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Abstract

This paper presents the application of artificial neural networks (ANN) in the identification of damage in simple

engineering structures. Three numerical examples are presented considering the identification of damage in a cantilever
beam with and without an additional support. The application of ANNs expands the nondestructive damage identi-
fication method using an additional parameter introduced to the structure. The input vector of the ANNs consists of the

dynamic responses of a structure with additional mass. The output vector is composed of the position of damage and, in
the last example, the extent of damage.
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1. Introduction

Nowadays the understanding of a structure’s condi-

tion is considered to be more and more important. The
state of the structure and its safety strongly depend on
the degradation of the structural elements (beams, sup-
ports, etc.). New methods, able to identify the

degradation of a structure, are expected by inspectors
and structures maintainers. Some methods require the
introduction of external perturbations to the structure.

Nondestructive methods predict the location and the
extent of damage in existing engineering structures.
Publications on the identification of damage mainly

present the approach that implies the knowledge of
eigenfrequencies and eigenmodes of an undamaged
structure. The damage is identified on the basis of the

variations of dynamic parameters with respect to the
initial values Doebiling et al. [1]. Friswell et al. [2] show
the application of a model updating method to damage
identification; they discuss in detail the application of

incomplete measurement data. Some authors apply
mode curvature or variation of positions of node lines;
see Cawley at al. [3] and Friswell et al. [4].

2. Identification method

The detection method, which provides the global

assessment of damage, is usually not sensitive to the
degree of the damage. In a paper by Dems et al. [5], to
increase the accuracy of identification, an additional
parameter is introduced, namely concentrated elastic or

rigid support, an additional mass elastically or rigidly
attached to the structure, boundary constraint or pres-
tress. In that paper, apart from mechanical examples,

the mathematical explanation of the proposed method
has been presented. This paper intends to provide an
analysis of eigenvalues with respect to the additional

mass and the application of artificial neural networks
(ANNs) Waszcyszyn et al. [6] to the identification of
damage. An ANN is applied to the analysis of the

dynamic response of a structure and for the assessment
of the structure’s condition. This approach was also
presented by Ziemia�nski et al. [7]. Herein three examples
are discussed, in all of which ANNs are applied to

develop a new method of identification. The assessment
of the state of a structure relies, in the case of the
application of the proposed extended identification

method, on the comparison of structure eigen-
frequencies obtained from the systems with additional
masses placed at different nodes. The differences in the

sources of information were employed to identify the
location and the extent of the damage.*Corresponding author. Tel.: + 4817 865 1535; Fax: + 4817
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3. Numerical examples

The numerical models of the considered beams were
built using the ADINA [8] finite element (FE) system.
All the beams were modeled using one-dimensional two-

node beam elements. Every beam had an IPE200 cross-
section, and the material properties were as follows:
Young’s modulus E = 2.0 � 105 MPa, mass density 	=
7800 kg/m3. In all the examples, only one damage at a
time was considered. During the research, the damage
was located in each element of the FE model in turn.
The damage of the beam was simulated by the pro-

gresive reduction of the flexural stiffness in one finite
element first by 20% then 30%, 40%, 50%, 60% and
70%. The reduced stiffness EI equalled, respectively,

0.8EI, 0.7EI, 0.6EI, 0.5EI, 0.4EI or 0.3EI, where EI is
the initial stiffness of an undamaged element. Changes
to the eigenfrequencies were observed after the addition

of mass and a reduction in stiffness. An additional mass
of M = 8.5 kg (it was 10–16% mass of models) was
placed at each node of the FE model in turn. An ANN

was applied to identify the location and the extent of the
damage. In each example some patterns used to train
and test the ANN were obtained by changing the
damage location and/or its extent. In each case 40% of

patterns were selected as testing ones, the remaining
60% of patterns were considered as training ones. In the
presented examples the optimal architecture was deter-

mined by checking a number of different architectures.
All neural networks computation were performed using
Neural Network Toolbox for Matlab [9].

