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Abstract

Lagrangian, mostly grid-free methods, offer natural approaches to simulate convection, adaptively, while avoiding
diffusive errors. They have been extended successfully to finite Reynolds number flows, low Mach number combustion,

and high Mach number flows. This presentation summarizes the essential elements of Lagrangian, grid-free methods,
and demonstrates their applications in a number of nonreacting and reacting flows of canonical and practical interest.
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1. Introduction

Grid-free, particle-based Lagrangian methods rely on

kernel representation to approximate flow variables;
quadrature rules to approximate resulting integrals; take
advantage of conservation properties along particle

trajectories, and utilize moment preserving redistribu-
tion of particle strength to simulate diffusion [1].
Boundary conditions require special treatment, e.g.

vorticity generation on no-slip boundaries [2] and a zero
flux condition to enforce no penetration [3]. Imple-
mentation for different flow conditions, including

reacting and compressible flows, is summarized next.
The method demonstrates superior performance in cases
of unsteady and unstable, unconfined flows, flows with
concentrated, evolving vorticity and sharp gradients,

and high Reynolds number multi-scale flows.

2. Inviscid methods

The vortex method was originally conceived as an
efficient way to model the short time evolution of a
vortex sheet [4]. Many years later, the method was

revived and extended to smooth flows by replacing sin-
gular vortices with elements of finite support, or kernels.
Analysis suggested that the convergence rate depends on

the structure of the kernel, and the degree of overlap of
neighboring vortices, showing that the element core

radius must be larger that the distance between the
centers of neighboring elements [5]. In this represen-
tation, a continuous vorticity field is represented as

!ðx; tÞ ¼
XN
i¼1

�iðtÞf� x� �iðtÞð Þ ð1Þ

where �i = (!dV)i (t) is the total vorticity associated
with an element of volume dV and vorticity vector !, x,t
are location vector and time, respectively, �i is the
instantaneous location of an element and N is the
number of elements. f� ¼ ��3f rj j

�

� �
is the normalized

kernel function, it is an approximation of the Delta
function to a given order. The condition of overlap
pointed to the need to increase the number of elements

in flows in which strong strains magnify the distance
between elements. Furthermore, the distortion of the
vortex element distribution due to the evolution of a
complex flow map was recognized as another source for

possible deterioration of the long time accuracy that
should be overcome by mapping elements over a more
uniform distribution every so often. Interpolation for-

mulae that do so with minimum numerical errors were
developed [1].
The open space velocity field induced by the vorticity

distribution in Eq. (1) is given by the following
summation:

u� ¼
X

K��i ð2Þ

where K� = K* f�, and K is the Green’s function of the

Laplacian. Vorticity stretch in 3-D is computed
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explicitly by updating the local vorticity vector accord-
ing to the velocity gradient, evaluated by differentiating

the velocity field, leading to the following finite dimen-
sional representation of the flow:

d�i

dt
¼ ui

and

d�i

dt
¼ �i:ru ð3Þ

Figure 1 shows an example for the application of the
inviscid method, in terms of the results of a simulation

of vortex breakdown using vortex filaments, that is
connected space curves of vorticity, to model the initial
distribution of vorticity, the formation of a recirculation
zone and wavy wake structure [6].

Fig. 1. Simulation of vortex breakdown. The flow in the ori-

ginal streamwise vortex is moving toward the right and

spinning in a counterclockwise direction, circulation number =

3.52. Results show the formation of a recirculation zone fol-

lowed by a wavy wake. The figure shows the time evolution of

the vortex filaments from the time of the breakdown onward.

3. Viscous flow

Viscous flow simulation was first suggested using
random walk methods, in which convection is aug-
mented by a displacement drawn from a statistical

distribution whose properties depend on the dimen-
sionality, Reynolds number, and time step. The method,
albeit noisy, proved successful in capturing interesting

dynamics [2,3]. Figure 2 shows results of a simulation of
the operation of a two-stroke, opposed piston engine
using a three dimensional vortex code.

Fig. 2. Simulation of the intake process in an opposed piston

engine. The RHS shows a perspective of the engine cylinder

with intake ports at top and exhaust ports at bottom, and the

flow elements entering from one port only are shown for clarity.

The LHS shows a cut halfway between top and bottom,

showing the swirling motion inside the cylinder.

Deterministic methods formulated next were based on

the concept of core expansion, in which the local solu-
tion of a viscous vortex is used to model the diffusion of
the global vorticity field. For instance, in 2-D, if the core
function is a second-order Gaussian, then the core

expands according to

�2ðtþ�t ¼ �2ðtÞ þ 4��t ð4Þ

where � is the diffusivity. Several modifications to
improve the accuracy, essentially amounting to dividing

each growing element into a number of smaller ones
while preserving some vorticity moments, were later
suggested.
A number of schemes that rely on the exchange of the

vorticity carried by each element among itself and the
neighboring elements were formulated later. In one
approach, an integral approximation of the diffusion

equation is the starting point:
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r2!ðxÞ ¼ 2

�2

Z
!ðyÞ � !ðxÞð Þ��ðy� xÞdy ð5Þ

where the function � approximates the kernel of the
diffusion equation [7,8]. This approach preserves the
identity of the elements, while changing their strength,
and hence the name ‘particle strength exchange’, or PSE,

and adds more elements immediately outside the sup-
port of the exiting volume of elements to capture the
ever expanding support of vorticity due to diffusion. The

integral is approximated by a quadrature and the
resulting ODEs are integrated to update the vorticity of
the elements.

