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Abstract

The peristaltic flow of non-Newtonian fluid in a curved micro-
channel is investigated in this paper. The channel is assumed to
have a radial magnetic field and second order velocity slip on
walls. Non-Newtonian behaviour is described using both third-
order and Giesekus models. Assuming long wavelength for
walls' motion, governing egquations can be reduced to a nonlinear
system of ODEs in low Reynolds number regime. Both spectral-
Galerkin and finite difference methods are implemented to solve
the governing equations, with results showing to have good
agreement together. For a constant flow rate, shear thinning
(thickening) behaviour of fluid causes a lower (greater) pressure
rise in the stream wise direction. In pumping region, curvature
increases the stream wise pressure difference for low flow rates;
while it has areverse effect in co-pumping region. The maximum
of the velocity profile moves towards the inner wall with increase
in curvature or Knudson number. However, the effect of mag-
netic field is to flatten the velocity profile, and hence to enhance
the peristalsis pumping rate.

Introduction

The peristaltic flow of Newtonian and non-Newtonain fluid have
been studied by many researchers because of its application in
physiology and industry. However, only few papers have been
devoted to the peristaltic flow in a curved channel. Sato et a [1]
have discussed the peristaltic flow of Newtonian flow in a curved
channel. Ali et a [2] have examined the peristaltic flow of third
order fluid in a curved channel. The aim of this paper is to study
the behavior of third grade and Giesekus fluid considering the
effect of magnetic field and dlip condition.

Figure 1. Schematic showing the flow geometry

Mathematical Formulation

Consider a deformable curved channel with radius of R and
width of 2a, in which a wave propagates along the walls at con-
stant speed of c(see figure 1). The flow field is subjected to a
magnetic field varying in radial direction. The vertical displace-
ments of the walls are as follows:
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Where a, is the amplitude of the peristaltic wave, 4. is the peri-
staltic wavelength, and t and X are time and tangential coordinate
respectively. The flow is assumed to be incompressible and lami-
nar, with no component in the z-direction. Representing the com-
ponents of velocity vector V by V(R,X,t) and U(R, X, t) in the
radial and tangential directions respectively, the Cauchy equation
of motion together with the continuity equation for a MHD fluid
reads [3]:
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Where p is the fluid pressure, 7 is stress tensor, p is the density,
J is the current density, o, is electrical conductivity, E is electric
field and By isradia magnetic field varying proportional to 1/R.
Assuming that the magnetic Reynolds number is sufficiently
small, the motion induced magnetic and electric fields can safely
be neglected. This assumption is employed in the following.

The stress tensor is related to the velocity field using constitutive
equations, defined by non-Newtonian model implemented. In this
paper non-Newtonian behavior is described using both third or-
der and Giesekus models. For the third order flow the constitutive
equation is represented as:

T=nA; + a4, + a,A? + B, (trA?)A, (5)

Where n isthe fluid viscosity. a;, a, and §; are material parame-
ters, named retarded-motion constants. A; and A, are Rivlin-
Ericson tensors defined as:
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In above equation D /Dt is material derivative and D is the rate of
deformation tensor. The third order model is reliable only under
assumptions of small velocity gradient and slow flow, which are
necessity of retarded motion expansion. To eliminate these re-
strictions, the Giesekus model isimplemented in this paper [4]:
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Here a and A are the mobility factor and relaxation time, respec-
tively. The Giesekus model is regarded as one of the best
rheological models to represent polymer liquids. This is because
it correctly predicts shear thinning, non-vanishing first and sec-
ond normal stress differences, finite extensiona viscosity and
non-exponential stress relaxation or stress growth curve for
polymer liquids. It is imperative to say that the mobility factor
should be selected in the range of 0 < @ < 0.5 in spite of the fact
that it can be increased to one from theoretical point of view. In
the current coordinate the flow is unsteady. However, using a
transformation it can be considered as steady in a wave frame
coordinate. Transformation equations are:

(x=X—ct,r=R), (u=U-cv=V) 9)

Introducing following dimensionless parameters:

(10)

Where, k is curvature parameter, Re is Reynolds number, M is
Hartman number and & is wavelength ratio, and having dropped
“*" the dimensionless form of continuity and Cauchy equations
aretransfigured to:
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Defining stream function as:
_ oy k oy (14)
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And assuming long wavelength for walls motion (6§ — 0), the
equations of motion are reduced to:
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Applying the assumption of long wavelength ratio the constitu-
tive equation of third order model reads:
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Likewise, the congtitutive equations of Giesekus model are re-
duced to:

Tr+aWe (1 +12) =0 (18)
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Tux — 2 WeyT, + aWe (T2, +12,) =0 (20)

Where in the above equations, following dimensionless variables
are used:
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To define boundary conditions, the flow rate is represented in
wave frame coordinate.

R(X»t)Outerwall
0= f UdR =A+ 2cR(x, t) outer wal (22)
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Defining the average flux @ over one period T = % of the peris-

taltic wave and introducing the dimensionless parameters, the
final equation iswritten as:
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For an isothermal flow the general second-order slip condition
has the non-dimensional form [5]:
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Where d/dn denotes gradients normal to the wall surface, Kn is
Knudson number and o, is tangential momentum accommoda-
tion coefficient. C; and C, are dlip coefficients. An accurate mod-
el can be obtained using ¢; = 1 and C, = —0.5. Hence, the final

form of boundary conditions in wave frame, assuming o, = 1,
reads:

For r(x)Outer wall = 1+ ¢Sin(x):
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For r(x)lnner wall = -1- ¢Sin(x):
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Inwhich ¢ = a,/a, iscaled the amplitude ratio.
Method of Solution
Third-Order Model

Combining equation (15) with equation (16) gives:
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This ODE looks too formidable to render itself an analytical solu-
tion, and hence we look for a numerical procedure to solve this
equation. It is necessary to linearize it first before relying on a
suitable iterative method for numerical solution. The familiar
Newton-Kantorovich method is implemented in order to linearize
equation (26) after inserting the equation (17).

