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Abstract

This paper deals with the numerical implementation of a hyperelastoplastic model for sands based on critical state

theory (CST). Additional features introduced in the model capture sand behavior more realistically but also introduce
new challenges in the numerical implementation of the model. We demonstrate that a fully implicit algorithm is
achievable by showing how consistent linearization of the residual vectors results in a solution algorithm exhibiting

asymptotic quadratic rate of convergence. We perform two representative numerical examples, at a stress point, to
demonstrate the robustness of the proposed implicit scheme.
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1. Introduction

Models based on critical state theory for soils have

received significant attention in the geotechnical com-
munity due to their ability to capture soil behavior
adequately. A new hyperelastoplastic non-associative
model for sands based on CST has been formulated by

Borja and Andrade [1]. What mainly distinguishes this
new model from the more classic Cam-Clay models,
such as that presented in [2], is the introduction of a state

parameter  i which allows the yield surface to detach
from the critical state line, and a hardening law, which
depends on the state of stress, the state parameter  i,

and the deviatoric plastic stresses. The upshot of this is a
strong coupling between the size parameter pi and  i.
We demonstrate, mostly by means of examples, how the

model is still amenable to a fully implicit implementa-
tion exhibiting optimal rate of convergence. We follow
the notations in [1] where a more ample discussion about
the model can be found.

2. The hyperelastoplastic model

Consider a particular strain energy function of the
form  ¼  ð"ev; "esÞ, where the independent variables are

the infinitesimal volumetric and deviatoric elastic strain
invariants. From the Coleman–Noll relationships, and
only considering mechanical energy, the Cauchy stress

tensor is obtained by � = @ /@"e.
Consider now the first two invariants of the Cauchy

stress tensor p and q, which we can use to postulate the
following yield surface:

Fðp; q; piÞ ¼ qþ �p � 0 ð1Þ

where

� ¼
M½1þ lnðpi=pÞ�
ðM=NÞ 1� ð1�NÞðp=piÞN=ð1�NÞ

h i
;

(
N ¼ 0
N > 0

ð2Þ

The parameter pi < 0 is called the image stress that
controls the size of the yield surface, and N � 0 is a
constant material parameter governing the curvature of

the yield surface and typically has a value less than 0.4
for sands. The material constant M is prescribed such
that � = �q/p = M when p = pi on the yield surface. A

plastic potential function of the same form as the yield
surface can be postulated by defining the parameters �pi
and �N as the non-associative counterparts of pi and N,
respectively. If �N = N and �pi = pi, then plastic flow is

said to be associative. Otherwise, the flow rule is non-
associative in the volumetric sense.
Finally, the evolution of the size parameter is gov-

erned by a hardening law, which is a function of the
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state of stress, the state parameter  i, and the deviatoric
plastic stresses. The parameter  i allows the yield surface

to detach from the critical state line, feature which
previous Cam-Clay models do not have, and which
allows this model to capture the dilative behavior of

sands better. This hardening law naturally couples pi
with  i, imposing additional challenges in the numerical
treatment of the model.

3. Numerical implementation

Following [1], we consider a local residual vector
emanating from a return mapping in strain invariant
space [1,2]:

rðxÞ ¼
"ev � "e trv þ���@pF
"es � "e trs þ��@qF

F

8<
:

9=
;; x ¼

"ev
"es

��

8<
:

9=
; ð3Þ

where x is the vector of local unknowns, "e tr is the trial
elastic strain tensor, which is assumed to be given, and
� = (1 � N) / (1 � �N) is a non-associativity parameter.
The system is then solved iteratively using a Newton-

Raphson scheme with a Jacobian matrix of the form r
0

(x) = @r/@x. Consistently linearizing the residual vector
in question yields optimal convergence results locally,

and, ultimately, also globally. Additionally, as men-
tioned earlier, the coupling between the size parameter pi
and  i requires additional iterations at a sub-local level,

where given the total deformations we can solve for
these two state variables simultaneously. Once the cou-
pled parameters are obtained, we can then proceed with
the solution to the next step.

In order to conserve the asymptotic rate of con-
vergence in the FEM implementation or in stress-point
stress-driven simulations, it is necessary to derive the

consistent tangent operator (CTO), c = @�/@" � @�/
@"e tr. We do so by recalling the residual vector described
above but increasing the number of unknowns such that

the trial elastic strain tensor itself becomes an unknown
at the global level. This procedure yields an algorithmic
tangent operator exhibiting asymptotic quadratic rate of

convergence as illustrated in the following numerical
examples.

4. Representative numerical examples

We perform two representative numerical examples to
show the robustness of the algorithm presented above.

The first simulation deals with a sample of dense sand
with the material parameters N = 0.4 and �N = 0.2, and
loaded with prescribed strains �"11 = 5 � 10�4 and

�"22 = �"33 = �1/2�"11. We use this strain-controlled

simulation to show the rate of convergence of the return
mapping algorithm at the local level. Figure 1 shows
convergence profiles at various load-steps for the sample

in question. It can be observed that the rate of con-
vergence is asymptotically quadratic at every step
shown, and that convergence is achieved within five
iterations or less. This trend was observed at all load-

steps in the simulation.
The second simulation pertains to a stress-controlled

test on the same soil sample described above. This

simulation provides information about the convergence
rate at the global level using the CTO. The loading
protocol consists of keeping the mean normal stress

constant at p = �130 kPa and varying the initially nil

Fig. 1. Convergence profile of local Newton iterations for

isochoric strain-controlled simulation on a sand specimen with

N = 0.4 and �N = 0.2.

Fig. 2. Convergence profile of global Newton iterations for

stress-controlled simulation on a sand specimen with N = 0.4

and �N = 0.2.
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deviatoric stress with �q = 7.5 kPa. Figure 2 shows the
convergence profile of the global residual vector at

various load steps. As in the case of the strain-controlled
simulation, each of the steps shown in the figure displays
asymptotic quadratic rate of convergence. All load-steps

in this simulation showed the same trend.

5. Conclusion

We have presented the numerical implementation of a
novel hyperelastoplastic model based on critical state

theory for sands. Careful treatment of the state variables
involved in the problem allows us to solve the problem
implicitly without sacrificing any desirable quality

inherited from the return mapping algorithm. Specifi-
cally, we have shown that consistent linearization leads
to asymptotic quadratic rate of convergence, both

locally and globally.
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