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Abstract

Large-amplitude (geometrically non-linear) vibrations of doubly curved shallow shells with rectangular boundary,
simply supported at the four edges and subjected to harmonic excitation normal to the surface are investigated. Both

Donnell’s and Novozhilov’s shell theories are used to calculate the elastic strain energy. In-plane inertia and geometric
imperfections are taken into account. The solution is obtained by Lagrangian approach. Numerical results are com-
pared to those available in the literature and convergence of the solution is shown. Internal resonances are also studied.

Shell stability under dynamic load is also investigated by using continuation method, bifurcation diagram from direct
time integration and calculation of the Lyapunov exponents. Interesting phenomena, such as (i) snap-through
instability, (ii) subharmonic response, (iii) period doubling bifurcations, and (iv) chaotic behavior with up to four
positive Lyapunov exponents, have been observed.

Keywords: Shells; Curved panels; Double curvature; Nonlinear vibrations; Large-amplitude vibrations; Chaos;
Lyapunov exponents

1. Introduction

Doubly curved panels are largely used in aeronautics
and aerospace and are subjected to dynamic loads that

can cause vibration amplitude of the order of the shell
thickness, giving rise to significant non-linear phenom-
ena. An exhaustive literature review of work on the non-

linear vibrations of curved panels and shells is given by
[1], mainly focusing on circular cylindrical shells. Pio-
neers in the study of large-amplitude vibrations of
simply supported, circular cylindrical shallow-shells

were [2] and [3]. Leissa et al. [4] studied linear and non-
linear free vibrations of doubly curved shallow shells of
rectangular boundaries, simply supported at the four

edges without in-plane restraints. Large amplitude
vibrations of shallow shells such as elliptic paraboloids,
parabolic cylinders and hyperbolic paraboloids, with

zero displacements and rotational springs at the four
boundaries were investigated in [5–7]. Kobayashi et al.
[8] studied free vibrations of doubly curved thick shal-

low shells. Free vibrations of doubly curved, laminated,
clamped shallow shells with rectangular boundary were
investigated in [9]. Soliman et al. [10] studied large
amplitude, forced vibrations and stability of axi-

symmetric shallow spherical shells. The approach used

in the present study is discussed in [11].

2. Theoretical approach

A doubly curved shallow (small rise compared with
the smallest radius of curvature) shell with rectangular
boundary is considered. A curvilinear coordinate system

(O; x, y, z), having the origin O at one edge of the panel
is assumed; x =  Rx and y = � Ry where  and � are
the angular coordinates and Rx and Ry are principal

radii of curvature (constant); a and b are the curvilinear
lengths of the edges and h is the shell thickness. The
smallest radius of curvature at every point of the shell is

larger than the greatest lengths measured along the
middle surface of the shell. The displacements of an
arbitrary point of coordinates (x, y) on the middle sur-

face of the shell are denoted by u, v and w, in the x, y and
z directions, respectively; w is taken positive outwards
the center of the smallest radius of curvature. Initial
imperfections of the shell associated with zero initial

tension are denoted by out-of-plane displacement w0,
also positive outwards; only out-of-plane initial imper-
fections are considered.

Two different theories are used: (i) Donnell’s, and (ii)
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Novozhilov’s non-linear shell theories. According to
these two theories, the strain components �x, �y and �xy
at an arbitrary point of the panel are related to the
middle surface strains �x,0, �y,0 and �x,y,0 and to the
changes in the curvature and torsion of the middle sur-

face kx, ky and kxy by the following three relationships:

"x ¼ "x;0 þ z kx; "y ¼ "y;0 þ z ky; �xy ¼ �xy;0 þ z kxy;

ð1Þ

where z is the distance of the arbitrary point of the panel
from the middle surface. The middle surface strain–

displacement relationships and changes in the curvature
and torsion have different expressions for the Donnell’s
and Novozhilov’s theories not reported here.

The elastic strain energy US of the shell, neglecting �z
as stated by Love’s first approximation assumptions, is
given by

US ¼
1

2

Za

0

Zb

0

Zh=2

�h=2

�x "x þ �y "y þ �xy �xy
� �

ð1þ z=RxÞ ð1þ z=RyÞdxdydz; ð2Þ

where the stresses �x, �y and �xy are related to the strain
for homogeneous and isotropic material by simple
expressions for plane stress.

The kinetic energy TS of the shell, by neglecting rotary
inertia, is given by

TS ¼
1

2
�S h

Za

0

Zb

0

ð _u2 þ _v2 þ _w2Þ dx dy ð3Þ

where �S is the mass density of the shell.
The nonconservative damping forces are assumed to

be of viscous type and are taken into account by using
the Rayleigh’s dissipation function

F ¼ 1

2
c

Za

0

Zb

0

_u2 þ _v2 þ _w2
� �

dx dy ð4Þ

where c has a different value for each term of the mode
expansion.

