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Abstract 
 
The flow-induced vibrations of a tethered sphere are investigated numerically and experimentally. 

Numerical techniques based on spectral/spectral-element methods are used to examine the dynamics 

of the sphere for mass ratios in the range 0.082 < M* < 0.8, and for tether lengths ranging from L* = 

5 to L* = 10. In addition, experiments at laminar flow conditions are performed and good agreement 

is obtained with the numerical results. 
 
The computations reveal that large-amplitude oscillations occur over a wide range of reduced 

velocity. Furthermore, the amplitudes of these oscillations are found to be strongly dependent on the 

mass ratio, whereas the frequencies of oscillation are relatively independent of the mass ratio. For 

harmonic oscillations, the drag coefficient is found to increase substantially from that of a non-

oscillating sphere. 
 
Four modes of vibration are known for a tethered sphere, the last three of which are reproduced in 

this study. The first mode is proposed to occur only at higher Reynolds numbers, ie. when the flow 

is turbulent. Visualizations of the vortex structures suggest that the mechanisms causing the large-

amplitude Mode II and III vibrations result from the vortex shedding frequency being modulated by 

the oscillation frequency. The Mode IV response, which occurs only for the highest mass ratios 

investigated, is speculated to occur either via a subharmonic resonance (a type of instability-induced 

excitation) or a movement-induced excitation. 
 
The existence of a critical mass for the tethered sphere system is proposed. Moreover, a neutrally 

buoyant tethered sphere (M* = 1) is investigated for the first time computationally, the dynamics of 

which, to the author’s knowledge, are largely unexplored. 
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Nomenclature 
 
α non-dimensional numerical parameter similar to the Froude number 

α0 first coefficient of Adams-Bashforth predictors 

α1 second coefficient of Adams-Bashforth predictors 

α2 third coefficient of Adams-Bashforth predictors 

A cross-sectional area; amplitude of oscillation 

A acceleration of the body 

A* normalized amplitude of oscillation 

B net buoyancy force of the body 

β non-dimensional numerical parameter similar to the mass ratio 

β0 first coefficient of Adams-Moulton correctors 

β1 second coefficient of Adams-Moulton correctors 

β2 third coefficient of Adams-Moulton correctors 

Ca added mass coefficient 

Cd drag coefficient, also known as Cx 

Cd’ root-mean-square drag coefficient 

Cl lateral force coefficient, also known as Cy 

Cl’ root-mean-square lateral force coefficient 

Cs transverse force coefficient, also known as Cz 

Cs’ root-mean-square transverse force coefficient 

δ boundary layer thickness 

dx integral vector length element 

dφ integral azimuthal angle element 

D body diameter 

ε relaxation parameter 

f oscillation frequency 

fn natural frequency of vibration 

fvo vortex shedding frequency 

f* normalized oscillation frequency 

Fd drag force 

Fy lateral force 

Fz transverse force 

Ftol force tolerance 
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Fr Froude number 

g gravitational acceleration 

γ non-dimensional numerical parameter similar to the body acceleration 

J order of the numerical integration scheme employed 

k number of physical Fourier planes 

L tether length 

L linear vector operator 

L* normalized tether length 

LN Legendre polynomial of degree N 

λ constant in the Helmholtz equation; eigenvalues of the S2 + Ω2 tensor 

m mass of the sphere; also denotes an azimuthal mode 

M* mass ratio 

n present time instant 

n outward unit normal vector 

N nonlinear vector operator 

p pressure; order of the polynomial interpolants 

p’ inertial pressure 

ρ density of the fluid 

ρs density of the body 

r radial coordinate 

R radius of the body 

Re Reynolds number 

Sij rate-of-strain tensor 

Sn normalized natural frequency of vibration 

St Strouhal number 

t time 

T tension in the tether; period of oscillation 

∆t infinitesimal time interval 

∆t* non-dimensional time 

u velocity vector field, composed of (u, v, w) 

utol velocity tolerance 

uB velocity vector of the body 

u’ inertial velocity vector 

û  first intermediate velocity field 

ˆ̂u  second intermediate velocity field 

U freestream (asymptotic) velocity 
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U* reduced velocity 

V volume of the body 

ν kinematic viscosity of the fluid 

ω vorticity vector 

x displacement vector field, composed of (x, y, z) 

xB displacement vector of the body 

x’ inertial spatial vector 

x  acceleration vector of the body 

Ω normalized angular velocity of the body 

Ω* angular velocity of the body 

Ωij rate-of-rotation tensor 

θ mean layover angle; also a polar coordinate 

φ azimuthal coordinate 

∇  gradient operator 

● dot product operator 

× curl operator 
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Addendum 
 
 
A statement is made in the abstract and conclusions that the frequency of oscillation is relatively 

independent of the mass ratio. However, this statement is based solely on the two mass ratios 

investigated and any perceived generalization to other mass ratios is unintentional. Experimental 

observations show that the frequency of oscillation is a strong function of mass ratio, especially for 

M* < 1. It is perhaps a coincidence that the numerical results show a similar frequency response for 

the two mass ratios, or possibly there is a strong Reynolds number effect between the experiments 

and the simulations. 



 
 
Chapter 1 
 
Introduction and Background 
Research 
 
 
The flow-induced vibration of structures is an important problem in many fields of engineering. 

Oscillations of a structure induced by vortex shedding may yield amplitudes as large as 1.5 to 2 

diameters (Bearman 1984); in addition, any other bodies in the wake may be forced into oscillation. 

It is well known that some bodies can extract energy from a fluid stream and sustain oscillations, e.g. 

galloping. A well-documented example is the spectacular collapse of the Tacoma-Narrows Bridge in 

November 1940, which was a result of the inadequate understanding of the aerodynamic forces 

acting on bluff bodies that cause them to vibrate. 
 
Knowledge of the instantaneous fluid forces (ie. drag and lift) is crucial in understanding flow-

induced vibration phenomena. As a result, much recent research has been devoted to deducing the 

unsteady fluid forces on elastically vibrating structures. Novel techniques of estimating these fluid 

forces have been introduced by Gharib et al. (2000) & Hover et al. (1998), among others. However, 

precise measurements also need to be made regarding the wake structure in order to gain a real 

understanding of this phenomenon. This is accomplished in most detail through direct numerical 

simulations. 
 
To the author’s knowledge, the present work represents the first direct numerical simulations of the 

flow-induced vibrations of a tethered sphere. Indeed, although empirical models have been derived 

and used quite successfully for tethered structures affected by waves, the conceptually simple case 

of a tethered sphere subjected to a uniform flow has received little attention experimentally, and 
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practically no attention at all numerically, despite its significance in the offshore engineering and 

marine industries. It is to this end that we focus for the present study. 
 