The equations (17), (26) aong with boundary conditions can be
solved numerically using both spectral-Galerkin and finite differ-
ence methods. We have tried both methods and found consistent
results for each set of independent variables, showing accuracy of
numerical procedures. In FDM formulation al derivatives are
calculated using second order central difference scheme. The
procedure is both familiar and straightforward and then is not
repeated here in details. However, the pseudospectral method is



somehow tricky. As the equation is highly nonlinear, the simple
use of vanishing residuals on grid points fails to give acceptable
results, especially for higher values of 8. An aternative way is
the use of Galerkin method [6]. In order to use this method we
have to first introduce a variable to homogenize the boundary
conditions:
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Introducing above variable into equation (26), some additional
terms are inserted to the right hand side of this equation. Details
are eliminated to retain brevity. This new variable ¥ should sat-
isfy homogeneous boundary conditions below:
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If we expand ¥ using expansion functions each identically satis-
fying boundary conditions, we can be assure that ¥ satisfies de-
sired boundary conditions:
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Where f,,s are combinations of Chebyshev polynomials, each
satisfying boundary conditions:

fa() = Ta() + 1 Tns2 (M) + 2 Tnya (M) (32)
In which:
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Thefirst five modes of this function are shown in figure 2.
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First Five Modes of Employed Expansion Function
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Figure 2. First five modes of the expansion function implemented.

In the Galerkin method we minimize the residuals by forcing it to
be orthogonal to base functions in the specified interval. In order
to do so, both sides of equation (26) are multiplied by f,, and
integrated over the normalized interval of [—1,1] using the ap-

propriate weight function of 1/,/1 —n? (inner product). The
resulting matrix equation gives coefficients of expansion func-
tions at each given x.

Giesekus Model

The equations (26) and (18, 19, 20), governing the motion of a
Giesekus fluid, cannot be reduced into a single ODE inasmuch as

its congtitutive equations are implicitly related to the velocity
field, rather than explicitly. Indeed, these two equations form a
nonlinear system of ODESs that should be solved simultaneously.
It should be noted that there is no explicit boundary condition on
T+, While there are four on the stream function. However, satis-
faction of shear stress boundary conditions could be determined
by extra boundary conditions on the stream-function. In order to
solve this system of equations an iterative method is imple-
mented. The procedure is as follows: The normal stress 7, is
calculated and replaced into these equations using equation (18),
ac a function of shear stress t,.,. The shear stress, which causes
the nonlinearity of the equations, is separated into the two parts
(Trx = T + /). System of equations is discretized using finite
difference scheme. An initial guess is made for shear stress field
(t%,). Having introduced this stress field into the right hand side
of equations (34) and (35), stream-function and shear stress cor-
rection are obtained. This procedure is repeated until conver-
gence.
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In order to assess the accuracy of implemented method, above
equations are solved directly in the absence of magnetic field and
dlip condition. Results showed to have great agreement with each
other for the number of grid points used in FDM, i.e. n = 1000.
In the absence of magnetic field and slip condition, the differen-
tial equation of shear stress could be solved directly, with two
constants depending upon the stream function satisfying bound-
ary conditions (t,, = ¢; + ¢c,/r?). Introducing 7, into govern-
ing equation of stream-function, the resulting equation can be
solved using numerical integration techniques. We have used
Gauss-L egendre Quadrature to evaluate the integral appearing in
the solution of differential equation.

Results and Discussions

Figure 3-6 show the effects of different parameters on the behav-
ior of athird order flow. For a constant flow rate, shear thicken-
ing behavior of fluid causes a greater pressure rise in the stream
wise direction. In pumping region, curvature and magnetic field
increase the stream wise pressure difference for low flow rates;
while they have a reverse effect in co-pumping region. It is al'so
observed that Knudsen number decreases the pressure difference.

Figure. 7-10 illustrate the effects of different parameters on the
behaviour of a Giesekus flow. It should be noted that the effects
of curvature, magnetic field, and Knudsen number on the Giese-
kus fluid is similar to the third order fluid. In contrast, the effect
of elasticity decreases the pressure difference in pumping region.

Figure 3. Variation of AP with flow rate for different values of g
¢ =04,k=5M=4Kn=0.05



Figure 4. Variation of AP with flow rate for different values of k
¢ =04,=05M=4,Kn=0.05

Figure 5. Variation of AP with flow rate for different values of M
¢ =04,k=5p=05Kn=005

Figure 6. Variation of AP with flow rate for different values of Kn
¢ =04,k=5p8=05M=4

Concluding and Remarks

Increase of the shear thickening behavior increases the pressure
difference in pumping region even if the elasticity of the fluid has
a reverse effect. The curvature and magnetic field enhance the
pumping rate for both Giesekus and third Order fluid. Moreover,
the Knudsen number decreases the pressure difference in pump-
ing region for both considered fluids.

Figure 7. Variation of AP with flow rate for different values of We
¢=04,k=5a=01M=4Kn=0.05

Figure 8. Variation of AP with flow rate for different values of k
¢=04,a=01We=2,M=4Kn=0.05
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Figure 9. Variation of AP with flow rate for different values of M
¢ =04,k=5a=0.1We=2Kn=0.05
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Figure 10. Variation of AP with flow rate for different values of Kn

¢=04k=5a=01,We=2,M=4
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