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Abstract

The objective of this paper is to briefly summarize some applications using the lattice-Boltzmann model for fluids.

Technical details can be found in the references given.
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1. Introduction

The lattice-Boltzmann model [1–11] has become a
popular method for modeling fluid-dynamical behavior,

because of its robustness and simplicity. In essence, we
follow the time evolution of a discrete velocity dis-
tribution, which describes the number of particles

moving in a given direction at a given space and time
point. Because the model lives on a regular lattice, the
update of the population densities is very simple and
very fast. The hydrodynamic fields are determined from

moments of the velocity distribution function, as in the
kinetic theory of gases. Somewhat surprisingly, studies
show that this method can be as accurate as advanced

finite-difference and finite-element methods [3,4,5], and
it is usually more efficient for complicated geometries.
Additionally, the lattice-Boltzmann model can incor-

porate thermal noise, leading to Brownian motion via
random stresses applied to the fluid [6,7] rather than
from random forces applied to the particles. This

approach avoids the complex and time-consuming fac-
torization of the mobility matrix that is necessary in
every step of a Brownian dynamics simulation.

2. Example calculations

In this section we describe simulations on a wide

range of length scales, to illustrate the range of possi-
bilities with this approach. At the largest scale we

examine settling clusters of macroscopic particles under

conditions where the Reynolds number is small, but not
negligible. In the next example we investigate a chemi-
cally reacting flow in a porous medium, where the pore

size is sufficiently small that inertia can be neglected. In
the final example we show that the method can repro-
duce theoretical scaling laws for the diffusion coefficient

of long-chain polymers driven by thermal fluctuations in
the fluid.

2.1. Cluster settling

One of the most fascinating aspects of inertial parti-
culate flows is their ability to make coherent patterns.
These are stable and reproducible arrangements of
particles that can spontaneously develop when fluid

inertia is present. The best understood example of this
phenomena is the inertial migration of particles in a pipe
flow [12,13,14,15]. Equally interesting, but much less

studied, is the settling of a cluster of particles. In the
absence of inertia, an initially spherical cluster maintains
its shape as it settles, shedding a small trail of escaping

particles in its wake [16]. At slightly higher Reynolds
numbers, the cluster opens out fairly rapidly into a
torus, which enlarges and thins as it settles [17]. Figure 1

shows the development of an initially spherical cluster of
approximately 1800 particles, settling at a Reynolds
number, Re = � �Ud/� = 0.3; here � is the average fluid
density, �U is the mean particle velocity, d is the particle

diameter, and � is the fluid viscosity.
The initially spherical cluster flattens into a pancake

as particles peel off the leading edge of the cluster.

Eventually a void develops in the core of the cluster and
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it assumes a toroidal shape. This is a highly coherent
state, and no particles are lost from it. This is in contrast

to what happens at low Reynolds number, when the
cluster maintains an initially spherical shape indefinitely
[16]. Eventually the ring becomes unstable and folds

forward before breaking up into smaller clusters. The
folding is characteristic of experimental observations as
well [17], but in laboratory experiments the cluster

usually, but not invariably, breaks up into two pieces
rather than four as found here. We suspect that the
periodic boundaries exert an influence on the shape of

the cluster at long times, when it spans nearly the whole
width of the simulated cell.

In terms of the fluid volume, this simulation was the
largest we have so far attempted: 160 million grid points

for 100 000 time steps. It required approximately 26
GBytes of memory and 5� 1015 floating-point opera-
tions. The simulation took about 150 hours, distributed

across 16 processors (2.4 GHz Xeons), using a one-
dimensional domain decomposition. The aggregate
performance was 32 million grid point updates per sec-

ond, or about 20 GFlops. A video clip of the numerical
simulations can be found at http://ladd.che.ufl.edu/
research/clusters.

2.2. Dissolution of a rough fracture

The dissolution of a fractured rock by a reactive fluid
depends on a subtle interplay between chemical reac-
tions at mineral surfaces and fluid motion in the pores.

The complex geometry of a typical fracture makes a
first-principles calculation very demanding, and models
of fracture dissolution are rarely constructed on a

microscopic (pore-scale) level (but see [18,19,20]). The
simulations describe the erosion of a synthetic fracture
and incorporate the explicit topography of the pore
space; the transport coefficients – viscosity, diffusivity,

and reaction rate – are determined independently, so
there are no fitting parameters.
The numerical simulations consist of a sequence of

three separate calculations. First the fluid flow field in
the pore space is calculated, using the exact topography
of the solid surface. Given the flow field and the che-

mical kinetics at the solid surfaces, we determine the
solute concentration field and then the local rate of
dissolution over the whole fracture surface. Finally the

fracture surfaces are eroded in proportion to the local
dissolution rate and the whole process is repeated. The
key assumption here is that the relaxation times of the
velocity and concentration fields are much shorter than

the characteristic relaxation time for dissolution. Within
this quasi-static approximation, the velocity and con-
centration fields in the fracture reach a steady state for