This chapter provides the reader with a brief background on the topics of interest in the present 

study. In particular, we focus on four relevant areas with increasing degree of complexity: the flow 

past stationary spheres; the flow past rotating spheres; vortex-induced vibrations; and finally, the 

flow past a tethered sphere. The background research is presented in chronological order. In each of 

the four areas of interest, in our opinion, only the most noteworthy investigations are reported. As a 

result, what follows is an extensive (but by no means exhaustive) summary on the appropriate 

research to the present. 

 

1.1 Flow past stationary spheres 

 

The flow of an incompressible, viscous fluid past a stationary sphere may be viewed as one of the 

simplest cases of bluff body flows. Its two-dimensional counterpart, the circular cylinder, has been 

studied extensively for decades and recent computations and experiments have shed much light on 

its wake vortex dynamics. On the other hand, much less is known concerning the flow past a fixed 

sphere, presumably because of the fully three-dimensional nature of the problem. However, the last 

ten years has seen a surge in research regarding spheres which is a direct result of increasing 

computer power and modern three-dimensional numerical algorithms. 
 

Reynolds number 

Re 

Wake characteristics 

Re < 24 Laminar, axisymmetric, attached to sphere. 

24 < Re < 212 Axisymmetric, steady, separated. 

212 < Re < 275 Non-axisymmetric, steady, planar-symmetric, “double thread” wake 

vortex formation. 

275 < Re < 420 Non-axisymmetric, unsteady, planar-symmetric, periodic vortex 

shedding in the form of vortex loops or hairpin vortices. 

420 < Re < 480 Planar symmetry is lost, shedding direction oscillates intermittently. 

480 < Re < 650 Vortex shedding pattern becomes irregular. 

650 < Re < 800 Separated cylindrical vortex sheet pulsates, vortex tubes begin to be 

periodically shed in accordance with the pulsation. 

800 < Re < 3000 Hairpin vortices become turbulent with alternate fluctuations, both high- 

and low-mode Strouhal numbers coexist. 

Table 1 Wake characteristics for the range of Re investigated in the present study. 
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The wake of a fixed sphere consists of many regimes, encountered as the Reynolds number is 

increased. Here, the Reynolds number Re is based on the freestream velocity U, the diameter of the 

sphere d and the fluid kinematic viscosity ν. Table 1 summarises the characteristics of these regimes 

as well as the Reynolds numbers at which they occur for the range of Re investigated in the present 

study. 

 

1.1.1 Early experimental work 

 

Before any systematic study of the vortex shedding characteristics of the flow past a sphere was 

undertaken, the problem was essentially a classic one with an extensive literature. Before the advent 

of high performance computing enabled numerical solutions to become straightforward, early 

researchers were primarily concerned with analytical solutions (and in particular the drag 

coefficient) of the steady, incompressible axisymmetric flow past a sphere in a uniform stream. 

Stokes (1851) provided the first such treatment of the problem. However, obtaining higher order 

approximations beyond the first term given by Stokes (1851) proved to be difficult because 

expansions in terms of the Reynolds number in the vicinity of the sphere are not valid at large 

distances from the sphere. Proudman & Pearson (1957) tackled this problem by calculating the 

“outer” flow and matching the solution to the “inner” flow using matched asymptotic expansions. 

Their work was greatly extended by Chester & Breach (1969) to continue the analysis as far as the 

term of order R3 log R. However, they conclude that the expansion is only of practical value in the 

limited range 0 < Re < 0.5. 
 
Taneda (1956) was among the first to experimentally investigate the wake of a sphere at Reynolds 

numbers up to 300. He found that the critical Reynolds number for which the permanent vortex ring 

forms occurs at approximately Re = 24. This value was obtained by plotting the normalized vortex 

formation length against the logarithm of Re and extrapolating to the limit as the formation length 

approaches zero. Also, as previously mentioned, the relationship between the vortex formation 

length and Reynolds number is linear when plotted against the logarithm of Re, however, for a 

circular cylinder the relationship is linear when plotted against Re itself. This is evidence of the 

differences in wake formation between a sphere (3-dimensional) and a cylinder (2-dimensional). 
 
Magarvey & Bishop (1961a,b) looked at wake configurations observed in liquid-liquid systems. 

Photographs were obtained of wake patterns behind the drops falling at terminal velocity through 

water. For Reynolds numbers less than 200, it was found that a vortex sheet separated the wake from 

the main flow and closed at some distance downstream. Furthermore, the wake liquid leaked into the 

main flow at this point of closure. As Re was increased, the vortex sheet did not close and a periodic 
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shedding of vortices began to appear. By analysing stereo pairs of photographs, the vortex rings 

were found to be formed by a simple cycle of build-up and release.  
 
The formation and structure of vortices characteristic of sphere wakes were examined in a follow-up 

paper by Magarvey & MacLatchy (1965). They realized that a stable three-dimensional wake based 

on ring elements appears to have no theoretical foundation, and hence the only theoretically possible 

cyclic configuration of the sphere wake consists of a procession of equally spaced vortex loops. The 

process by which vorticity is transferred to the region immediately downstream of the sphere and 

discharged into the stream was deduced from photographic sequences obtained with a calibrated 

moving-picture camera. 
 
Roos & Willmarth (1971) investigated the drag on spheres and disks for Reynolds numbers from 5 

to 100,000. They found that the drag on a sphere or disk translating at constant speed is not 

significantly affected by vortex shedding in the wake. Furthermore, the sphere CD – Re data did not 

provide any indication of the Reynolds number at which wake unsteadiness commences, ie. the data 

did not show any “jump” or “bend” to mark the onset of wake fluctuations. Also, the minimum 

Reynolds number for unsteadiness was found to be Re = 290. 
 
Vortex shedding from spheres was studied in the Reynolds number range 400 < Re < 5×106 by 

Achenbach (1974) using hot-wire measurements. A water channel was used for the low Reynolds 

number experiments whereas a wind tunnel was used for the higher Re. Two distinct modes of 

vortex shedding were observed: a shear layer mode, dominant for 400 < Re < 6000 and characterized 

by a Strouhal number that increases with Reynolds number, and a second mode dominant between 

Reynolds numbers of 6000 and 3×105, which is distinguished by an approximately constant and 

well-defined Strouhal number. The rolling up of the separating shear layer was observed in the water 

channel and at Re = 400, the resultant vortex sheet began to form loops, which were periodically 

released from the sphere at a Strouhal frequency (based on sphere diameter and inflow velocity) of 

approximately St ≈ 0.16. The position of the rolling up of the vortex sheet creeps closer to the sphere 

with increasing Reynolds number. For example, at Re = 400 the length of the discontinuity sheet was 

1.5 diameters, whereas at Re = 3000, the length was only 0.5 diameters. However, no description 

could satisfactorily explain the Strouhal number change by one order of magnitude when the lower 

critical Re was exceeded. 
 
The steady wake behind a sphere was studied experimentally by Nakamura (1976). After being 

dipped in dyed water, the sphere was released and its motion recorded with a strobe and camera. 

