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Abstract 

The peristaltic flow of non-Newtonian fluid in a curved micro-
channel is investigated in this paper. The channel is assumed to 
have a radial magnetic field and second order velocity slip on 
walls. Non-Newtonian behaviour is described using both third-
order and Giesekus models. Assuming long wavelength for 
walls’ motion, governing equations can be reduced to a nonlinear 
system of ODEs in low Reynolds number regime. Both spectral-
Galerkin and finite difference methods are implemented to solve 
the governing equations, with results showing to have good 
agreement together. For a constant flow rate, shear thinning 
(thickening) behaviour of fluid causes a lower (greater) pressure 
rise in the stream wise direction. In pumping region, curvature 
increases the stream wise pressure difference for low flow rates; 
while it has a reverse effect in co-pumping region. The maximum 
of the velocity profile moves towards the inner wall with increase 
in curvature or Knudson number. However, the effect of mag-
netic field is to flatten the velocity profile, and hence to enhance 
the peristalsis pumping rate. 

Introduction 

The peristaltic flow of Newtonian and non-Newtonain fluid have 
been studied by many researchers because of its application in 
physiology and industry. However, only few papers have been 
devoted to the peristaltic flow in a curved channel. Sato et al [1] 
have discussed the peristaltic flow of Newtonian flow in a curved 
channel. Ali et al [2] have examined the peristaltic flow of third 
order fluid in a curved channel. The aim of this paper is to study 
the behavior of third grade and Giesekus fluid considering the 
effect of magnetic field and slip condition. 

 
Figure 1. Schematic showing the flow geometry 

Mathematical Formulation 

Consider a deformable curved channel with radius of തܴ and 
width of 2ܽ଴ in which a wave propagates along the walls at con-
stant speed of ܿ(see figure 1). The flow field is subjected to a 
magnetic field varying in radial direction. The vertical displace-
ments of the walls are as follows: 

(1) ܴ(ܺ, ை௨௧௘௥(ݐ ௪௔௟௟ = ܽ଴ + ܽଵ݊݅ݏ ൭2ߣߨ௖ (ܺ −  ൱(ݐܿ

(2) ܴ(ܺ, ூ௡௡௘௥(ݐ ௪௔௟௟ = −ܽ଴ − ܽଵ݊݅ݏ ൭2ߣߨ௖ (ܺ −  ൱(ݐܿ

Where ܽଵ is the amplitude of the peristaltic wave, ߣ௖ is the peri-
staltic wavelength, and ݐ and ܺ are time and tangential coordinate 
respectively. The flow is assumed to be incompressible and lami-
nar, with no component in the z-direction. Representing the com-
ponents of velocity vector ࢂሬሬԦ by ܸ(ܴ, ܺ, ,ܴ)ܷ and (ݐ ܺ,  in the (ݐ
radial and tangential directions respectively, the Cauchy equation 
of motion together with the continuity equation for a MHD fluid 
reads [3]: 

(ࢂ)ݒ݅݀ (3) = 0 

ߩ (4) ൬ݐܦࢂܦ൰ = ݌ߘ− + (߬)ݒ݅݀ + ܬ × ,ோܤ ܬ = ܧ)௘ߪ + ࢂ ×  (ோܤ
Where ݌ is the fluid pressure, ߬ is stress tensor, ߩ is the density, ܬ	is the current density, ߪ௘ is electrical conductivity, ܧ is electric 
field and ܤோ is radial magnetic field varying proportional to 1/ܴ. 
Assuming that the magnetic Reynolds number is sufficiently 
small, the motion induced magnetic and electric fields can safely 
be neglected. This assumption is employed in the following. 

The stress tensor is related to the velocity field using constitutive 
equations, defined by non-Newtonian model implemented. In this 
paper non-Newtonian behavior is described using both third or-
der and Giesekus models. For the third order flow the constitutive 
equation is represented as:  

(5) ߬ = ଵܣߟ + ଶܣଵߙ + ଵଶܣଶߙ +  ଵܣ(ଵଶܣݎݐ)ଵߚ

Where ߟ is the fluid viscosity. ߙଵ, ߙଶ and ߚଵ are material parame-
ters, named retarded-motion constants. ܣଵ and ܣଶ are Rivlin-
Ericson tensors defined as: 

ଵܣ (6) = ܦ2 = ܸߘ +  ்(ܸߘ)

௡ܣ (7) = ݐܦ௡ିଵܣܦ + .௡ିଵܣ (ܸߘ) + .்(ܸߘ)  ௡ିଵܣ

In above equation ݐܦ/ܦ is material derivative and ܦ is the rate of 
deformation tensor. The third order model is reliable only under 
assumptions of small velocity gradient and slow flow, which are 
necessity of retarded motion expansion. To eliminate these re-
strictions, the Giesekus model is implemented in this paper [4]: 

