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Abstract

The immersed boundary method in its original formulation, introduced by Peskin [1], exhibits a high degree of
numerical stiffness. A finite element approach was proposed by Boffi et al. [2] and further developed in Boffi et al. [3,4]

to solve some of the difficulties arising from the original formulation. We present a stability analysis for the two
dimensional case with some numerical tests that show how to choose the numerical parameters in order to obtain
optimal stability.
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1. Introduction

The original numerical approach to the IBM is based
on finite differences for the spatial discretisation, leading
to the construction of a suitable approximation of the

Dirac delta function, which is used to take into account
the interaction equations (see [1,5]).
Our approach to the discretization of the IBM is

completely based upon the finite element method [2–4].
Our aim is to deal with the delta function, which is
related to the forces exerted by the immersed structure
on the fluid and viceversa, in a variational way, so that

there is no need to construct its regularization, but its
effect is taken into account by its action on the test
functions.

We will recall the IBM variational formulation and
present some stability results for a two dimensional case,
together with some numerical tests.

2. Setting of the problem

Let � be the two- or three-dimensional domain con-
taining the fluid and the flexible or elastic structure.

The original formulation of the immersed boundary

method introduces a ‘non-standard’ source term in the
Navier–Stokes equations:

	
@u

@t
þ ðu � rÞu

� �
� ��uþrp ¼ F in���0, T½ ð1Þ

r � u ¼ 0 in���0, T½

which requires the use of a Dirac delta function:

Fðx, tÞ ¼
Z

�

fðq, tÞ�ðx� Xðq, tÞÞdq; in ���0, T½ ð2Þ

Our starting point will be the variational formulation
of the IBM, as given in Boffi et al. [2–4]. We consider the
model problem of a viscous incompressible fluid in a

simple two- or three-dimensional domain � containing
an immersed massless elastic boundary in the form of a
curve or a surface.
Problem 1 Given f 2 L2ðD��0, T½Þ, u 0
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0ð�Þ
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0ð�Þ
d � L2

0ð�Þ and X : D � �0, T½! �,
such that 	 d

dt ðuðtÞ,vÞ þ ðu � ru,vÞ
� �

þ �ðruðtÞ;rvÞ

�ðr � v; pðtÞÞ ¼< FðtÞ; v > 8v 2 H1
0ð�Þ

d ð3Þ

ðr � uðtÞ; qÞ ¼ 0 8q 2 L2
0ð�Þ ð4Þ

< FðtÞ; v >¼
R
D fðs,tÞvðXðs,tÞÞds 8v 2 H1

0ð�Þ
d ð5Þ

@X

@t
ðs,tÞ ¼ uðXðs,tÞ,tÞ 8s 2 D ð6Þ*Corresponding author. Tel.: +39 0382 985680; Fax: +39

0382 505602; E-mail: luca.heltai@unipv.it

93

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



uðx; 0Þ ¼ u0ðxÞ 8x 2 � ð7Þ
Xðs; 0Þ ¼ X0ðsÞ 8s 2 D ð8Þ

The density force formulation (2) is substituted by (5),
where the Dirac delta function is no longer needed.

Equation (7) represents the initial conditions relative

to the variational formulation of Navier-Stokes equa-
tions (3)–(4), where we imposed homogeneous Dirichlet
boundary conditions; other boundary conditions could

also be used. Equation (5) expresses the force exerted by
the structure on the fluid in terms of the force density
f(q, t). Equation (8) is the initial condition for Eq. (6),

which drives the motion of the immersed structure.
Thanks to the generality of Eq. (2), the immersed

boundary method can produce robust numerical

schemes in order to simulate complex fluid–structure
interaction systems. We will consider the simple model
problem of a viscous incompressible fluid in a two-
dimensional square domain � containing an immersed

massless boundary in the form of a curve (see, e.g. [6,7]).
To be more precise, for all t 2 [0, T], let �t be a simple
closed elastic curve, the configuration of which is given

in a parametric form, X(s, t), 0 � s � L, X(0, t) = X(L,
t). The force exerted by the element of boundary ds on
the fluid is f(s, t)ds. When dealing with linear elasticity

and homogeneous materials, the force density f can be
written as follows:

fðs; tÞ ¼ �@
2X

@s2
ðs,tÞ ð9Þ

3. Stability results for the discrete problem

The following stability estimate holds true:

Lemma 1 For t 2 �0, T½, let uðtÞ 2 H1
0ð�Þ

2,pðtÞ
2 L2

0ð�Þ and XðtÞ 2 ðH1ðDÞÞ2 be a solution of Problem
1, then it holds that:
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where k � k0 stands for the norm in L2(�).

Equation (10) represents the energy equilibrium of the
system and shows how the elastic energy of the
immersed boundary is transferred to the fluid.

Let Th be a subdivision of � into triangles or rec-
tangles. We denote by hx the biggest diameter of the
elements of Th. We then consider two finite dimensional
subspaces Vh � H1

0ð�Þ
2 and Qh � L2

0ð�Þ. It is well

known that the pair of spaces Vh and Qh need to satisfy
the inf-sup condition in order to have existence,

uniqueness and stability of the discrete solution of the
Navier-Stokes problem (3)–(4) [8,9].