Nakamura deduced that at Re = 7.3 and above, the flow was separated and exhibited a toroidal 

vortex (or recirculation eddy) in the immediate wake, since no dyed water may be contained in the 

fluid which passes over the surface of the sphere and the created recirculating fluid with dyed water 

only makes the closed wake region visible. Furthermore, this toroidal vortex remains axisymmetric 
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up to Re = 190, after which the wake was deformed. However, these results are questionable since 

the mass of the fluid contents in the spherical shells was free to move about, potentially affecting the 

sphere’s motion and its subsequent wake development. 

 

1.1.2 Recent experimental techniques and results 

 

A description of the natural frequencies in the wake behind a sphere was undertaken by Kim & 

Durbin (1988) in the range 500 < Re < 60,000. Their measurements showed two dominant modes of 

unsteadiness to exist, one associated with the small-scale instability of the separating shear layer and 

the other with the large-scale instability of the wake. For Re less than a few thousand, previous 

researchers (eg. Achenbach (1974)) described the vortex shedding Strouhal number as increasing 

with increasing Re, whereas it is seems that it is actually the instability frequency that was being 

described. In this range, it was found that the vortex shedding Strouhal number is practically 

independent of the Reynolds number. The higher frequency was detected only in the region of the 

wake immediately downstream of the sphere, but the low frequency could be observed in a much 

larger region. At Reynolds numbers less than 800, the higher frequency was not observed. 
 
Measurements of Strouhal numbers in the Reynolds number range 300 < Re < 40,000 were obtained 

by Sakamoto & Haniu (1990) using hot-wire techniques. Strouhal frequencies were determined by 

power spectrum analysis of the fluctuating velocity in the wake behind the sphere. It was found that 

when the Reynolds number exceeds approximately 300, hairpin-shaped vortices begin to be 

periodically shed from the sphere. For Re > 800, two distinct modes of unsteadiness were observed 

which are associated with the small-scale instability of the separating shear layer and the large-scale 

instability of the wake, in agreement with Kim & Durbin (1988). Also, it was demonstrated that the 

higher frequency was detected only in the immediate downstream vicinity of the sphere at these 

higher Re. Moreover, a number of regions were identified concerning the changes in Strouhal 

number as the Reynolds number is increased. These regions are summarised in Table 1. 
 
Experiments to investigate the formation mechanism and shedding frequency of vortices from a 

sphere in a uniform shear flow were conducted by Sakamoto & Haniu (1995). The Reynolds 

numbers considered ranged from 200 to 3000, and computer graphics image processing was utilised 

to examine the structure of the vortex shedding. The formation mechanism and configuration of a 

vortex detached from a sphere in a uniform flow, as described by Sakamoto & Haniu (1990), were 

found to be exactly the same as in the case of a uniform shear flow. Three instability modes are 

described: an axisymmetric pulsation of the recirculating zone with vortex shedding, an 

axisymmetric vortex shedding associated with the shear at the periphery of the recirculating zone, 

and a spiral mode related to a rotation of the separation line. For Re > 300, the first instability is 
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excited and vortex shedding occurs. When Re > 800, the second instability is excited and the two 

modes are simultaneously present but unlocked. Although they do not substantially affect the wake 

structure, they were found to affect the vortex shedding frequency mode. 
 
The transition to turbulence in the wake of a sphere was investigated experimentally by Ormières & 

Provansal (1999). By changing slightly the angle of inclination of the supporting rod, they were able 

to observe a change in the orientation of the plane of symmetry. The transition to unsteadiness was 

observed at a Reynolds number of Re = 280. Above Re = 360, the velocity fluctuations were 

irregular and their spectrum exhibited a low frequency part. Near the threshold the variation was 

linear, in agreement with the Landau model (see Landau & Lifshitz (1987)) which describes the 

transition from steady to periodic flow as a supercritical bifurcation. Also, the location in the 

maximum of amplitude along the streamwise direction varied with the Reynolds number, from 

[4.5d, 5.5d] near the threshold to [4d, 4.5d] at Re = 360. Experimental visualizations of the flow 

structures in the wake of the sphere within this unsteady, planar-symmetric regime are shown in 

Figure 1.1.1. 

 

1.1.3 Numerical simulations 

 

Over the past two decades, direct numerical simulations have contributed much to the understanding 

of the wake states and flow structures observed in the wake of a sphere. Tomboulides et al. (1993) 

used a spectral element/spectral method to calculate the flow past a sphere for Reynolds numbers up 

to 1000 using DNS and Re = 20,000 using LES. The singularities introduced by the polar coordinate 

transformation were removed before applying the variational projection by multiplying the Fourier 

form of the governing equations by r, the radius of the sphere. They found that the flow past a 

sphere is axisymmetric up to a Reynolds number of approximately 212. Furthermore, results of wake 

length and separation angle followed an approximately logarithmic relationship with the Reynolds 

number, as previously observed by Taneda (1956). At this Reynolds number of 212, the flow was 

found to undergo a transition to three-dimensionality through a regular bifurcation, with the most 

unstable mode being the m = 1 mode with zero frequency associated with it. As Re was increased, 

the flow reached a three-dimensional steady-state solution, corresponding to the “double thread” 

wake observed by previous researchers. The second transition that leads to a time-dependent 

solution was found to occur within the range 250 < Re < 285, which was again due to the m = 1 

mode. In contrast to the first transition, the second transition was through a Hopf bifurcation, and the 

flow settled to a time-periodic final state with a Strouhal number of St = 0.136 at a Reynolds number 

of Re = 300. It was also found that the planar symmetry which was observed at Re = 300 was not 

preserved at Re = 500. At a Reynolds number of 500, a lower frequency was found which was 
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Figure 1.1.1. Experimental visualizations of the hairpin vortices in the wake of a sphere, Re = 

320 (from Leweke et al. (1999)). 

 

responsible for the irregular rotation of the separation point azimuthally around the rear part of the 

sphere. The value of this lower frequency was St = 0.045, whereas the Strouhal number associated 

with the vortex shedding was St = 0.176. A direct numerical simulation performed at Re = 1000 

revealed the presence of small-scale structures in the flow, whose origin is the Kelvin-Helmholtz-

like instability of the separating cylindrical shear layer. These small scales eventually rendered the 

wake turbulent and at Re = 1000, a Strouhal number of St = 0.202 was observed. Again, less 

prominent frequencies were observed, and the second frequency associated with the instability of the 

shear layer tended to increase with Re (or equivalently with decreasing shear layer thickness) since 

the shear layer becomes unstable to smaller wavelengths. 
 
Mittal (1999a) used a Fourier-Chebyshev spectral collocation method to simulate flow past prolate 

spheroids. For a stationary sphere, his simulations showed a transition to non-axisymmetry at a 

Reynolds number of about 210. Furthermore, a transition to unsteadiness was observed at a 

Reynolds number between 250 and 350. However, no simulations were performed within this range 

to investigate the Reynolds at which this process precisely occurs. It was also found that at a 

Reynolds number of 500, the vortex loops being shed off the rear of the sphere did not have any 
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preferred orientation, and a reorganization of these vortex loops into vortex rings occurred in the 

downstream region of the wake, as reported by Magarvey & Bishop (1961). 
 