(8) ߬ + ߟߣߙ (߬. ߬) + ߣ ቆݐܦ߬ܦ − (߬. (ܸߘ) + .்(ܸߘ) ߬)ቇ =  ܦߟ2



Here ߙ and ߣ are the mobility factor and relaxation time, respec-
tively. The Giesekus model is regarded as one of the best 
rheological models to represent polymer liquids. This is because 
it correctly predicts shear thinning, non-vanishing first and sec-
ond normal stress differences, finite extensional viscosity and 
non-exponential stress relaxation or stress growth curve for 
polymer liquids. It is imperative to say that the mobility factor 
should be selected in the range of 0 ≤ ߙ ≤ 0.5 in spite of the fact 
that it can be increased to one from theoretical point of view. In 
the current coordinate the flow is unsteady. However, using a 
transformation it can be considered as steady in a wave frame 
coordinate. Transformation equations are: 

ݔ) (9) = ܺ − ,ݐܿ ݎ = ܴ), ݑ) = ܷ − ܿ, ݒ = ܸ) 
Introducing following dimensionless parameters: ݒ∗ = ߜݒܿ , ∗ݑ = ݑܿ , ∗ݔ = ߣݔߨ2 , ∗ݎ = ଴ݎܽ , ߬∗ = ܽ଴ܿߟ ߬, ∗݌ = ܽ଴ߟܿߜ  ,݌
݇ = തܴܽ଴ , ܴ݁ = ݎ଴ܽܿߩ , ଴ܤ௥ܤ = ݎ1 + ݇ ܯ, = ඨߪ௘ߟ ,଴ܽ଴ܤ ߜ = ߣ଴ܽߨ2  

(10) 

Where, ݇ is curvature parameter, ܴ݁  is Reynolds number,	ܯ is 
Hartman number and ߜ is wavelength ratio, and having dropped 
“*” the dimensionless form of continuity and Cauchy equations 
are transfigured to: ܴ݁. ߜ ቆ−ߜଶ ݔ߲ݒ߲ + ݒଶߜ ݎ߲ݒ߲ + ଶߜ ݑ)݇ + ݎ(1 + ݇ ݔ߲ݒ߲ − ݑ) + 1)ଶݎ + ݇ ቇ= ݎ߲݌߲− + ൬ ݎߜ + ݇൰ ݎ߲߲ ሼ(݇ + +௥௥ሽ߬(ݎ ଶߜ ݎ݇ + ݇ ߲߬௥௫߲ݔ − ൬ ݎߜ + ݇൰ ߬௫௫																	(11) ܴ݁. ߜ ቆ−߲ݔ߲ݑ + ݒ ݎ߲ݑ߲ + ݑ)݇ + ݎ(1 + ݇ ݔ߲ݑ߲ + ݑ) + ݎݒ(1 + ݇ ቇ= −൬ ݎ݇ + ݇൰ ݔ߲݌߲ + ݎ)1 + ݇)ଶ ݎ߲߲ ሼ(ݎ + ݇)ଶ߬௥௫ሽ+ ߜ ൬ ݎ݇ + ݇൰ ߲߬௫௫߲ݔ − ଶܯ ݑ) + ݎ)(1 + ݇)ଶ ݎ߲߲ (12)													 ሼ(ݎ + ሽݒ(݇ + ݇ ݔ߲ݑ߲ = 0																																																														(13) 
Defining stream function as: 

ݑ (14) = ݎ߲߲߰− , ݒ = ݎ݇ + ݇ ݔ߲߲߰  

And assuming long wavelength for walls’ motion (ߜ → 0), the 
equations of motion are reduced to: 

ݎ߲݌߲ (15) = 0 

ݔ߲݌߲− (16) + ݎ)1݇ + ݇) ݎ߲߲ ሼ(ݎ + ݇)ଶ߬௥௫ሽ − ଶܯ 1 − డటడ௥݇(ݎ + ݇) = 0	 
Applying the assumption of long wavelength ratio the constitu-
tive equation of third order model reads: ߬௥௫ = −߲ଶ߲߰ݎଶ − ݎ1 + ݇ ൬1 − −൰ݎ߲߲߰ ߚ2 ൭߲ଶ߲߰ݎଶ + ݎ1 + ݇ ൬1 − ൰൱ଷݎ߲߲߰ 												(17) 
Likewise, the constitutive equations of Giesekus model are re-
duced to: 

(18) ߬௥௥ + ߙ ܹ݁ (߬௥௥ଶ + ߬௥௫ଶ ) = 0 

(19) ߬௥௫ −ܹ݁ ሶ߬௫௫ߛ + ߙ ܹ݁ ߬௥௫(߬௥௥ + ߬௫௫) = ሶߛ  
(20) ߬௫௫ − 2ܹ݁ ሶ߬௥௫ߛ + ߙ ܹ݁ (߬௥௫ଶ + ߬௫௫ଶ ) = 0 

Where in the above equations, following dimensionless variables 
are used: 

ߚ (21) = ଴ଶܽߟଶܥଵߚ , ܹ݁ = ଴ܽܿߣ , ሶߛ = ݎ) + ݇) ݎ߲߲ ൬1 − ൰ݎ߲߲߰
To define boundary conditions, the flow rate is represented in 
wave frame coordinate. 

