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 The present study is devoted to analysis of stability of steady buoyancy convection 

flows by a low-order finite volume method. We consider several benchmark problems, part of 

which are widely known, and another part is added here to complete the study. The 

motivation for this work is the necessity to perform the stability analysis for many applied 

problems, which cannot be treated by spectral of pseudospectral methods.  

 It is well-known that spectral and pseudospectral methods yield the most accurate 

solutions for benchmark problems considering flows in rectangular cavities, and especially 

instabilities of these flows. However, these methods are restricted to simple geometries and 

because of this cannot be applied to many practically important problems. As an example one 

can mention problems of melt instabilities in bulk crystal growth processes, which was the 

motivation for one of the most well-known convective benchmarks [1].  

Here we apply the second-order finite volume method to several problems of 

buoyancy and thermocapillary convection in rectangular cavities. It is emphasized that the 

numerical technique briefly described below is not restricted to a certain class of problems 

and already was applied for stability studies in Czochralski [2] and floating zone [3] crystal 

growth configurations. The studies of this kind usually have two main bottlenecks. The first 

one is connected with the calculation of steady state flows, whose stability is to be studied. 

The Jacobian-free or other inexact Newton methods combined with a Krylov-subspace-based 

iterative linear solver usually are applied for this purpose. These solvers are very effective 

when relatively simple benchmark problems are considered, however fail to converge in more 

complicated cases. There were also some reports about possible loss of accuracy when 

Jacobian-free approach is applied. Therefore in the present study we calculate the Jacobian 

matrix using the corresponding analytical evaluations, which follow from the discretized 

equations. We also argue that when very fine grids are used and due to the high level of the 

sparseness of the Jacobian matrix it can be more effective to replace iterative solvers by direct 

ones.  



 The second bottleneck is connected with the eigenvalue problem of very large 

dimension, which must be solved for the study of linear stability of a steady flow. The usual 

approach here is the Arnoldi iteration method, which allows one to calculate only necessary 

part of the whole spectrum. The Arnoldi iteration also needs computation of the Krylov-

subspace basis. An additional difficulty here is connected with the incompressible continuity 

equation, which does not contain the time derivative. The latter requires considering the 

eigenvalue problem in the shift-and-invert mode. Consequently, the Krylov basis vectors are 

to be computed as solutions of a system of linear algebraic equations. Again, we argue here 

that instead of iterative solvers, which can diverge and be CPU-time consuming, it is more 

effective to built an LU-decomposition of the matrix, so that the necessary amount of the 

Krylov basis vectors will be computed by the back substitution.   

 The effectiveness of the application of the direct sparse matrix solvers described here 

is the consequence of the matrix sparseness, which follows from the low-order discretization 

method applied. As reported below, we are able to perform calculations of steady states and 

stability analysis on the grids consisting of 4502 nodes. Apparently, time-stepping algorithms 

can handle much finer grids. To the best of our knowledge, however, the direct stability 

analysis of numerically calculated flows was never performed on the grids of this size. The 

only restriction for the further grid refinement is the computer memory consumed by a direct 

sparse matrix solver. The results reported here are obtained on an Itanium-2 workstation with 

16 Gbytes memory.   

 The convergence studies reported below show that correct critical parameters can be 

calculated only on rather fine grids having more than 100 nodes in the shortest direction. We 

show that use of uniform grids combined, where possible, with the Richardson extrapolation 

can significantly improve results. We show also that the mesh stretching can significantly 

speed up the convergence, but there can be also a certain loss of accuracy. 
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