To explore the planar symmetry in the unsteady wake of a sphere, Mittal (1999b) used the same 

method as Mittal (1999a) and focused on a Reynolds number of 350, which lies in the middle of the 

range where planar symmetry is indicated by experiments. The results indicate that at this particular 

Reynolds number investigated, the vortices are formed at exactly the same location in every 

shedding cycle. Also, in contrast to the cylinder wake where the maximum lift is comparable to the 

drag, for the sphere it is an order of magnitude lower than the drag. Furthermore, the drag force for 

the sphere oscillates at the shedding frequency whereas for the cylinder it oscillates at twice the 

shedding frequency due to the two counter-rotating vortices shed in the cylinder wake. It was found 

that planar symmetry was lost in the range 350 < Re < 375, although the cycle-to-cycle variations in 

the vortex formation angle were small. However, at Re = 425, large cycle-to-cycle variations were 

observed, and hence the tendency of experiments to identify the loss of planar symmetry for Re > 

420 may be due to the inability of the experiments to detect the small cycle-to-cycle variations of the 

vortex formation angle. 
 
Although much research has been devoted to the flow past a stationary sphere, little has been 

achieved regarding the transitions to asymmetry and unsteadiness. Johnson & Patel (1999) analysed 

the flow past a sphere for Reynolds numbers up to 300. At Re > 210, asymmetric flow was observed 

and at Re = 300, unsteadiness was observed. They find that in the steady asymmetric regime, the 

pressure minimum in the region of the lower focus of the toroidal vortex is lower than that in the 

upper focus. This azimuthal pressure gradient propagates through the core of the toroidal vortex 

inducing flow along the vortex axis, resulting in a breakdown of axial symmetry. Hence, it appears 

that the unsteadiness of the axisymmetric flow is connected to the generation of a ring of low 

pressure in the wake. Also, the radially inward motion of the high-pressure side of the vortex serves 

to entrain free-stream fluid into the recirculating region, thereby opening up the previously closed 

separated wake. The transition to unsteadiness is similarly illustrated. For steady flow, the flow out 

of the centre of the upper focus generates a stable focus (radially inward flow) and attains 

equilibrium, ie. the azimuthal pressure-driven flow is sufficiently maintained by the entrainment of 

fluid into the upper focus. However, for unsteady flow, the Reynolds number is high enough that the 

upper focus does not reach an equilibrium state and continues to grow, entraining fluid from its own 

side of the sphere. The strength of circulation of the upper focus increases to a point where it 

changes from a stable focus to an unstable focus and its radial motion is against its own pressure 

gradient. The increased reversed flow impinging upon the upper separated flow generates a pressure 

maximum which appears to push the strengthened upper side of the vortex away from the sphere, 

thereby “shedding” the vortex, although not completely, into the wake. Finally, after the convection 

of the upper side of the vortex, a strong shear layer is left at the interface of the separated flow and 
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Figure 1.1.2. Numerical visualizations of the hairpin vortices in the wake of a sphere, Re = 

300 (from Johnson & Patel (1999)). 

 

the reversed flow passing through the centre of the wake. This shear layer quickly rolls up to 

produce a new upper focus, and the process starts over. Numerical visualizations of the hairpin 

vortices in the wake of the sphere are shown in Figure 1.1.2. 
 
The turbulent flow over a sphere was investigated by Constantinescu & Squires (2000) using Large 

Eddy Simulations (LES) and Detached Eddy Simulations (DES), a technique based on a hybrid 

LES/RANS approach developed by Spalart et al. (1997). The advantage of considering a DES 

approach lies in the fact that near solid boundaries the standard Spalart et al. (1997) model is 

recovered, and the flow is predicted from the Reynolds-averaged equations. Far from walls, the 

length scale redefinition draws down the eddy viscosity and allows instabilities to develop as in 

classical LES. This method allowed the accurate prediction of boundary layer separation with 

transition to turbulence occurring shortly downstream in the detached shear layers. Furthermore, the 

subgrid models remained dormant in the sphere boundary layers as well as in the non-turbulent 

regions outside the sphere wake. This unique approach enabled Reynolds numbers up to Re = 10,000 

to be studied, with the possibility of higher Reynolds numbers and massively separated flows in the 

near future. 
 
A mixed spectral element/Fourier spectral method was used by Tomboulides & Orszag (2000) to 

understand the physical mechanisms of the transition to turbulence for incompressible flow past a 

sphere. They found that the flow undergoes a transition to three-dimensionality through a regular 

bifurcation at approximately Re = 212, with the most unstable mode being the m = 1 mode with zero 
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frequency associated with it, in agreement with Natarajan & Acrivos (1993). It should be noted that 

many of the results presented in this paper were reported in Tomboulides et al. (1993). As also 

observed by Ormières & Provansal (1999), the fluctuation energy first grows downstream and then 

decays, which they point out may indicate the existence of a convectively unstable mode which 

becomes absolutely unstable after the second critical Re is reached. Direct numerical simulations at 

Re = 1000 revealed that small scales were present in the flow field and their origin is a Kelvin-

Helmholtz-like instability of the cylindrical shear layer that results from the separation of the 

boundary layer on the sphere. At this Re, lower frequencies of the same order as that at Re = 500 

were observed, and the small scales associated with the shear-layer instability caused a rapid 

distortion of the large-scale vortex structures and eventually rendered the wake turbulent. 
 
A similar spectral/spectral-element approach was employed by Ghidersa & Dušek (2000) to 

investigate the primary and secondary instabilities of the sphere wake. The reason for choosing this 

particular numerical approach was because the azimuthal spectral modes coincided with the 

nonlinear modes of the instability. After the first transition to planar symmetry, it was discovered 

that for a strong perturbation only one “thread” would be present in the wake. However, for a weak 

perturbation a “double thread” wake was observed, where the two counter-rotating vortices of the 

linear perturbation were strong enough to appear in spite of the presence of the (axisymmetric) base 

flow. The fundamental m = 1 mode was the most important; the higher-order modes were found to 

be practically irrelevant. The Reynolds number at which transition occurred was Re1 = 212. For the 

secondary (Hopf) bifurcation, the critical Reynolds number was found to be 272.3 < Re2 < 275, 

taking into account any mesh inaccuracies and error estimates. At a Reynolds number of Re = 300, a 

Strouhal number of St = 0.135 was determined. The superposition of the m = 0 and m = 1 modes was 

analyzed to provide an explanation for the difference in the one-sided hairpin vortices observed in 

flow visualizations and the spatial picture of alternately shed hairpin vortices (for example, Johnson 

& Patel (1999)). Although the first two transitions were the primary focus of this study, the authors 

note that the method presented demonstrates the possibility of investigating the whole transition to 

turbulence. 
 
