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Abstract

The aeroelastic self-excited load model via indicial functions has reached sufficient theoretical maturity in the aca-
demic realm. In order to be used in the real practice of bridge design, a reliable procedure must be provided to obtain
indicial functions and an efficient implementation of the convolution integrals into structural analysis programs is

required. The latter problem is addressed in the present paper, where an optimized model with fading aeroelastic-
memory is developed and implemented, and a first criterion to evaluate the optimal size of the memory is proposed. A
substantial reduction of the computing time is obtained without compromising the accuracy of the analyses.
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1. Introduction

Even more than in the past, bridge aerodynamics is a
crucial topic, due both to the increase of the span length
and to the trend towards very light and architectonically

extravagant structural solutions for smaller bridges.
Concerning wind load modeling, in addition to the static
(mean) action, two dynamic load mechanisms are of

prime importance: the gust excitation due to turbulence
of the wind flow, and self-excited aeroelastic forces,
which can result in instability phenomena such as bridge
flutter. The latter aspect is addressed in the present

paper. Mixed time-frequency domain models for aero-
elastic loads are well established. Nevertheless, the pure
time domain approach through indicial functions offers

several advantages [1] and is now theoretically mature
[2]. Here, some implementation details are presented and
an evaluation of the computational performance is car-

ried out.

2. Self-excited aeroelastic loads

2.1. The indicial function model

Several (slightly different) expressions of the indicial

function model have appeared after its introduction by
Scanlan et al. [3]. Here, the formulas proposed by Costa
[4] are considered. The lift force and twisting moment

acting on the unit-span bridge-deck cross-section (see
Fig. 1) at time t are given by
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where q = 1/2	U2 = kinetic pressure; 	 = air density;

U = mean wind velocity; B = bridge-deck width; C0L
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and C0M = derivatives of the static lift and moment
coefficients with respect to the angle of attack evaluated

in the static (mean) position; y and  = vertical and
torsional displacements; �Xx(t) (with X = L,M; x = _y,
) = indicial functions describing the time evolution of

the action X due to a step change of x at t= 0. Each dot
denotes a derivation with respect to the time t.

2.2. Identification of indicial function

Although some attempts have been made to directly
measure indicial functions in experimental tests [5], and

Computational Fluid Dynamics seems to offer a pro-
mising tool [6], the most feasible procedure consists to
date in choosing a parametric analytical expression of

indicial functions and in identifying the parameters from
quantities measured in the wind tunnel. Here, expo-
nential filters [7] are considered:
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The dimensionless parameters aXxj and bXxj describe, for
each term, the ‘amplitude’ and the ‘decay’ respectively,
whereas the number of terms NXx accounts for the

accuracy of the approximation of �Xx. It is worth to
notice that the coefficients bXxj must be positive, as the
forces arising from the step change tend to a stationary
value as t!1.

A reliable procedure for the identification of indicial
function coefficients has been developed in Zahlten et al.
[1].

3. Computational efficiency

3.1. Advisability of the optimization

Time-domain aeroelastic simulations of bridges are

very expensive in terms of computational resources,
since:
. the time step used in the simulations must be kept

small to avoid numerical damping and to accurately
evaluate the convolution integrals of Eqs. (1);

. iterations must be performed at each time step, in

order to take into account structural non-linearities,
if necessary;

. several simulations must be carried out, varying the
wind speed and comparing the time histories, until

the critical condition (i.e. unstable oscillations) is
reached;

. the simulations must be long enough in order to

accurately observe the critical condition;

. at each time step the convolution integrals become
longer and longer (the time to compute the loads

increases therefore quadratically with the number of
time-steps).

For systematic studies as well as in the preliminary

design phase of a bridge, strategies to save computing
time would be very useful. One approach, discussed in
Salvatori et al. [8], is to reduce the complexity of the FE

structural model (and of the number of cross-sections
where the convolution integrals are calculated). Here, a
strategy to reduce the length of the integration interval
in Eqs. (1) is presented.

