ¢ 3)
The mechanical and electrical field equations in the
reference configuration B, are described by
DivP+b = 0 inBy (4)

DivD = 0 inB, (5)
with the body forces b. The first Piola-Kirchhoff stress
tensor P may be expressed as P = F .S where F = Grad
x is the deformation gradient and x the position vector

of the current configuration. The mechanical and elec-
trical boundary conditions are given as

S-n—t =

D-n—(G-3) =

0 ondBy (6)
0 ond,By (7)

in which 7 is defined as the traction vector on the surface
9,8y and n as the unit normal vector, & represents the
free charge density on the surface 9,8,, and &' corre-
sponds to the surface charge due to P'. The weak form is
derived by multiplication of Eqgs. (4), (5) with the test
functions éu and é¢, integration over the domain B, and
applying standard arguments leads to

/S.'6E+5~6EdV—/b-6udV— / f-6udS+
By By 9By

/ D-népdS=0 ®)

9,80

Here the operator dS represents the integration over the
surface of the beam. In the geometrically nonlinear case
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the weak form is solved within the finite element method
by applying the Newton-Raphson scheme. For constant
loading the linearization of Eq. (8) is derived as

/(5E:<E:AEdV+/A(SE:SdVJr/éEeT:AEdV
By By 0
+/5Em:e.AEdV+/6E.e.AEdV
B(] B()

©)

In the case of material nonlinearities the quasi-Newton
method is employed.

3. Beam formulation

The kinematic description of the beam model is based
on the Timoshenko theory. The displacement vector
u = [u, v, w]" is a function of the beam displacement
vector v and the matrix 4 and reads

u(x,y,z) = A(y,z) v(x) (10)
Up
100 0 z —y Yo
A=10 1 0 —z 0 0| and v=|""
001 y o0 0 Px
Py

(11)

uo, vo, wo represent the displacements and ¢y, ¢,, - are
rotations, see Fig. 1. The beam strain E;, = [E|y, 2 E},, 2
E5]7 is decomposed as

reference axis

center line

Fig. 1. Eccentric beam model.
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Ey = A(y.2) E(x) (12)

where E is defined by

Up, x + %(VO,X)Z + %(WO,X)Z
VO,X 2

wo,x + @y

Px,x

Py,x

Pz,x

(13)

This assumption does not consider all nonlinear parts of
Eq. (2) but is sufficient to account for moderate rota-
tions and buckling behavior.

For the electric potential the following distribution is
assumed:

¢(x,y,z) = éT(yaZ) 4)()(?) (14)
with
1 Cl
y C
a(yz)=| =z and ¢ (x)= | (15)
(bf_ - }72) C4
& -2 es

The constants ¢; to ¢s are unknown and correspond to
the electrical degrees of freedom. Using the approx-
imations of Eq. (14) in Eq. (3), the electric field is
decomposed as

0
0

E(x.y.2) = A(y.2) E(x) (16)
with
) 000 o o 17z (5-7) (5-
A=—=10 1 0 -2 0 0 0 0 0

001 0 -25200 0 0

(17)

and
E= [Cl7C2;C3aC4;C5;Cl,x>C2,.‘(,C3,xc4,x,55,x]T (18)

Following common assumptions in beam theory, the
stress state is reduced to S, = [Sy;, Si2, Si3]7 whereas
S, = [S», S33, S»3]” = 0is assumed. Partitioning Eq. (1)
by consideration of E, = [E,;, 2 E1», 2 Ej5]” and E, =
[E22, E33, 2 E23]T results in

Sh € Cp —ep| |Ep
S | =|¢ C -e | |E (19)
D-P el ef € E

and leads to the condensed material matrices C, & and €,
which are derived as

:)
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E=c,— ‘;1 T

E=e+elc e, (20)
The weak form of the beam formulation is obtained by
substituting the material matrices Eq. (20) and E, into
Eq. (8). This holds analogously for the linearized weak
form, Eq. (9).

4. Material nonlinear model

The implemented material model is restricted to fer-
roelectric nonlinearities. Nonlinear effects caused by
high stresses are not considered. The ferroelectric hys-
teresis is approximated by using the Preisach model, see
e.g. [5]. The basic idea of the Preisach model states that a
hysteresis loop is composed by the superposition of
different simple elementary hysteresis operators, see Fig.
2. It is defined by the up- and down-switching values «
and (8 and the output value a5 (u) thatis + 1 or — 1
and depends on the input value u. The global output
value f(u(1)) is expressed as an integral over the output of
all elementary operators

Suln)) = / / (e, B) Fup(u(1)) doc dB (1)

a>f3

The expression u(a, ) is called the Preisach function

YQB(u)
A 1

Fig. 2. Elementary hysteresis operator.

and describes the distribution of the elementary hyster-
esis operators. In the presented formulation, E.
represents the input value and P”, the output value. After
the evaluation of the remanent polarization, the piezo-
electric matrix & is updated with respect to the current
value of 13’2 Therefore & is multiplied by the normalized
polarization 131 /Psar With Py, as saturation polarization.
A detailed description of the Preisach model may be
found in [5].
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5. Finite element approximation

The displacements and the electric potential are
approximated with linear shape functions N;. This leads
to a two node finite beam element with six mechanical
degrees of freedom v; = [ug, vo, Wo, Pxs Py ©.]7 and five
electrical degrees of freedom ¢; = [c1, ¢a, €3, 4, ¢5]” fOr
each node /. The interpolation of the displacements, the
electric potential, their derivatives, virtual and linearized
quantities are approximated as follows:

W' =ANv, Su"=ANGbv, Au"=AN Av,

W' =AN,v (22)
h=aN¢ 6¢"=aNsp, A¢"=aN A¢,
¢?x =a N,x¢

with the vectors »! = [v],v]] and ¢" = [¢],¢]]. The
matrices N and N are given as

N=[N.,N)], N=[N.Ny], with N;=Njlgye,

Np = Nj Isys (23)
where Ny = 1 — fand N, = {. With respect to Egs. (12),

(13), (16) and (18) the approximations of the beam
strains and of the electric field are derived as

SE! = A B v AE!=A B Av (24)
SE"= A B¢ AE'=ABA¢

with B = [B,, B.] and B = [B,, B,]. The matrices B, and
B; are determined as

[Nix VoNix wo,xNrx0 0 0 07
0 Ni 0 0 0 -N
0 0 N 0 N, 0
B, =
0 0 0 Now 00
0 0 0 0 N 0
Lo 0 0 0 0 N
r Ny 0 0 0 07
0 Ny 0 0 0
0 0 Ny 0 0
0 0 0 Ny 0
_ 0 0 0 0 Ny
B, =
N 0 0 0 0
0 Noy 0 00
0 0 N 0 0
0 0 0 N 0
L0 0 0 0 NJ

Considering Eqgs. (22), (24) in (8) and (9), the approx-
imation of the weak form and its linearization on
element level reads

e ov ! I(L;v 7K€q“) Ay F
o=l | w] [l [Cel ) e
—_——— ——

N——
K Ad’ R

with

Kivz/BT(/ATﬁAdA> Bds+G* 27)
Le Ae

K, = BT(/ ATé/idA> Bds=K], (28)
FA e

K, = BT(/ ATe 4 dA) B ds (29)
Le A¢

Here dA describes the integration through the cross
section and ds the integration along the beam axis. In
Eq. (26) K° denotes the tangent stiffness matrix and R® is
the load vector. The expression G° represents the initial
stress stiffness matrix and is given as

0 0 00 0 0
0 Gk 00 0 0
e_ |Gu Guiof . 10 0 Gx 0 0 0
¢ = [021 Gzz} WithGi =15 o 0 0 0 0
0 0 00 0 0
0 0 00 0 0
(30)

and
GIK:/NI,x /511 dA | Nk, xds (31)

Le Le

The mechanical load vector F° and the charge vector Q°
are defined as

F = /NTATt‘dS+/NT /AdeA ds—
aLe A€

Le

/BT /ATS,, dA | ds

Le A¢
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0= /(&—5") N,ﬁdS—i—/BT /ATﬁ"dA ds
aLe e e

(32)

After assembly over all elements

Kt =AMMK°, R=A™" R® and AD = A™"A& one
obtains the following global equation;

KrAD—R=0 (33)

6. Numerical examples
6.1. Simple test for hysteresis loops

To verify the implemented material nonlinearities, this
example considers a piezoelectric cantilever, see Fig. 3. It
consists of barium titanate ceramic material that is
polarized in z-direction. With respect to [6], the material
parameters are given as

€ =166 GPa €33 =162 GPa  Cau =42.9 GPa

Cos =448 GPa  C;p =76.6 GPa  Cj3 = 77.5 GPa

€3 = —44C/m> ey =18.6C/m? ejs=11.6C/m’
en=112-10%&  en=112-10%E

a3 =126-10"°& (34)

The coercive field strength is assumed as £, = 1000 [V/
mm] and the saturation polarization as P,,, = 0.26 [C/
m?]. An electric field E. () = 2000 - sin(¢) [V/mm] as a
function of time ¢ is applied. The Preisach function is
assumed as

50 a+8)’— —a+1)?
/L(O(7ﬂ) — 7e( 25(a+3)"=25(8—a+1)7) (35)

The cantilever is modelled with one finite element, see
Fig. 3. Fig. 4(a) shows the typical dielectric hysteresis
that appears in piezoelectric materials. The dotted line
represents the irreversible part of the polarization I_"iz.
The continuous line shows the dielectric displacements

z

L,

D,. It consists of an irreversible part that is caused by f"z
and an additional reversible part from linear piezo-
electricity. In Fig. 4(b) the displacement u, is plotted
versus the electric field. The result is a typical butterfly
hysteresis curve that is commonly found in literature.

6.2. Clamped bimorph beam

In the second example a cantilever beam that consists
of an aluminium and a barium titanate layer is analyzed.
The geometry data are given in Fig. 5. The barium
titanate is polarized in the z-direction, and the material
parameters are taken from the previous example. For
the aluminium layer £ = 70.3 GPa and v = 0.345 are
assumed. The barium titanate layer is loaded with an
electric field E, that is increased from zero to 1000 [v/
mm]. For the finite element calculation the beam is
discretisized with 20 elements. In Fig. 5, the tip dis-
placement in the z-direction is plotted versus the electric
field for the case of material linear and nonlinear
behavior. Both calculations lead to the same deflection
wrip if EZ is much smaller than Ec. At higher loading, the
material nonlinear model accounts for domain switching
effects. The reorientation of the domains leads to sig-
nificant differences in the load deflection curves.

7. Conclusion

A finite element formulation for a piezoelectric beam
model is introduced that considers geometrical or
material nonlinearities. The numerical examples
demonstrate the applicability for material nonlinear
behavior and for layered beam structures.
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Fig. 3. Geometry and finite element model.
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Fig. 4. Hysteresis curves.
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Fig. 5. Geometry of the cantilever and load deflection curve.
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