Thompson et al. (2001) investigated the symmetry-breaking transitions of the wake of a sphere as it 

changes from laminar to turbulent. The principal aim of the study was to determine whether the 

transitions were subcritical or supercritical, ie. if they were hysteretic or not. This was carried out by 

assuming that the transitions behaved according to the Landau model: 
 

( ) ( ) 21  R I R
dA a ia A l ic A
dt

= + − + A , 

 
where A represents the global perturbation amplitude of some quantity from the base flow. The 

coefficient of the linear term on the right hand side represents the growth rate coefficient in the 
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linear regime, and changes from negative to positive through the transition and hence determines the 

stability of the system. Furthermore, the transition is supercritical if the coefficient of the cubic term 

is positive. For the first transition, it was found that the growth rate coefficient became positive at 

Re1 = 212, close to predictions from linear stability analysis by Natarajan & Acrivos (1993) and 

other direct numerical simulations. Similarly, the second transition occurred at a critical Reynolds 

number of Re2 = 272. Both of these transitions were found to be supercritical (or non-hysteretic). 

The transition process after the first critical Reynolds number was also examined by looking at the 

development of streamwise vorticity. Below Re1, rings of fluid passing close to the surface of the 

sphere maintain their axes parallel to the streamwise axis. Above Re1, these rings tilt which result in 

the conversion of azimuthal vorticity into streamwise vorticity that is then convected downstream 

into the wake. 
 
Mittal et al. (2002) recently examined the symmetry properties of the transitional sphere wake for 

Reynolds numbers in the range 500 < Re < 1000. The near-wake symmetry was explored through 

the phase plane plot of the two side force coefficients, Cy and Cz. For Reynolds numbers of 500 and 

650, a preferred orientation of the side force was discerned, but not for Re = 1000. However, with 

increasing Re the preference for any particular orientation diminished, and the time-averaged near 

wake tended to become more axisymmetric. For all of the Reynolds numbers investigated, flow 

visualizations indicated that the vortex loops and rings have a preferred orientation in the wake. 

Furthermore, there was no significant change in the apparent plane of symmetry with streamwise 

distance, suggesting that the preferred direction associated with the formation of vortex loops in the 

near wake is also maintained in the downstream wake region. 

 

1.1.4 Theoretical approaches and stability analysis 

 

Monkewitz (1988a) investigated the stability of a family of axisymmetric wake profiles in the range 

of Reynolds numbers where vortex shedding from bodies of revolution is observed. The absolute or 

convective nature of the instability was then investigated using the Briggs-Bers criterion by 

determining the temporal growth rate of the dominant discrete mode at the location of the impulse 

source. For Re = RecA, the absolute growth rate Im[ω0] is zero; for Re > RecA, one finds absolute 

instability; and for Re < RecA, there is a convective instability or stable flow. The minimum RecA was 

found to strongly depend on the normalized velocity ratio: for example, for zero centreline velocity 

RecA = 820, and for a reversed flow on the centreline of 5% of the freestream velocity RecA = 59. On 

the other hand, the shape parameter N at which the minimum RecA was observed was found to be 

quite insensitive to the velocity ratio and had a value of approximately N ≈ 3. For zero or near-zero 

centreline velocities, the critical Reynolds number at which the wake becomes convectively unstable 
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was found to be of O(10), then the occurrence of local absolute instability at an RecA of O(102 – 103), 

depending on the amount of reverse flow. These results confirm physical intuition that reverse flow 

promotes absolute instability, ie. enhances the growth of disturbances that travel upstream. 
 
Kim & Pearlstein (1990) report results of a linear stability analysis of the axisymmetric base flow of 

a fixed sphere. The spectral method used is a modification of a technique which employs a fourth-

order stream function formulation of the governing equations for steady axisymmetric flow in 

spherical coordinates, used previously for Reynolds numbers up to Re = 10. Moreover, with certain 

modifications, this procedure was used for Reynolds numbers up to 200. Based on this approach, it 

was found that disturbances with azimuthal wavenumber m = 1 become unstable at Re ≈ 175.1. The 

imaginary part of the associated (neutral) eigenvalue was Ω ≈ 0.300, corresponding to a Hopf 

bifurcation. The resulting flow field was unsteady and indicated that the onset of instability occurs 

via oscillatory disturbances. However, this result does not agree well with the abundance of 

experimental and numerical evidence that indicates that the first transition occurs through a regular 

bifurcation at Re ≈ 210. On the other hand, Kim & Pearlstein (1990) believe that their results are 

valid in light of the fact that the experimental determination of the first critical Reynolds number is 

complicated by noting that the wake oscillations have a very low frequency. 
 
Due to the lack of consensus regarding the nature of the first instability of the flow past a sphere, 

Natarajan & Acrivos (1993) numerically computed the details of this transition using a Galerkin 

finite element method. After accurately calculating the axisymmetric base flow, it was found that as 

Re increased from small values, the two leading eigenvalues were seen to move toward the 

imaginary axis. The crossing first occurred for the real eigenvalue at Re1 = 210, which represents a 

regular bifurcation point on the branch of base flows. This resulted in a flow field that was no longer 

axisymmetric. Also, the other leading complex eigenvalue crossed the imaginary axis at Re2 = 277.5, 

which represents a Hopf bifurcation point on the now-unstable branch of base flows. At Re1, the 

variation of the unstable eigenvector was primarily in the near-eddy region of the axisymmetric base 

flow, whereas for Re2, the variations had a spatially periodic downstream structure that is 

characteristic of an oscillatory wake instability, as is the case of flow past a cylinder. The first 

unstable mode was found to be nonaxisymmetric with m = 1, in agreement with Kim & Pearlstein 

(1990). However, the value of the critical Reynolds number at which this transition takes place 

varies significantly; Natarajan & Acrivos (1993) attribute this apparent inconsistency to the 

complicated nature of the numerical problem as well as the different computational approaches used 

in these studies. 
 
A stationary sphere in a nominally steady, incompressible flow experiences unsteady lift and drag, 

with vortex shedding at large Reynolds numbers predominantly at a Strouhal number of 

approximately 0.2. An experimental and theoretical investigation was made by Howe et al. (2001), 
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who modelled the influence of the coherent vortex structures in the near wake as a succession of 

randomly orientated vortex rings. These vortex rings were interconnected by pairs of oppositely 

rotating vortices, and shed at quasi-periodic intervals at a Strouhal number ~ 0.19. It is well known 

that at high Re, coherent wake structures of this kind must be rapidly dissipated by turbulence 

diffusion. For St > 1, the force spectrum was found to be governed by the initial stages of formation 

of the ring, and is therefore essentially independent of the shape of the fully formed vortex. For 

smaller St, the predictions were more strongly influenced by hypotheses regarding the orientation 

and statistics of vortex rings. 

