
Fundamental and applicative challenges in the modeling and

computations of shells

Dominique Chapelle*

INRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France

Abstract

We discuss the effectiveness and reliability of shell finite element procedures in relation to the asymptotic behaviors of

shell structures when varying the thickness as a parameter. This is crucial in order to understand the complexity and
diversity of shell physical behavior, and the difficulties to be confronted in the finite element analysis. In addition, we
present some results and challenges directly related to applicative concerns and numerical practice, in particular as

regards general shell elements and 3D-shell elements.
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1. Introduction

The purpose in this paper is to survey some funda-
mental concepts that are very important in order to

understand the physical behavior of shell structures and
the numerical phenomena associated with their finite
element discretizations. An essential underlying idea is
that a deep synergy between physical and mathematical

understanding is necessary in order to effectively analyze
shell structures.
In Section 2, we give an outline of the asymptotic

behaviors of shells when varying the thickness of the
structure while keeping the mid-surface and boundary
conditions unchanged. In Section 3, we discuss the dif-

ficulties in obtaining uniformly optimal finite element
procedures for shells, in particular due to the variety of
asymptotic behaviors that may arise. We then present, in

Section 4, some specific problems related to the finite
element analysis of shells in engineering applications.
Finally, we give some concluding remarks in Section 5.

2. Asymptotic behaviors of shell models: an outline

In this section we present a ‘roadmap’ to the asymp-
totic behaviors of shells. For more details, see [1] and

references therein.

2.1 Motivations and setting

As is well-known in engineering practice, shell struc-
tures may produce dramatically different responses –

especially when the shell thickness is rather small com-
pared to other characteristic dimensions – depending on
their geometries and boundary conditions, in particular.
The key to understanding these phenomena is to analyze

their asymptotic behaviors, namely by considering a
sequence of problems indexed by the thickness para-
meter that we vary while keeping the midsurface

geometry and boundary conditions fixed. We write this
sequence of problems in the following variational form:

"3 Ab ðU "; VÞ þ "Am ðU "; VÞ ¼ F " ðVÞ; 8V 2 V ð1Þ

The meanings of the symbols appearing in this for-

mulation are:
. ": a dimensionless thickness parameter, namely, the

actual thickness t – assumed to be constant for
simplicity here, without loss of generality [1] – div-

ided by an overall dimension of the structure;
. U ": the unknown solution, namely the displacement

of the midsurface for a membrane-bending (m-b)

shell model, or this displacement and the rotation of
the normal fiber for a shear-membrane-bending
(s-m-b) model;

. V: the Sobolev space in which we seek the solution
(we recall that the definition of this space takes into
account the essential boundary conditions);
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. V: a test function;

. Ab: a scaled representation of the bending energy;

. Am: a scaled representation of the membrane energy
for an m-b shell model, or of the membrane energy
and of the shear energy for an s-m-b model;

. F "(V): the external virtual work associated with V.
We emphasize that the bilinear forms Ab and Am do not

depend on the thickness parameter ". In addition, we also

introduced � as a superscript in the right-hand side of the
formulation because it is in general impossible to obtain
a well-posed asymptotic behavior while keeping the
loading constant over the whole sequence of problems.

More specifically, what we are after in the asymptotic
analysis is a scaling of the right-hand side in the form

F " ðVÞ ¼ "�GðVÞ ð2Þ

where G is an element of V 0 independent of " and � is a

real number, for which the scaled external work G(U ")
converges to a finite and non-zero limit when " tends to
zero.

The behavior of U " when " tends to zero crucially

depends on the contents of a specific subspace of V,
namely,

V0 ¼ fV 2 V jAmðV;VÞ ¼ 0g ð3Þ

which we call the subspace of pure bending displacements
– since only the bending part of the energy is non-zero

for these displacements – and also the subspace of
inextensional displacements because the key in satisfying
the constraint Am (V,V) is that the midsurface mem-

brane strains vanish, namely that the midsurface
displacements be inextensional. In the following dis-
cussion we distinguish two cases according to whether or

not this subspace is reduced to the zero element. This
strongly depends on the geometry of the midsurface
considered and on the boundary conditions enforced,

see [1,2] for detailed examples of both cases.