each configuration.
The velocity field in the fracture has been calculated

using the lattice-Boltzmann method with ‘continuous

bounce-back’ rules applied at the solid-fluid boundaries
[21]. These rules allow the solid surface to be resolved on
length scales less than a grid spacing, so that the fracture
surfaces erode smoothly. It has been shown that the flow

fields in rough fractures can be calculated with one-half
to one-quarter the linear resolution of the standard
‘bounce-back’ rules [19], leading to an order of magni-

tude reduction in memory and computation time. A
further order of magnitude saving in computation time
can be obtained by solving for the steady-state directly

by conjugate gradients [22], rather than by time step-
ping. These improvements have allowed us to calculate
velocity fields in fractures with a characteristic size of

several centimeters. For example, the calculation of a
single flow field in the fracture illustrated in Fig. 2 takes
1 hour at the beginning and about 8 hours at the final
stages of the dissolution process. The corresponding

times for the conventional lattice-Boltzmann method
would be measured in weeks rather than hours.
The numerical simulation algorithm was applied to

the dissolution of a rough fracture of known topo-
graphy, for which experimental dissolution patterns
were available [23]. Solute transport in the fracture was

modeled by a random walk algorithm that takes explicit

Fig. 1. Evolution of a spherical cluster of particles (�1800)
settling under gravity. The initially spherical cluster (top left)

flattens into a pancake shape (top right) and develops into a

stable torus (bottom left). Eventually the torus thins and breaks

up (bottom right) into smaller clusters, which also assume a

toroidal shape and break up in the same way.
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account of the chemical reactions at the pore surfaces.
At high Peclet numbers (high flow velocity) the under-
saturated fluid penetrates deep inside the fracture and

the dissolution tends to be uniform throughout the
sample, but at lower flow rates the erosion is slower and
much more inhomogeneous, with a clearly visible dis-

solution front. This front becomes unstable with respect
to fingering instabilities [24], since an increase in per-
meability within a channel enhances solute transport,
leading to faster growth of the channel. As the dissolu-

tion proceeds, the channels compete for flow and the
growth of the shorter channels eventually ceases. At the
end of the experiment, the flow is focused in a few main

channels while most of the pore space is bypassed.
Sample dissolution patterns obtained by simulation

and experiment are shown in Fig. 2 at a Peclet number

Pe = 54. Here we define the Peclet number Pe = �Uh0/D
in terms of the mean flow velocity, �U, the initial value of
the mean fracture aperture, h0, and the molecular dif-

fusion coefficient, D. The experimental and numerical
dissolution patterns are strikingly similar [20]. The
dominant channels develop at the same locations in the
simulation and experiment, despite the strongly non-

linear nature of the dissolution front instability. While
there are differences in the length of the channels, rela-
tively small changes (of the order of 10%) in the

diffusion constant or reaction rate can lead to compar-
able differences in the erosion patterns. Our results
suggest that the simulations are capturing the effects of

the complex topography of the pore space quite faith-
fully, despite the coarse aperture resolution of the flow
solver.

2.3. Hydrodynamic interactions in polymer solutions

Hydrodynamic interactions are a key component of
simulations of polymer solutions; the diffusion coeffi-
cient of a linear polymer in good solvent scales as N�0.59

with hydrodynamic interactions, where N is the number
of segments, but as N�1 in the free-draining limit. The
motion of the individual monomers causes flow in the

surrounding solvent, and the hydrodynamic interactions
between distant segments of the chain have important
consequences for the dynamics of polymer solutions. We
have recently adapted the lattice-Boltzmann model to

simulations of solutions of flexible polymers [25], by
including the effects of thermal fluctuations via addi-
tional random stresses [8,9,10]. Since the individual

segments are small in comparison to the size of polymer,
we treat them as point sources hydrodynamically
[26,27,28]. The diffusivity of an isolated polymer, shown

in Fig. 3 as a function of chain length, is in quantitative
agreement with the renormalization group analysis of
the self-avoiding random walk [29]. The results are

similar to Brownian dynamics [25], but at greatly
reduced computational cost for large numbers of seg-
ments. While the maximum chain length that can be
studied using Brownian dynamics is of the order of 100

beads [30,31], we have simulated chains with upwards of
1000 beads per polymer (Fig. 3).

Fig. 3. Diffusion coefficient of an N-bead polymer, D, com-

pared with the monomer diffusivity, Dm. Results are shown for

different segment lengths and different temperatures. The slope

of �0.59 agrees closely with the theoretical prediction.

3. Conclusions

In this brief survey we indicated the possible scope of

simulations that are currently feasible within the

Fig. 2. Aperture growth due to dissolution of a KDP fracture

at Pe = 54. The figures show dissolution patterns at �h = h0/2

(upper) and �h = h0 (lower). The experimental results are

shown on the left and the corresponding simulation results are

on the right. The flow direction is from left to right.
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framework of a lattice-Boltzmann model of the fluid.
While we have found the method to be robust, reason-

ably accurate, and computationally efficient, it is
important to emphasize that there is no new physics
here. All these calculations can, at least in principle, be

carried out within the framework of standard finite-
difference or finite-element methods.
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