 

1.2 Flow past rotating spheres 

 

Rotating spheres are found in many industries, yet very little research has been undertaken 

concerning the changes in flow topology as the Reynolds number and angular rotation are varied. 

For example, the trajectories of golf balls (and baseballs, etc.) are highly dependent on the amount of 

spin on the ball, which affects the ball’s lift and drag characteristics. Furthermore, particle-laden and 

suspension flows are widely encountered in production, and therefore it is of great practical interest 

to investigate particle motion in designing manufacturing equipment. The present study aims to 

explore the impact of rotation on the transition (or critical) Reynolds numbers for a sphere rotating 

about the streamwise and non-streamwise axes respectively. 

 

1.2.1 Early experimental and numerical work 

 

For Reynolds numbers of the order of 105, it was realised relatively early that a sphere rotating about 

the streamwise axis showed a marked influence of rotation on drag. Schlichting (1979) summarizes 

these early works and presents data of the drag coefficient in terms of Re, as well as highlighting the 

effect of (streamwise) rotary motion on the position of the line of laminar separation. When Ω has 

attained the value of 5, the line of separation will have moved by about 10° in the upstream direction, 

compared with a sphere at rest. The reason for this is that the centrifugal forces acting on the fluid 

particles rotating with the sphere in its boundary layer have the same effect as an additional pressure 

gradient directed towards the plane of the equator. 
 
The Magnus (or Robins) effect on rotating spheres was investigated by Barkla & Auchterlonie 

(1971) by measuring the precession of a simple pendulum. The lift coefficient was calculated by 

measuring the angle of the pendulum to the vertical and the increase of period δτ for Reynolds 

numbers between 1500 and 3000. They observed that the lift coefficients rise less rapidly at first, 

 13 



with increasing spin, but continue to rise to higher values, tending towards proportionality to the rate 

of spin. 
 
Another experimental measurement of the Magnus force was performed by Tsuji et al. (1985). The 

motivation for their experiments was to get fundamental data which is necessary to calculate the 

motion of particles conveyed pneumatically in a pipeline. Their measurements indicate that in the 

Reynolds number range 550 < Re < 1600 and nondimensional angular velocity Ω < 0.7, the lift 

coefficient may be approximated by CL = (0.4 ± 0.1)Ω, obtained empirically by comparing 

measurements of the range of flight of the sphere with the solution of its equation of motion. They 

also found that the drag coefficient was virtually unaffected by rotation. 
 
Watts & Ferrer (1987) measured the lateral force on a spinning baseball in a subsonic wind tunnel. 

They found that the lift coefficient for rough spheres is a function of the ratio πDω /V and is at most 

a weak function of the Reynolds number, which appears to be more consistent with the Kutta-

Zhukovskii theorem than do previous results, even though this theorem is strictly applicable only to 

two-dimensional inviscid flows. Note that the Kutta-Zhukovskii theorem states that the lift force 

should be proportional to ωV, meaning the lift coefficient should be directly proportional to πDω /V. 

Furthermore, the orientation of the seams of the baseball had little effect on the lift force. 

 

1.2.2 Recent results: non-streamwise sphere rotations 

 

More recent experimental data has been acquired by Oesterlé & Bui Dinh (1998) over the Reynolds 

number range 10 < Re < 140 and (dimensionless) sphere rotation rates varying from 1 < Ω < 6. This 

particular parameter space was chosen principally to obtain measurements that may be compared to 

the theoretical results of Rubinow & Keller (1961) who used matched asymptotic expansions. They 

found that the lift coefficient increases with increasing rotation rate and decreases with increasing 

Reynolds number. Moreover, the results suggest that the influence of Ω vanishes for Re greater than 

100. Despite the scatter in the experimental results, an expression was proposed to estimate the lift 

coefficient in the form CL ≈ 0.45 + (2Ω – 0.45)exp(-0.075Ω0.4Re0.7). Although providing a useful 

correlation, this equation does not support rotation rates less than unity, and may be used primarily 

to supplement existing results. 
 
More applicable to the present study is the computations performed on a rotating sphere in a linear 

shear flow by Kurose & Komori (1999), with the parameter range 1 < Re < 500 and 0 < Ω < 0.25. A 

finite difference scheme based on the marker-and-cell method was used to calculate the drag and lift 

forces on the sphere. Based on simulations performed at particular Reynolds numbers and rotation 

rates, an approximate expression for the lift coefficient was obtained as CL = K Ω, where the value of 
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K depends on the Reynolds number and is listed as K2 in Table 3 of their paper. The drag coefficient 

was found to increase with increasing rotation rate, and the lift coefficient approached a constant 

value for Re > 200 for a given rotational speed. This asymptotic value of CL increased with 

increasing Ω, as did the Strouhal number, St. However, no attempt was made to explain these trends 

as details regarding the structure of the wake were not thoroughly examined. 

 

1.2.3 Recent results: streamwise sphere rotations 

 

Wang et al. (2001) were among the first to characterize the flow states resulting from the rotation of 

a sphere about the streamwise axis. They investigated Reynolds numbers of Re = 200, 250 and 300, 

and rotation rates of 0.025 < Ω  < 1. At Re = 200, it was found that the wake remained axisymmetric 

for rotation rates up to Ω = 0.25. For Re = 250, the flow structures rotated about the streamwise axis 

at a certain angular velocity without deformation of its shape. Finally, for higher Reynolds numbers 

(Re = 300), they found that the rotating frequency of the vortex structures in the near wake of the 

sphere was nearly independent of the Reynolds number. 
 
Recently, laminar flow past a rotating sphere was investigated numerically by Kim & Choi (2002) at 

Reynolds numbers of 100, 250 and 300 and rotation rates of 0 < Ω < 1. Like Wang et al. (2001), the 

rotations investigated were parallel to the streamwise axis. At Re = 100, the vortical structures in the 

wake were axisymmetric for all Ω and became stronger in the streamwise direction with increasing 

Ω. For Re = 250, at low rotation rates (Ω < 0.3) one tail of the double thread vortex became stronger 

and the other weaker. This effect was more pronounced at Ω = 0.3, at which one tail disappeared 

completely. However, for Ω ≥ 0.5 the tail reappeared and the two tails were twisted together in a 

complex pattern for higher rotation rates. For Ω ≤ 0.3, the vortical structure was “frozen” (ie. rotated 

without temporal variation in its shape and strength, as first observed by Wang et al. (2001)) and the 

lift and side forces were sinusoidal in time, but the magnitudes of the drag, lift and side forces were 

constant in time. For Re = 300 and low rotational speeds, the flows became unsteady asymmetric. At 

this Reynolds number, frozen flows were obtained at Ω = 0.5 and 0.6. 