Next, let si, i= 0, . . ., m with s0 = 0 and sm = L, be m
+ 1 distinct points of the interval [0, L]. We set hs =
max0�i�m j si � si�1 j. Let Sh be the finite element space

of piecewise linear vectors defined on [0, L] as follows:

Sh ¼ fY 2 C0ð½0;L�; � : Y ½si�1;si�
�� 2 P1ð½si�1;si�Þ2; i ¼

1; . . . ;m; Yðs0Þ ¼ YðsmÞg ð11Þ

where P1(I) stands for the space of affine polynomials on
the interval I. For an element Y 2 Sh we shall use also

the following notation Yi = Y (si) for i = 0, . . ., m.
The first step, in order to introduce the discrete

counterpart of Problem 1, is the computation of Eq. (5)
for all Xh 2 Sh and for all v 2 Vh. It can be shown that in

case of linear elasticity and with a piecewise linear dis-
cretisation of the immersed boundary Xh, Eq. (5) can be
reformulated as follows:

< FhðtÞ,v >¼
Xm�1
i¼0

�
@Xhiþ1
@s

ðtÞ � @Xhi

@s
ðtÞ

� �
vðXhiðtÞÞ

ð12Þ

Notice that the right-hand side of Eq. (12) is meaningful,
since v is continuous as it is required for the elements in
Vh. The stability estimate introduced in Eq. (10) holds
also for a density force expressed as in Eq. (12). For a

derivation of Eq. (12) refer to Boffi et al. [4].
To solve numerically Problem 1 we neglected the non

linear terms in Navier-Stokes equations (3), discretized

the domain in a uniform grid of squares, used the stable
Q2/P1 finite element pair for the space discretization and
backward Euler method for advancing in time. In this

simplified setting the fully discrete problem reads:

Problem 2 Given f 2 L2ð�0, L½��0, T½Þ; u 0h 2 Vh and

X 0h 2 Sh, set u 0
h ¼ u 0h and X0

h ¼ X0h, then for n = 0,
1, . . ., N � 1
Step 1. Compute the source term

< Fnþ1
h ,v >¼

Xm�1
i¼0

�
@Xn

hiþ1
@s

� @X
n
hi

@s

� �
vðXn

hiÞ 8v 2 Vh

ð13Þ

Step 2. Find ðunþ1h , pnþ1h Þ 2 Vh �Qh, such that

	
unþ1h � unh

�t
,v

� �
þ �ðrunþ1h ,rvÞ � ðr � v,pnþ1h Þ

¼< Fnþ1
h ,v > 8v 2 Vh

ðr � unþ1h ,qÞ ¼ 0 8q 2 Qh

ð14Þ

Step 3. Find Xnþ1
h 2 Sh; such that
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Xnþ1
hi � Xn

hi

�t
¼ unþ1h ðXn

hiÞ 8i ¼ 1, . . . ,m ð15Þ

In our numerical experiments we observed that the
immersed boundary mesh size hs should not be chosen
arbitrarily small with respect to the fluid mesh size hx
and to the time step �t.

It appears that in order to reduce the area loss of the
boundary (which is one of the measures used to evaluate
the accuracy of the method) it is advisable to have at

least two nodes of the boundary per element. On the
other hand we observed that the method accuracy does
not improve when raising the number of boundary

nodes to more than four per domain element.
In this work we show the sensitivity of the method to

the semi-explicit time stepping technique used to move
the boundary in Step 3 of the discrete formulation.

In particular we observed that when hs is chosen too
small with respect to hx, it is necessary to decrease also
the time step �t to ensure the stability of the method.

The conditions that hx, hs and �t have to satisfy are
shown in the following lemmas.

Lemma 2 Let �t be such that for all n = 0, . . ., N � 1

�� C2�

2

�t

hshx

Xm�1
i¼0

Xn
hi � Xn

hi�1
�� �� 	 K0 > 0, ð16Þ

then for all n = 1, . . ., N

	

2
unh
�� ��2þ�t

Xn
k¼1

K0 rukh
�� ��2þ�

2
hs
Xm�1
i¼0

Xn
hi � Xn

hi�1
�� ��2

h2s

� 	
2

u0hk k2þ�
2
hs
Xm�1
i¼0

X0
hi � X0

hi�1
�� ��2

h2s

ð17Þ

Figure 1 shows the evolution of a boundary when the
correct ratio between hs, hx and �t is used, while Fig. 2 is

an example of the kind of instability we obtain when the
immersed boundary is too refined with respect to the
fluid domain and the time step, where N stands for the

immersed boundary node density and M for the fluid
domain element density.
Several computations have been done, showing the

correctness of Lemma 2. We report a significant snap-
shot of a stability test in Fig. 3. In a forthcoming paper
we will demonstrate these results presenting a full sta-
bility analysis, together with some extensions to the

results presented in Boffi et al. [2–4].

Fig. 3. Snapshot of the instability in the case of a two-

dimensional immersed boundary.

Fig. 1. Correct evolution of a two-dimensional boundary with

N = 16, M = 35 and �t = 0.04.

Fig. 2. Unstable evolution of a two-dimensional boundary with

N = 16, M = 545 and �t = 0.04.
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