2.2. Bending-dominated shells

Here we assume that the subspace V0 contains non-
zero elements. Then it can be shown that we obtain an
admissible asymptotic behavior by considering the

scaling

F "ðVÞ ¼ "3GðVÞ ð4Þ

In this case, U � converges – for the norm of V – to U 0,
the solution of

Find U0 2 V0 such that

Ab ðU0; VÞ ¼ G ðVÞ; 8V 2 V0 ð5Þ

and we say that the shell structure is bending-dominated
because all the deformation energy goes to the bending

part in the asymptotic limit [1,3,4].

2.3. Membrane-dominated shells

By contrast, we assume in this section that the inex-
tensional subspace V0 is reduced to the zero element.
This is quite frequent in practice because the inexten-

sional constraints correspond to three scalar differential
equations to be satisfied by the three components of
displacements, hence these constraints are ‘strong’.

Then we can define an inner product – and the cor-
responding norm – using the bilinear form Am, as
follows:

k V km¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Am ðV; VÞ

p
ð6Þ

We call this norm the membrane energy norm and we
define Vm as the space obtained by completion of V for

this norm (essentially, Vm is the space of all displace-
ments with bounded membrane energy).
In this case we can show (see [4,5]) that an admissible

behavior is obtained for the scaling

F " ðVÞ ¼ �"GðVÞ ð7Þ

namely, U " converges – for the membrane energy norm
– to Um, the solution of

Find Um 2 Vm such that

AmðUm; VÞ ¼ G ðVÞ; 8V 2 Vm ð8Þ

This convergence result holds provided that G is in the
dual space of Vm, viz.

jGðVÞj � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Am ðV; VÞ;

p
8V 2 V ð9Þ

which gives a restriction on the loading. When this
condition is satisfied we say that the shell structure is

membrane-dominated since the membrane energy
becomes increasingly dominant when the thickness tends
to zero. We point out that in this case the stiffness of the

structure is ‘in "’ – as opposed to "3 in the bending-
dominated case – hence we have a drastically different
(much stiffer) response. When Eq. (9) does not hold we
say that we have an ill-posed membrane problem, see

[1,6,7] for examples thereof.

3. Reliability of finite element methods: the ‘asymptotic

dilemma’

Of course, when performing finite element analyses of

shell structures we would like the finite solutions to
accurately reflect the diversity of the above-described
behavior. More precisely, since we only discretize the

problem over the midsurface (i.e. not across the thick-
ness), we expect an accuracy that would only depend on
criteria prevailing in 2D analysis, namely with relative

error bounds of the type
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k U " �U "
h k�

k U" k�
� Ch p ð10Þ

where U "
h represents the finite element solution for a

given thickness value ", and where the bounding con-
stant C and the order of convergence p should not depend
on ". This means that we expect uniform convergence of

the finite element solution with respect to the thickness
parameter. In the above equation we denote the norm
with a ‘*’ symbol to indicate that the norm for which

uniform convergence is expected may differ according to
the specific asymptotic case considered (typically this
norm will be the norm for which the asymptotic beha-

vior of the exact solution is well-posed), and the order p
should then be the optimal order of convergence for this
norm (namely the order of convergence of interpolation
errors). Such a uniform estimate is very important to

ensure the reliability of the finite element procedure
considered.
However, it was soon recognized in the development

of structural analysis procedures that standard finite
element techniques – such as displacement-based shell
finite elements – fail to display such uniformly conver-

ging behaviors in general, and that instead finite element
approximations tend to dramatically deteriorate when
the thickness of the structure decreases. In fact, when