3.1. Cantilever beam

In this example, a cantilever beam of length l = 2m
(Fig. 1a) was considered. The FE model was composed
of 21 finite elements. In one of them the stiffness was
reduced to 80% of the initial stiffness (0.8EI). An ANN

was applied to identify the location of the damage.
Twenty-one different locations of damage and 21 loca-
tions of added mass were considered, and in total 441

patterns were obtained; some of them created the
training set, the others created the testing set. The input

vector consisted of two (x = {!1, !2}) or three (x =
{!1, !2, !4}) eigenfrequencies, where !i is the ith
eigenvalues. A number of network architectures were
tried out, the best results being obtained from one hid-

den ANN layer with six or eight neurones. The output
vector (y = {xD}) had only one element, which descri-
bed the location of damage. The network was able to

locate the damage; the optimal architecture was found
to be 3–8–1. The results of identification are presented in
Table 1. In the table, MSE is the mean square error and

R2 is the correlation coefficient. The analysis was repe-
ated with other damage extent. The ANN was able to
identify the location of all damages, but better results
were obtained for higher reductions of flexural stiffness.

3.2. Fixed beam with intermediate support

In the second example, a fixed beam (with inter-

mediate support) of length l = 3m (Fig. 1b) was
considered. The FE model was composed of 31 ele-
ments. The stiffness of one of them was reduced to 70%

of the initial stiffness (0.7EI). Thirty-one different

Table 1

Comparison of the results of Example 3.1

Error parameters

Network 2–8–1 Network 3–8–1

Input eingenvalues Input eingenvalues

1 and 2 1 and 4 1 and 5 1, 2 and 4 1, 2 and 5 1, 4 and 5 2, 4 and 5

MSE � 10�4 0.338 0.322 0.483 0.202 0.272 0.332 117

R2 0.999 0.999 0.999 0.999 0.999 0.999 0.803

Fig. 1. Models considered: (a) cantilever beam (Example 3.1);

(b) cantilever beam with intermediate support (Example 3.2);

(c) cantilever beam (Example 3.3).
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locations of damage and 31 locations of additional mass
were considered, and in total 961 patterns were

obtained. In this case, in order to locate the damage, the
input vector was obtained from the model with addi-
tional mass located in three different nodes in turn. The

first and second eigenvalues for each location of the
mass were taken into account. The input vector (say:
x ¼ f!1

1; !
1
2; !

11
1 ; !

11
2 ; !

25
1 ; !

25
2 g) consisted of six ele-

ments, where !k
i is the ith frequency computed when the

additional mass was attached to the kth node. The ANN
had one hidden layer with six or eight neurones. The
output vector (y = {xD}) had only one element, which

described the location of damage. The accuracy of the
identification employing the ANN was very high (see
Fig. 2). The best architecture was found to be 6–8–1

where MSE = 7.66 � 10�5.

3.3. Cantilever beam continued

In the third example, the first model was considered
again (Fig. 1c). Twenty-one different locations of

damage, 21 locations of additional mass and six values
of the extent of damage were considered. Altogether
2646 patterns were obtained. In this case not only
the location but also the extent of the damage was

identified, so the networks had two outputs. The net-
work of architecture 6–8–2 was applied. The input
vector of the ANN, as in the previous example

ðx ¼ f!1
1; !

1
2; !

11
1 ; !

11
2 ; !

25
1 ; !

25
2 gÞ, consisted of two

frequencies (first and second) obtained for three different
locations of the additional mass. The output vector (y=

{xD, ID}) was composed of the position and extent of the

damage. The accuracy of the identification was also very
high. The results for localization of damage are shown in

Fig. 3 (MSE = 4.28 � 10�5). The results for the extent
of damage are shown in Fig. 4 (MSE = 12.21 � 10�5).

4. Final remarks

The additional parameter introduced to the structure
increases the identification accuracy. The artificial

Fig. 4. The results of the identification of damage extent.

Fig. 2. The results of the identification of the localization of

damage.

Fig. 3. The results of the identification of the localization of

damage.
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neural networks are able to locate the damage and
determine the extent of the structured degradation. The

obtained results show that it is possible to identify the
damage using the dynamic responses of the structure.
The results presented in this paper are very promising;

the next step will be to consider more complicated
structures. Moreover, other perturbations should also be
considered.
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