
Open problems in elasticity

J.M. Ball*

Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK

Abstract

Some outstanding open problems of nonlinear elasticity are described.
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1. Introduction

This paper highlights various fundamental open pro-
blems in three-dimensional nonlinear elasticity. As a
rough statement one can say that almost every funda-
mental question in the theory is open! This is a corollary

of a general lack of understanding of systems of quasi-
linear partial differential equations, both static and
dynamic. A detailed survey, with references, of these

open problems, and others, can be found in Ball [1].
Further open questions related to the numerical com-
putation of solutions are discussed in Ball [2].

Consider an elastic body occupying in a reference
configuration a bounded domain �

[

R3 with Lipschitz
boundary @�. For simplicity we suppose that the body is

homogeneous with stored-energy function W = W (A),
in terms of which the elastic energy of a deformation
y: � ! R3 is given by

IðyÞ ¼
Z

�

WðDyðxÞÞ dx ð1Þ

We denote by M3�3
þ the set of real 3 � 3 matrices A with

det A > 0. We suppose that W : M3�3
þ ! (0, 1) is

smooth, bounded below, and satisfies

WðAÞ ! 1 as det A! 0þ ð2Þ

and the frame-indifference condition

WðRAÞ ¼WðAÞ for all R 2 SOð3Þ; A 2M3�3
þ ð3Þ

Again, for simplicity, we suppose that there is no body

force, and that the body is subjected to mixed boundary
conditions given by yj@�1

= �y, where @�1 is a relatively

open subset of @� and �y : @�1 ! R
3 is given, with the

remainder of the boundary traction-free.

2. Elastostatics

For elastostatics the equilibrium equations are the
Euler-Lagrange equations for the functional (1), namely

div TRðDyÞ ¼ 0 ð4Þ

where TR (A) = DA W (A) is the Piola-Kirchhoff stress.

There are two main approaches to the existence of
solutions to Eq. (4). The first is via the direct method of
the calculus of variations. It is known that the central
convexity condition of the multi-dimensional calculus of

variations is quasiconvexity in the sense of Morrey [3],
and that under suitable growth hypotheses quasi-
convexity is sufficient and almost necessary for the

existence of at least one global minimizer y* of I.
However, as it stands this existence result does not apply
to elasticity because of the singular behaviour (2).

Instead, existence is customarily proved under the
stronger hypothesis of polyconvexity. Little is known
about the corresponding minimizer y*. For example, for

no W is it known whether in general y* is smooth, or
even smooth enough to satisfy the usual weak form of
Eq. (4), although other weak forms can be established
(see [1]). Further, it is not known whether det Dy* (x) �
� in � for some � > 0. Although widely used models of
rubber are polyconvex, little is known about verifying
polyconvexity or quasiconvexity for anisotropic ma-

terials. In general there is no known tractable way of
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telling whether a given function is quasiconvex or not,
and no local characterization is possible [4]. Even

though the stored-energy functions corresponding to
elastic crystals are not quasiconvex, and in general there
does not exist an energy-minimizing configuration,

quasiconvexity plays a key role in the understanding of
the microstructure of such materials. One reason is that
the quasiconvexified stored-energy function W qc is that

appropriate for describing the material at length-scales
much greater than those of the microstructure.
The second main approach to existence is via the

implicit function theorem in an appropriate Banach

space (see [5]). By its nature this approach is restricted to
solutions close to a given one, for example with slightly
different boundary conditions. Because of the quasi-

linear nature of Eq. (4) it is only possible to carry it out
in spaces of functions with second derivatives. Further-
more, the lack of regularity up to the boundary for the

corresponding linearized equations when @�1 has a
common boundary with @�\@�1 means that it is not
obvious how to apply the method for typical mixed

boundary conditions. In particular, there is no appro-
priate bifurcation theory that can be shown to apply to
elasticity with mixed boundary conditions, and thus no
complete three-dimensional theory of classical problems

such as buckling of a rod.

3. Elastodynamics

For pure elastodynamics, the governing equations are

�Rytt ¼ div TRðDyÞ ð5Þ

where �R is the density in the reference configuration.

This is a system of conservation laws in three space
dimensions, and very little is known about such systems.
In particular there is no theory of global existence or

uniqueness of solutions to initial-boundary value prob-
lems. Even when viscoelastic damping is present, so that
the equations of motion become

�Rytt ¼ div TRðDyÞ þ div �ðDy; DytÞ ð6Þ

there is no satisfactory theory. In order to be frame-
indifferent, the viscous stress � must have the form

�ðDy; DytÞ ¼ Dy�ðU; UtÞ ð7Þ

where U ¼ ðDyT DyÞ
1
2. This makes the viscous term in

Eq. (6) genuinely quasilinear. Here we have not con-
sidered thermal effects; the corresponding systems of
governing equations are even more intractable.

The lack of a good mathematical theory of dynamics
means that we are unable to bring to bear on elasticity
the apparatus of dynamical systems theory, and in

particular to properly study the relationship between

statics and dynamics, or the stability of equilibrium or
other solutions.

4. Current advances

Nevertheless fundamental advances in understanding

are being made, as nonlinear analysis brings its power to
bear on elasticity. Thus we see interesting attempts to
establish the status of elasticity with respect to atomistic

theory (see, for example, [6–9]), the beginnings of a
rigorous theory of the relationship between three-
dimensional elasticity and theories of rods, plates and

shells, (see, for example, [10–12], the first steps towards a
mathematical understanding of fracture mechanics (see,
for example, [13,14,15] and the recognition that elasti-

city has much to say about crystal microstructure and
other defects in crystals (see, for example, [16–19]). At
the same time, as has happened throughout its history,
elasticity is stimulating the growth of new mathematics;

an interesting example is the study by Chlebı́k and
Kirchheim [20], and Kirchheim and Preiss [21] of map-
pings whose gradient takes only a finite number of

values Ai, i = 1, . . ., N, where rank (Ai � Aj) > 1 for
i 6¼ j.
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