3.2. Finite ‘aeroelastic memory’

The time-derivatives of indicial functions that appear

in the convolution integrals of Eqs. (1), vanish for t!1.
In particular, for a Tmem ‘sufficiently large’, the follow-
ing implications holds:
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Equations (1) can be therefore rewritten as
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A finite memory approach with an incremental for-
mulation was proposed by Borri et al. [9] but no

investigation of the computing time involved was per-
formed and the choice of the length of the memory was
made in a safe but arbitrary way. Here the question of
the memory length is systematically investigated,

weighting computational performance and accuracy.
Moreover, the adopted expressions of the load (Eqs. (1))
avoid the incremental formulation.

In order to find a general criterion for the choice of
Tmem, given a set of indicial functions, the scalar index
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is proposed, which accounts for the relative size of the
neglected tail of the indicial function that converges

‘more slowly’.

4. Implementation

A specific code for the study of bridge aeroelasticity

has been developed [9], which integrates a pre-processor
for the parametric generation of the bridge FE model, a
multi-correlated wind velocity field generator, an FE

solver for non-linear dynamic problems (Newmark
integration, Newton-Raphson iterations at each time-
step), and a post-processor.

The aeroelastic forces are assembled through special
one-node elements. Equations (4) are integrated with the
left rectangular rule (trapezoidal or Simpson’s rule give
no accuracy improvements and involve a load depen-

dence on the current step, i.e. stepwise iteration also for
linear structures).

5. Numerical examples

5.1. 2DoF system

As first test, flutter simulations are performed on the

2DoF system sketched in Fig. 1 (ky = 5180 (N/m)/m;
k = 100.6 (N�m)/m; �y = 0.18%; � = 0.28%; my =
3.81 kg/m; m = 0.037 (kg�m2)/m; B = 0.376 m;
depth = l = 0.92 m) with the aerodynamic character-

istics of the streamlined rectangular cross-section with
dimension ratio B/D = 12.5 (experimentally tested by
Righi [10]). The critical flutter condition is evaluated

both with an infinite aeroelastic memory and with

several values of the finite memory. A time history of ten
seconds is simulated and the program profiled. The

timing result are obtained on an AMD1 Athlon
2

XP
1700+ processor (1466 MHz). Less systematic tests on
different processors have produced comparable perfor-

mance ratios. Each test has been executed at least three
times. The results in terms of critical conditions and
average timings are presented in Table 1.

An abrupt reduction in the total computing time is
observed when passing from an infinite to a finite
aeroelastic memory. Moreover, to consider a memory
longer than that corresponding to R = 10�3 does not

bring any accuracy improvement. This suggests to
identify a criterion to decide the optimal memory length.
Further tests on different cross sections will lead to more

general and reliable criteria. Time histories of motion
obtained with infinite and finite memory compare very
well as shown in Fig. 2.

5.2. Suspension bridge simulation

As second example, the aeroelastic behavior of the
Bosporus suspension bridge is simulated. Even if a
rather simplified FE model is considered (with a reduced

number of loaded cross-sections), the aeroelastic ana-
lyses last 3–4 hours when the infinite memory is
employed, whereas the finite memory allows a reduction

in the computing time of almost a factor three, without
noticeable loss of accuracy. The details are omitted here
for lack of space.

6. Concluding remarks

In the perspective of the practical applicability of the
indicial function model, an efficient implementation is
presented together with a proposal for a general criter-
ion to estimate the optimal size of the aeroelastic

memory that greatly reduces the computational time
without loss in accuracy. The ongoing research is con-
sidering complete sets of cross-sections, also at different

angles of attack.
Turbulence analyses and Monte-Carlo simulations on

the along-span characteristics are further steps, which

will profit of the computational efficiency of the fading
memory formulation.
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Simulation results and timings for various aeroelastic memory lengths
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a Total computing-time; b convolution-integral computing-time; c finite-element solver computing-time CTFE = CTTot�CTCI.

Fig. 2. Oscillation of the two-degree-of-freedom system for under-critical, critical and super-critical wind velocities: comparison of the

infinite and finite memory models.
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