 

1.3 Vortex-induced vibration 

 

The vast field of vortex-induced vibration (VIV) has seen much activity over the last few decades 

because of its importance in many engineering applications. VIV is a potential problem affecting 

many types of offshore structures, including production and drilling risers, conductors, pipelines, 

moorings, tethers of tension leg platforms, spar platforms and the members of jacket structures 
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(Ziada & Staubli (2000)). Because of these problems in the marine sector, much research has been 

devoted to analysing the vortex-induced vibrations of a circular cylinder. Indeed, many books are 

devoted to this topic, and the reader is referred to the texts by Blevins (1994) and Naudascher & 

Rockwell (1994) as an introduction to the field. The following is a summary of recent research that 

is applicable to the current study. 

 

1.3.1 Classical studies and early experimental work 

 

Long flexible cables are commonly used in engineering applications, for example, in suspension 

bridges and electrical power transmission lines. For a stationary circular cylinder, the vortex 

shedding frequency fvs matches the Strouhal frequency fs. As the vortex shedding frequency 

approaches the natural frequency of a given flexible circular cylinder, a resonant response tends to 

develop in which amplitudes can be of the order of 1D as the vortex shedding frequency locks-in to 

the cylinder frequency, where D is the diameter of the body. This synchronization is part of a 

nonlinear phenomenon featuring a hysteresis loop, as pointed out by the early studies of Feng (1968) 

and Bishop & Hassan (1964). 
 
This hysteresis loop was originally thought to occur due to nonlinear spring or damping behaviour. 

However, an experimental investigation of the vortex-induced oscillations of a long flexible circular 

cylinder was carried out by Brika & Laneville (1993), who found that the hysteresis loop is indeed a 

fluid mechanic phenomenon. It is characterized by two branches, with each branch associated with a 

particular vortex shedding mode and delimited by a discontinuity featuring a jump to the other 

branch. The upper branch is associated with the von Kármán type wake or the 2S mode of vortex 

shedding. The lower branch of the hysteresis loop is associated with a 2P mode in which two 

vortices of opposite sign are shed from each side of the cylinder in every vibration cycle. For flow 

velocities less than the lower critical velocity (where a 2P → 2S mode jump occurs), the cylinder 

oscillation amplitude grows as it is released from rest towards a first stationary amplitude and then 

bifurcates towards a secondary stationary amplitude. The amplitudes of the bifurcation occurrence 

coincide with the critical curve separating the 2S mode and 2P mode regions. This bifurcation is 

accompanied by a sudden change of the phase angle between the fluid excitation and the cylinder 

displacement. 
 
It is well known that shear flows around bluff bodies are sensitive to periodic excitation such as a 

sound wave with the specific frequency related to the convective instability of the shear layers. As a 

result, the vortex-induced vibrations can be suppressed by stimulating the separated shear layers 

around the body by an acoustic excitation with the frequency of the transition waves. Hiejima et al. 

(1997) investigated such a problem by applying a periodic velocity excitation at two locations on he 
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surface of a circular cylinder. They found that the excitation with the transition wave frequency, 

which is the most unstable and can grow into the strong fluctuation in the shear layer around the 

cylinder, is the most effective in changing the flow characteristics around the cylinder and the 

characteristics of the vortex-induced vibrations. In these simulations, the cylinder oscillated because 

of the periodic vortex shedding behind the cylinder, and therefore the characteristics of the vortex-

induced vibrations were altered by the change of the vortex shedding frequency behind the cylinder. 

However, the effect of periodic excitation for larger amplitude vibrations needs to be addressed. 

 

1.3.2 Recent numerical and experimental studies 

 

An example of a fluid-elastic problem is the vortex-induced vibration of a cable. Newman & 

Karniadakis (1997) present DNS results of the flow-induced vibrations of an infinitely long flexible 

cable at Reynolds numbers Re = 100 and Re = 200, in which the flow was analysed when the cable 

was both unconstrained and constrained to move transversely only. The cable vibration wavelength 

varied from L/d = 6.3 to 201.1. For the constrained case, both a standing wave and travelling wave 

vibration response was observed over several shedding periods. However, the travelling wave 

response prevailed over longer time periods. For the unconstrained cable, only the travelling wave 

response was observed, which in general is the preferred response. Furthermore, the vibration 

response was found to be quite sensitive to the tension (or phase speed) in the cable. At Re = 100, 

the maximum amplitude response was approximately 0.7 diameters, whereas for Re = 200 it was 

about one diameter. It should be noted that primarily lock-in states were considered: no attempt was 

made to determine the boundaries of the lock-in regions for freely moving cables, though it has been 

demonstrated that even a small variation in the diameter of an oscillating cylinder can change the 

lock-in region, creating subharmonic responses at the lower end of the lock-in boundary. 
 
Returning now to the problem of VIV for a circular cylinder, two distinct types of amplitude 

response are observed depending on the mass-damping parameter. At high mass-damping, two 

branches are observed known as the initial and lower branches (eg. Feng (1968), Brika & Laneville 

(1993)). However, for low mass-damping, three branches are found (initial, upper and lower), as 

shown in Figure 1.3.1. Khalak & Williamson (1999) summarized the features of this low mass-

damping regime. They found that a five-fold increase in the maximum drag, a seven-fold increase in 

the R.M.S. lift and a fluctuating drag of 102 times that for a stationary cylinder could be expected. 

The transition from the initial to the upper branch was found to be hysteretic. In contrast, the 

transition from the upper to the lower branch was rather different, and the system switched between 

these branches intermittently and seemed only weakly “locked” onto one or the other mode over a 

narrow reduced velocity range. Both the mode transitions were associated with jumps in amplitude 
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Figure 1.3.1. Amplitude response of a hydroelastically mounted cylinder with the mass-

damping parameter equal to 0.013 (from Khalak & Williamson (1999)). 

 

and frequency, but the 180º jump in phase angle was found only when the flow jumped between the 

upper and lower branches. The initial branch corresponded to a 2S mode of vortex shedding, 

whereas the lower branch corresponded to a 2P mode: the data was insufficient to clarify the vortex 

shedding mode for the upper branch. Finally, an excellent collapse of data for a set of response 

amplitude plots was observed when using the actual oscillation frequency f rather than the still-water 

natural frequency fn to form a normalized velocity U*/f* (also known as a “true” reduced velocity in 

recent studies). 
 
The disparity in the transitions between the initial, upper and lower branches was made clear by 

Govardhan & Williamson (2000). By decomposing the fluid force into its “potential” and “vortex” 

components, they found that there was no clear jump in “vortex phase” at the upper-lower branch 

transition, but between the initial and upper branches there was a phase jump in the “vortex force.” 