߆ (22) = න ܷ ܴ݀ =ோ(௑,௧)ೀೠ೟೐ೝ ೢೌ೗೗ோ(௑,௧)಺೙೙೐ೝೢೌ೗೗ ߉ + ,ݔ)2ܴܿ  ௪௔௟௟	ை௨௧௘௥(ݐ
Defining the average flux ߆ത  over one period ܶ = ఒ௖ of the peris-
taltic wave and introducing the dimensionless parameters, the 
final equation is written as: 

(23) ܳ = തܽ଴ܿ߆ , ݍ = ଴ܿ߉ܽ , ܳ = ݍ + 2 

For an isothermal flow the general second-order slip condition 
has the non-dimensional form [5]: 

௦ݑ (24) = 22 − ௩ߪ ቆܥଵ݊ܭ ൬߲߲݊ݑ൰ − ଶ݊ܭଶܥ ߲ଶ߲݊ݑଶቇ 

Where ߲/߲݊ denotes gradients normal to the wall surface, ݊ܭ is 
Knudson number and ߪ௩ is tangential momentum accommoda-
tion coefficient. ܥଵ and ܥଶ are slip coefficients. An accurate mod-
el can be obtained using ܥଵ = 1 and ܥଶ = −0.5. Hence, the final 
form of boundary conditions in wave frame, assuming ߪ௩ = 1, 
reads: 

For (ݔ)ݎை௨௧௘௥	௪௔௟௟ = 1 +  :(ݔ)݊݅ݏ߶
ݎ߲߲߰ (24) − ݊ܭ ߲ଶ߲߰ݎଶ − ଶ2݊ܭ ߲ଷ߲߰ݎଷ = 1, ߰ =  ,2ݍ−

For (ݔ)ݎூ௡௡௘௥	௪௔௟௟ = −1 −  :(ݔ)݊݅ݏ߶
ݎ߲߲߰ (25) + ݊ܭ ߲ଶ߲߰ݎଶ − ଶ2݊ܭ ߲ଷ߲߰ݎଷ = 1,											߰ =  2ݍ

In which ߶ = ܽଵ/ܽ଴ is called the amplitude ratio.  

Method of Solution 

Third-Order Model 

Combining equation (15) with equation (16) gives: 

(26) 
ݎ߲߲ ൜ ݎ)1 + ݇) ݎ߲߲ ݎ)) + ݇)ଶ߬௥௫)ൠ − ଶܯ ݎ߲߲ ቌ1 − డటడ௥ݎ + ݇ ቍ = 0 

This ODE looks too formidable to render itself an analytical solu-
tion, and hence we look for a numerical procedure to solve this 
equation. It is necessary to linearize it first before relying on a 
suitable iterative method for numerical solution. The familiar 
Newton-Kantorovich method is implemented in order to linearize 
equation (26) after inserting the equation (17). 
The equations (17), (26) along with boundary conditions can be 
solved numerically using both spectral-Galerkin and finite differ-
ence methods. We have tried both methods and found consistent 
results for each set of independent variables, showing accuracy of 
numerical procedures. In FDM formulation all derivatives are 
calculated using second order central difference scheme. The 
procedure is both familiar and straightforward and then is not 
repeated here in details. However, the pseudospectral method is 
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Figure 4. Variation of ∆ܲ with flow rate for different values of ݇ ߶ = 0.4, ߚ = ܯ,0.5 = 4, ݊ܭ = 0.05 

 
Figure 5. Variation of ∆ܲ with flow rate for different values of ܯ 	߶ = 0.4, ݇ = 5, ߚ = 0.5, ݊ܭ = 0.05 

 
Figure 6. Variation of ∆ܲ with flow rate for different values of ݊ܭ 	߶ = 0.4, ݇ = 5, ߚ = ܯ,0.5 = 4 

Concluding and Remarks 

Increase of the shear thickening behavior increases the pressure 
difference in pumping region even if the elasticity of the fluid has 
a reverse effect. The curvature and magnetic field enhance the 
pumping rate for both Giesekus and third Order fluid. Moreover, 
the Knudsen number decreases the pressure difference in pump-
ing region for both considered fluids. 

 
Figure 7. Variation of ∆ܲ with flow rate for different values of ܹ݁ ߶ = 0.4, ݇ = 5, ߙ = ܯ,0.1 = 4, ݊ܭ = 0.05 

 

Figure 8. Variation of ∆ܲ with flow rate for different values of ݇ ߶ = 0.4, ߙ = 0.1,ܹ݁ = ܯ,2 = 4, ݊ܭ = 0.05 

 
Figure 9. Variation of ∆ܲ with flow rate for different values of ܯ ߶ = 0.4, ݇ = 5, ߙ = 0.1,ܹ݁ = ݊ܭ,2 = 0.05 

 
Figure 10. Variation of ∆ܲ with flow rate for different values of ݊ܭ ߶ = 0.4, ݇ = 5, ߙ = 0.1,ܹ݁ = ܯ,2 = 4 
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