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Abstract

The work presented herein consists in an adaptive remeshing technique dealing with damage material. More parti-
cular details concerning the development of a transfer operator are addressed. This operator is based on diffuse

interpolation and ensures energy conservation between the old discretized domain and the new one.
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1. Introduction

For a large class of problems (forming processes,
localization problems, hightly heterogeneous loadings,

. . .), the quality and predictivity of the numerical simu-
lation require the remeshing of the computational
domain into the optimal discretization configuration.

Such adaptive techniques are based on the develop-
ment of effective error estimators and mesh refinement
procedures but also on reliable transfer operators

allowing to continue the computation on a new dis-
cretization. Several important aspects of the transfer
operator have to be adressed [1], more particularly, the
consistency with constitutive equations and the con-

servation of the equilibrium equation.
The work presented herein consists mainly in the

development of a transfer operator dealing with non-

linear materials and, more precisely, damage materials.
The transfer operator ensures the consistency with the
constitutive equations, the equilibrium equations and

preserves energetic quantities related to the damage state
of the structure: dissipated energy during the loading
and strain energy.

We first present the isotropic damage model used in

this work. Then, we develop the main aspects of the
transfer operator proposed and, finally, we give some
numerical results and conclusions.

2. Damage constitutive model

The model presented here is an isotropic damage
model with isotropic ‘hardening’. Such a model is

assumed to represent the progressive nucleation of
micro-cracks in the bulk material distributed of more or
less random orientation which can be considered as

inducing the damage in roughly isotropic way. The
internal variables of the model are the (forth order)
compliance tensor denoted as: �D and the hardening

variable denoted as �� [2].
The main ingredients of the construction of the model

are summarized in Table 1. In Table 1, �Y is the ther-
modynamic force associated with the compliance �D. All

the relations can be deduced by appealing to the ther-
modynamics principles and the principle of maximum
dissipation.

3. Transfer operator

Some general aspects of the transfer operator pro-
posed in this work are addressed in this section. The

transfer operator developed herein ensures that the fields
associated to the new discretization satisfy the local
equilibrium equations, the damage criterion and con-
serves between the old and new meshes energy

quantities: dissipated and strain energies.
The first step of the transfer consists in constructing,

by using diffuse interpolation [3], the internal variables

fields on the new mesh. The field of the increment of
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those variables is reconstructed at the same time. Then,
the fields �� and ��� (where ��� = ��n � ��n�1, n being the
time step at which remeshing is decided) are known all

over the new computational domain.
Then, internal variables are renormalized in order to

ensure the conservation of the dissipated energy.

Moreover, in order to control numerical diffusion, ele-
ments where the variable �� is lower than a threshold
defined by statistical criteria are not considered as
damaged.

This first step allows to define two different zones of
the computational domain:
. zone 1: at time tn, internal variables are evoluating,

the material is damaging and �� = 0;
. zone 2: at time tn, internal variables are not evolu-

ating, the material is loading or unloading elastically

and �� � 0.
The second step of the transfer consists in reconstructing
the stress field on the new mesh satisfying the damage

criterion �� � 0. At the same time, the conservation of
the strain energy is ensured.
The strategy for reconstructing the stress field differs if

we consider a point either in zone 1 or in zone 2.

For the points in zone 1 (in this case, integration
points of the new computational domain), the recon-
struction of the stress field is carried out by appealing to

diffuse interpolation to construct, from the discrete field
known on the old discretization, a new field of arbitrary
order continuity (in our case C1) satisfying the admis-

sibility condition that is �� = 0. Noting that the

admissibility can be rewritten as a quadratic constraint,
such a problem results in the resolution of a quadratic
optimization problem with quadratic constraints [4].

For the points in zone 2, the reconstruction of the
stress field is carried out by using a simple diffuse
interpolation, which results in the resolution of a simple

quadratic optimization problem without constraint. In
this zone, the conservation of the strain energy is
ensured by renormalizing the stress field obtained. Such
a procedure does not ensure the stress admissibility �� �
0. The admissibility is guaranteed by constructing a cell
automat: the strain energy remaining constant, the cell
automat redistributes stresses by loading and unloading

in zone 1 ensuring that, at each point, �� � 0.

4. Numerical results

We present here some numerical results obtained by
using the transfer operator presented here above. The
test considered is a traction test on a notched beam. Two
different regular discretization are considered, a coarse

and a finer one. The damage model presented has been
implemented in the Finite Element code FEAP devel-
oped by Professor R.L. Taylor at Berkeley, California.

Fields are reconstructed on the fine discretization
from the discrete fields known on the coarse mesh. In
order to evaluate the quality of the reconstructed field

(here the field �� of the hardening variable), we also give

Table 1

Main ingredients of the damage model

Constitutive damage model

State variables/dual variables ð�"; �Þ, ð�D, �YÞ, ð��, �qÞ)

Helmholtz free energy � ð�", �D, ��Þ ¼ 1
2
�" : �D�1 : �"þ ��ð��Þ

Damage function ��ð�, �qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� : De : �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

q
�k kDe

� 1ffiffiffi
E
p ð��f � �qÞ � 0

State equations � ¼ �D�1 : �" and �q ¼ � d
d�

��ð��Þ

Evolution equations

Dissipation 0 < D ¼ 1
2
�" : �D�1 : �"þ �q _��

Internal variables evolution _�D ¼ _��@
��

@� �
@ ��
@�

1
�k kDe

; �� ¼ _��@
��

@�q

Stress evolution _� = C
ed _��

Ced ¼ �D�1 if _�� ¼ 0

¼ �D�1 �
�D�1:

@ ��
@�

� �
� �D�1:

@ ��
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� �
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@ ��
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the field computed by the finite element code considering
the fine mesh from the beginning of the computation.

The results are given in Figs 1–3.

The results given both by the transfer operator and
the direct computation are quite similar, the damage

zone is well captured and numerical diffusion is limited.

5. Conclusion

The work presented here deals mainly with the

development of a transfer operator for structures
involving damage materials. The operator proposed here
for the reconstruction of fields on a new discretization is
based on diffuse interpolation. The key point of the

operator proposed is to ensure:
. local equilibrium,
. stress admissibility,

. preservation of energetic quantities defining the
damage state of the structure: strain energy and
dissipated energy.

A refinement procedure is being developed in accor-
dance with this field transfer operator to improve the
results of the remeshing technique.
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Fig. 3. Damage variable �� obtained by direct computation on

the new mesh.

Fig. 1. Damage (variable ��) on the old mesh.

Fig. 2. Damage variable �� transferred on the new mesh.
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