pursuing the above reliability objectives one faces a
dilemma which we now explain.
When considering a bending-dominated structure, the

numerical difficulty to deal with is numerical locking,

since the asymptotic behavior then corresponds to a
penalized formulation such as for nearly-incompressible
elasticity. In order to treat locking, one is led to

resorting to mixed formulations which can be summar-
ized as

AbðU "
h; VÞ þ

1

"2
Ah

m ðU "
h; VÞ ¼ GðVÞ; 8V 2 Vh ð11Þ

where Ah
m denotes a perturbed form of Am that corre-

sponds to a relaxed form of the constraints prevailing in
the pure bending subspace at the discrete level. How-

ever, uniform error bounds for such a formulation rely
on satisfying a crucial discrete inf-sup condition which
has never been established for any shell finite element

scheme so far, except under very restrictive assumptions
on the geometry [8]. In fact, the only procedure for
which uniform estimates have been obtained is the mixed

stabilized formulation [9] which – indeed – is designed to
dispense with the inf-sup condition. Nevertheless, some
detailed numerical assessments using carefully designed
test problems allow us to identify specific shell proce-

dures that show little sensitivity of the convergence
behavior with respect to the thickness parameter [1,10].
This holds in particular for the MITC4 shell element

[11].

By contrast, when considering a membrane-dominated
structure displacement-based finite element schemes can

be shown to provide uniformly optimal estimates [4].
However, since the asymptotic behavior can seldom be
determined a priori in complex applications, one is led to

using a mixed formulation in all practical situations in
order to circumvent locking when applicable, which
means that the discrete formulation solved for a mem-

brane-dominated structure is

Ah
m ðU "

h; VÞ þ "2Ab ðU "
h; VÞ ¼ GðVÞ; 8V 2 Vh ð12Þ

Here we can see that we perturb by the mixed procedure

the membrane term, namely, the essential part of the
energy in the asymptotic behavior. Therefore, in order
to ensure convergence we need to enforce adequate

consistency properties on this perturbation. This is a
considerable difficulty, essentially because the ‘logic’ of
unlocking is deeply foreign to that of membrane con-

sistency and – as an example – the above-mentioned
mixed stabilized formulation which has been mathema-
tically substantiated in the bending-dominated regime

does not enjoy adequate membrane consistency features.
This is why we refer to an ‘asymptotic dilemma’ as
regards shell finite elements.
Of course, as already mentioned, carefully designed

numerical assessment can be resorted to in order to
progress towards solving this dilemma. This should be
particularly useful in identifying effective triangular ele-

ments – note that all elements tested in [1,10] are
quadrilateral – which are much needed in applications
where complex structures and unstructured meshes are

often considered, see [12] for some preliminary results in
this direction.

4. Problems arising from numerical practice in

applications

Given the considerable impact of shell finite element
procedures in engineering applications, it is essential to

be able to consider – and sometimes also formulate –
shell finite element procedures that are designed to fulfill
certain applicative specifications, motivations or criteria,
whereas these procedures may be very difficult to ana-

lyze from a mathematical point of view. This is the case
– in particular – with general shell elements and with
3D-shell elements which we now discuss.

4.1. General shell elements and their underlying model

General shell elements – henceforth referred to by the
acronym GSEs – are most widespread in today’s engi-
neering practice (MITC elements, among others, belong

to this family [13]). However, they have long been
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considered as a mystery, in particular for applied
mathematicians. These elements – indeed – rely on the

discretization of a 3D variational formulation, not of a
shell mathematical model. In fact this justifies their
name since this methodology allows – in principle at

least – to obtain shell finite elements for an arbitrary 3D
mechanical formulation (in particular as regards the
constitutive law) without going through the stage of

shell mathematical modeling. In a way we could thus say
that GSEs perform ‘computer-aided shell modeling’,
which is also true for facet shell elements, another family
commonly encountered in practice [1,14].