The virtual work W done by the external forces is
written as

W ¼
Za

0

Zb

0

qx uþ qy vþ qzw
� �

dx dy ð5Þ

where qx, qy and qz are the distributed forces per unit

area acting in x, y and normal directions, respectively.
The generalized forcesQj are obtained by differentiation

of the Rayleigh’s dissipation function and of the virtual
work done by external forces:

Qj ¼ �
@ F

@ _qj
þ @W
@ qj

ð6Þ

The Lagrange equations of motion are

d

dt

@ TS

@ _qj

	 

� @ TS

@ qj
þ @US

@ qj
¼ Qj; j ¼ 1; . . . dof ð7Þ

where @Ts/@qj = 0. The very complicated term giving
quadratic and cubic non-linearities can be written in the

form

@US

@ qj
¼
Xdofs
k¼1

qk ~zj;k þ
Xdofs
i;k¼1

qi qk ~zj;i;k þ
Xdofs
i;k;l¼1

qi qk ql ~zj;i;k;l

ð8Þ

where coefficients ~z have long expressions that include

also geometric imperfections.

3. Numerical results

Numerical calculations have been initially performed
for doubly curved shallow shells, simply supported at
the four edges, having the following dimensions and

material properties: curvilinear dimensions a = b =
0.1m, radius of curvature Rx = 1m, thickness h =
0.001m, Young’s modulus E = 206 � 109 Pa, mass

density � = 7800kg/m3 and Poisson ratio  = 0.3.
Shallow shells with the same dimension ratios (Rx/a =
10, h/a = 0.01, a/b = 1,  = 0.3) were previously stu-

died by [8]. In all the numerical simulations a modal
damping �1,1 = 0.004 and harmonic force excitation at
the center of the shell in z direction are assumed. If not
explicitly specified, all calculations have been performed

by using Donnell’s shell theory. A spherical shallow shell
(Rx/Ry = 1, Ry = 1m) is initially considered. The fre-
quency range around the fundamental frequency (mode

(m = 1, n = 1) in this case, where m and n are the
numbers of half-waves in x and y direction, respectively)
is investigated. The fundamental frequency !1,1 is

952.31Hz, according with Donnell’s shell theory. The
amplitude of the harmonic force is �f = 31.2N. Com-
parison of the response computed with the 22 and 9
degrees of freedom (dof) models is given in Fig. 1, where

the backbone curve of [8] is also shown. The results of
the 22 dof model are moved slightly to the left with
respect to the smaller 9 dof model, and present a more

complex curve, specially in the frequency region around
0.9!1,1. In fact, for excitation frequency, ! = 0.9 !1,1,
there is a 3:1 internal resonance with modes (m= 3, n=

1) and (m = 1, n = 3), giving 3! = !3,1 = !1,3. A
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second relationship between natural frequencies that
leads to internal resonances is for ! = 0.77 !1,1 where
6! = !3,3.

Figure 2 synthesizes all the maximum responses for
the 9 dofs model for different shell curvature aspect

ratios Rx/Ry. It is clearly shown that for Rx/Ry=1
(spherical), 0.5 and 0 (circular cylindrical) the shallow
shell considered exhibits a softening type behaviour

turning to hardening type for vibration amplitude of the
order of magnitude of the shell thickness. The softening
behaviour becomes weaker with the decrement of the

curvature aspect ratio Rx/Ry.
The same shallow spherical shell studied in Fig. 1 is

considered again and the 22 dof model is used. Poincaré

maps have been computed by direct integration of the

Fig. 1. Amplitude of the response of the shell versus the exci-

tation frequency; Rx/Ry = 1 (spherical shell); fundamental

mode (m = 1, n = 1), ~f = 31.2 N and �1,1 = 0.004; Donnell’s

theory. Thick rule represents 22 dof model; broken rule repre-

sents 9 dof model backbone curve from [8].

Fig. 2. Effect of the curvature aspect ratio Rx/Ry on the shell

response (maximum of the generalized coordinate w1,1) versus

the excitation frequency; fundamental mode (m = 1, n = 1);

�1,1 = 0.004; 9 dof model; Donnell’s theory.

Fig. 3. Bifurcation diagram of Poincaré maps and maximum

Lyapunov exponent for the spherical shallow shell under

decreasing harmonic load with frequency; ! = 0.8!1,1; �1,1 =

0.004; 22 dof model; Donnell’s theory. (a) Bifurcation diagram:

generalized coordinate w1,1; T = response period equal to

excitation period; PD = period doubling bifurcation; M =

amplitude modulations; C = chaos; (b) maximum Lyapunov

exponent.
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equations of motion. The excitation frequency has been
kept constant, ! = 0.8!1,1. The bifurcation diagrams
obtained by all these Poincaré maps are shown in Fig. 3,
where the load is decreased from 1400N to 0. Simple

periodic motion, period doubling bifurcation, sub-
harmonic response, amplitude modulations and chaotic
response have been detected, as indicated in Fig. 3. This

indicates a very rich and complex nonlinear dynamics of
the spherical shallow shell subject to large harmonic
excitation. Different stable solutions coexist for the same

set of system parameters, so that the solution is largely
affected by initial conditions. In particular, Fig. 3(b)
gives the maximum Lyapunov exponent �1 associated
with the bifurcation diagram. It can be easily observed

that (i) for periodic forced vibrations �1 < 0, (ii) for
amplitude modulated response �1 = 0, and (iii) for
chaotic response �1 > 0. Therefore �1 can be con-

veniently used for identification of the system dynamics.
All the Lyapunov exponents have been evaluated for the
case with excitation ~f = 1396 N corresponding to

chaotic response, see Fig. 4. In this case, four positive
Lyapunov exponents have been identified, allowing to
classify this response as hyperchaos. The Lyapunov

dimension in this case is dL = 24.59.
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