Another redistribution approach, by matching the
moments of the exact solution of a diffusing vortex with
those generated by a local distribution, was formulated

in [9]. Posed as a Galerkin approximation of the diffu-
sion equation, the method can be generalized to
arbitrary diffusivity and dimensionality. The method
was extended recently to ensure the regularity of the

elements at all times by choosing the target elements in
the diffusion step to lie on a regular mesh [10]. This
method was used to simulate a transverse jet at Re =

1750, and the results are shown in Fig. 3. Results
demonstrate the ability of the method to capture the
breakdown of the vorticity structure and the generation

of small scales. Both the particle exchange and the
redistribution methods apply to flows with variable
diffusivity.

4. Fast methods

The velocity field computation requires the perfor-
mance of an N-body interaction problem, and, at
sufficiently large number of elements, the cost can be

prohibitive. Fast summation methods have been for-
mulated on the basis of clustering particles according to
some criterion, and replacing particle–particle interac-

tions with cluster–particle or cluster–cluster interactions.
A recursive tree structure is typically used in subdividing
the domain, and the influence of a cluster is computed
using higher order expansions of the particle field to

reduce the errors while allowing larger clusters to be
used at the leaf cells. Typically, multipole expansion of
the velocity kernel is used, but other expansions have

also been suggested. More recently, Taylor series
expansion of the desingularized kernel was used, with
recursive relations to evaluate the higher order term, as

well as adaptive cell construction [11]. Yet another
advancement involved the application of k-means clus-
tering to achieve optimal domain decomposition for the
purpose of parallelizing that algorithm [12].

Fig. 3. Simulation of a transverse jet. Vorticity isosurface at

j!j= 20 and t = 6.0. (a) View from the upstream side showing

delayed Kelvin-Helmholtz instability; (b) View from the

downstream side showing counter-rotating vortex pairs. All

results were obtained from the case at Rejet = 1715 and r = 7.

5. Low Mach number combustion

In combustion, the coupled continuity, momentum,
energy, and chemical species transport equations must
be solved simultaneously to model the tight coupling
between the combustion-induced flow, and the impact of

flow-induced transport on the combustion processes.
Combustion-induced flow is represented by a velocity
divergence, which is proportional to the Largangian

derivative of the density, and a vorticity source whose
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magnitude is proportional to the products of the pres-
sure and density gradient. Borrowing from the ideas of

the vortex method, gradients of the density, tempera-
ture, etc., can be transported along particle trajectories,
thus eliminating the need for elements where uniform

conditions exist [13,14]. Equations governing gradient
transport have been used for that purpose, and
approximations relating the gradient evolution to flow

kinematics have been used to simplify the analysis.
Results in Fig. 4 show the structure of a reacting shear
layer in terms of the vortex elements, vorticity, and
products distributions.

Fig. 4. Simulation of a reacting shear layer, with fuel on the

upper side and air on the lower side. The top figure shows all

the computational elements used in the simulation, the middle

figure shows the vorticity distribution, and the bottom figure

shows the product’s concentration/temperature distribution.

In other developments, fluid elements transporting

density, energy and chemical species are used around
areas of non-zero gradients. The functional representa-
tion of these variables resembles that expressed in Eq.

(1). Their convective and diffusive transports are done in
the same way as that of the vorticity, while the chemical
source terms are integrated to change the local strength
of the elements [15,16].

6. High Mach number flow

While vortex methods use the vorticity as the primary
variable transported by Lagrangian particles, and com-
pute velocity by summing over the fields of the vortices,

smoothed particle hydrodynamics, or SPH, methods

transport primitive variables, that is the velocity field,
besides the enthalpy, density, and other gas dynamic

variables [17]. The method uses reproducing kernels to
evaluate the derivatives in the governing equations, and
updating the Lagrangian variables. The method has

been successful in inviscid compressible flow applica-
tions and more recently has been extended to viscous
compressible flow by treating the viscous terms using

approaches similar to PSE methods. Reactive flow
simulations were performed using SPH, in which the
chemical source terms are integrated along the particle
trajectories [18]. In another development, the vortex

method was extended to simulate compressible flows at
arbitrary Mach numbers by transporting, along with the
vorticity, the local dilatation, which is updated using a

transport equation derived by taking the divergence of
the Navier-Stokes equations [19]. Flow derivatives were
computed using an extension of the PSE method.

Moving least squares, in which local interpolation
functions are developed and used to get derivatives
required in the governing equations, have been used by

others for the same purpose. In these methods, similar to
the partition of unity, the interpolation window moves
to cover the neighborhood of the area where derivatives
are being evaluated

7. Looking ahead

The natural adaptivity of Lagrangian methods pro-

vides optimal distribution of the computational elements
and hence minimizes the work required in volume
gridding, adaptive meshes and moving boundaries. With

the current state of the art, it is possible to perform
direct simulations of complex flows.
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