In [15] (see also [1]) we have shown the existence of a
mathematical shell model underlying GSEs by obtaining
error estimates – converging with respect to the mesh

size – between the approximate GSE solution and the
exact solution of this well-identified mathematical
model. Moreover, we have shown that this underlying

model compares well with classical shell models (see in
particular [2]) in the sense of asymptotic consistency.
Namely, when the thickness tends to zero the solutions

of the underlying model converge to the same limits –
and under similar assumptions – to those of classical
models. This also establishes asymptotic consistency of
the underlying model with 3D elasticity [2]. Therefore

these results provide both a mathematical justification of
GSEs and a bridge between them and discretizations of
classical shell models which have been largely studied in

the mathematical literature, see in particular [16] and
references therein.

4.2. 3D-shell elements and models

The ‘3D-shell elements’ that we have proposed and
analyzed in [17] belong to the GSE family. Their name
refers to the fact that both their geometrical definition
and their shape functions are those of standard iso-

parametric 3D elements, namely, with only displacement
degrees of freedom (no rotations) ascribed to nodes also
located on the upper and lower surfaces of the shell (i.e.

not only on the midsurface). More specifically, their
formulation is based on a prismatic geometry (e.g.
hexahedra) and on corresponding shape functions taken

quadratic with respect to the through-the-thickness
variable.

These shell elements are designed to address the fol-

lowing applicative motivations:
. Since they are similar to 3D elements as regards their

shape functions and (isoparametric) geometrical
definition, 3D-shell elements are most easily coupled

to other 3D elements through their external facets.
This can be most conveniently taken advantage of
when modeling the coupling of a shell with a solid

(such as reinforcement layers, e.g. in a tyre, sandwich

structures, piezoelectric patches, and so on) or in
fluid–structure interaction.

. The underlying (quadratic) kinematics of these ele-
ments is ‘richer’ than in usual GSEs (for which
Reissner-Mindlin kinematics is considered). This

allows us to capture more accurately some physical
phenomena associated with large deformations
where the transverse deformation is crucial, such as

for metal forming.
. It can be shown that 3D-shell elements do not

require (unlike usual GSEs) a plane stress assump-
tion, hence the 3D variational formulation can be

used ‘as is’.
We have extended to 3D-shell elements the mathe-

matical results already mentioned for GSEs, namely,

that there exists a well-posed underlying mathematical
shell model which is asymptotically consistent with
classical shell models (hence also with 3D formulations).

Furthermore, we have shown that the same sources of
locking already identified in other shell elements are
present in 3D-shell elements, hence they can be handled

by the same strategies (in particular by using MITC
procedures) [1]. In addition, a new source of locking
arises in these elements in association with the transverse
deformation energy. However we have been able to

prove [18] that this difficulty – which we called ‘pinching
locking’ – can be effectively treated by using a simple
mixed interpolation strategy already proposed for other

high-order shell elements [19]. It is important to note
that unlocking treatments applied on 3D-shell elements
characterize the only difference between these elements

and actual 3D elements. Nevertheless, this is a very
important difference because it allows to use these ele-
ments as shell elements, namely for thin structures.
Incidentally, we point out that a new difficulty arises

in 3D-shell elements when considering incompressible –
or nearly-incompressible – formulations, since the sin-
gularity corresponding to incompressibility is retained in

the (unmodified) 3D energy. This led us to investigating
– and partly substantiating – the concept of an incom-
pressible shell in [20].

5. Concluding remarks

We discussed the various asymptotic behaviors of the
solutions of shell models, and the numerical difficulties

that need to be addressed when seeking an effective and
reliable finite element procedure for shell structures in
the framework of such complex physical behaviors.
We also summarized some results and pointed out

open problems pertaining to the analysis of shells in
engineering practice, and in particular regarding general
shell elements and 3D-shell elements. Although these

elements were primarily designed to fulfill some
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applicative specifications, they can be mathematically
analyzed and made as reliable as other shell procedures,

with additional benefits.
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