There are thus two phase jumps: a large jump in the vortex phase (but a minute jump in total phase) 

at the initial-upper transition, associated with a switch in timing of vortex shedding in which the 

response frequency passes through f*
water = 1.0; and a large jump in the total phase (but a minute 

jump in vortex phase) at the upper-lower transition, which is not associated with a switch in timing 

of the shedding and in which the response frequency passes through f*
vacuum = 1.0. Both large phase 
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jumps have a magnitude of π. Furthermore, for low mass-damping, when mass ratios fall below m*
crit 

= 0.54, the lower branch cannot be reached and ceases to exist. As a result, the upper branch will 

continue indefinitely and the synchronization regime will extend to infinity. The high strain rate 

region between neighbouring vortices lies within a vorticity concentration for the 2P mode, but in 

between vorticity concentrations for the 2S mode. This internal intense strain rate for the 2P mode 

splits the vortex apart to form two separate vortices. Both 2P modes in the upper and lower branches 

are steady-state periodic modes. 
 
The flow-induced vibration response of a flexibly mounted cylinder with attached wires is 

significantly altered, even far away from lock-in, as observed by Hover et al. (2001). They found 

that for a stationary cylinder in crossflow, small trip wires at ±70º from the mean stagnation point 

can significantly reduce the drag and lift characteristics for Re > 2 × 104. For forced oscillations, the 

lift amplitude and phase curves as functions of reduced velocity retained some of the main features 

observed in smooth cylinders, although these features were generally shifted to higher frequencies 

for a given amplitude of motion. For free vibrations, the wires introduced an earlier mode transition 

that occurred at lower U*, and corresponded to an early lock-in to the structural mode. The 

maximum response was moderately reduced for the cylinder with wires and for U* > 6, the response 

was largely eliminated by the wires. Furthermore, the amplitude response of the flexibly mounted 

cylinder with wires was sensitive to bias in the angle of the oncoming stream. 

 

1.4 Flow past a tethered sphere 

 

Research involving tethered spheres has experienced somewhat of a resurgence in recent years. 

Applications to ocean mooring systems have necessarily resulted in deterministic models based on 

approximate theoretical analyses. These studies usually involved the response of ocean-mooring 

systems excited by finite-amplitude waves. However, the response of (submerged) structures 

exposed to a uniform flow, despite its apparent simplicity, has received very little attention. It is this 

issue to which we address the following question: does a tethered sphere vibrate in a uniform flow, 

and if so what are the mechanisms causing these vibrations. 

 

1.4.1 Tethered spheres in oscillatory flows 

 

The vast majority of work on tethered spheres were concerned with the action of surface waves on 

tethered buoyant structures. For example, the investigations of Harleman & Shapiro (1961) and Shi-

Igai & Kono (1969) employed empirically obtained drag and inertia coefficients for use in 

 19 



Morison’s equation. Consequently, because the waves represented harmonic forcing functions, the 

tethered sphere was found to vibrate vigorously. However, the coupling of the wave motion and the 

dynamics of the sphere resulted in complicated equations of motion from which it is difficult to 

understand the underlying physics. 
 
Gottlieb (1997) investigated a nonlinear, small-body mooring configuration excited by finite-

amplitude waves and restrained by a massless elastic tether. A Lagrangian approach was formulated 

in which the stability of periodic motion was determined numerically using Floquet analysis and 

revealed a bifurcation structure including ultrasubharmonic and quasi-periodic responses. The 

hydrodynamic dissipation mechanism was found to control stability thresholds, whereas the 

convective terms enhanced the onset of secondary resonances culminating in chaotic motion. 

Consequently, excitation by finite-amplitude waves may generate a complex transfer of energy 

between the modes of motion for wave frequencies that are integer multiples of the system natural 

frequencies. 
 
This work was extended by Gottlieb & Perlin (1998) in which the nonlinear large-amplitude period-

doubling response of a submerged tethered sphere excited by finite-amplitude waves was 

investigated. Experiments were performed in a gravity-wave/air-sea interaction laboratory, and 

compared to a theoretical model previously derived by Gottlieb (1997). The theoretical model 

successfully captured the dominant period-doubling topology whereas a standard Morison-based 

formulation does not. The latter exhibits pure external excitation while the period-doubling threshold 

was found to be governed by the parametric excitation induced by the nonlinear convective terms. 

These results shed light on the magnitude of the nonlinear wave-excited drag force which cannot be 

estimated using coefficients estimated from simple periodic motion. 

 

1.4.2 Tethered spheres in uniform flows 

 

Returning now to the question at the beginning of this section, Williamson & Govardhan (1997) 

found that a tethered sphere does indeed vibrate in a uniform flow. In particular, they found that it 

will oscillate vigorously at a transverse saturation amplitude of close to two diameters peak-to-peak. 

This transverse oscillation frequency was at half the frequency of the in-line oscillations, although 

the natural frequencies of both the in-line and transverse motions were the same. In the Reynolds 

number range of their experiments (Re < 12 × 103), the response amplitude was a function of the 

flow velocity. However, they found that a more suitable parameter on which to gauge the response is 

the reduced velocity, U*. Furthermore, the normalized amplitude was reasonably independent of the 

mass ratio or tether length ratio, except insofar as these groups influence the value of the natural 

frequency. However, conclusions regarding the synchronization of natural and vortex formation 

 20 



frequencies were lacking due to the large scatter in the literature of the vortex formation frequency 

in the wake of a sphere. 
 
Govardhan & Williamson (1997) went on to find that the saturation RMS response value increases 

with mass ratio. Also, the maximum amplitude was approximately 1.1 diameters, regardless of the 

mass ratio (a Mode II response). It was also found that the vortex shedding frequency (for a 

stationary sphere) crossed the natural frequency for the tethered sphere at the same reduced velocity 

U* ≈ 5, at which the local peak in the RMS response occurred. This suggests that the local peak in 

the RMS response is caused by a resonance between the natural frequency of the tethered body and 

the wake vortex shedding frequency, as one might expect, and is known as a Mode I response. For 

high mass ratios (typically M* > 1), the oscillation frequency at large reduced velocity tended toward 

the natural frequency. However, it is interesting to note that the oscillation frequency for lower mass 

ratios (M* < 1) at high U* did not correspond to either the natural frequency or the vortex shedding 

frequency for a stationary sphere. In addition, unless one takes into account the tendency of a 

tethered sphere to vibrate, an increase in the drag of the order of 90% is to be expected. 
 
Up to now, spheres of low mass ratio have been studied (primarily in water channel facilities). 

However, a wide range of mass ratios and reduced velocities may be examined by performing 

experiments in a wind tunnel. Jauvtis et al. (2001) focused on mass ratios between M* = 80 and M* = 

940 and reduced velocities in the range 0 < U* < 300. For the sphere of mass ratio 80, they found a 

new mode of vibration (which they define as Mode III) and which extends over a broad regime of 

U* from 20 to 40. Because of the high mass ratios involved, the oscillation frequency remained very 

close to the natural frequency of the tethered sphere, whereas low M* yielded oscillation frequencies 

higher than, and depart significantly from, the natural frequency (Govardhan & Williamson (1997)). 

This mode cannot be explained as the classical lock-in effect, since between 3 and 8 cycles of vortex 

shedding occurs for each cycle of sphere motion. Although no explanation is given here, they note 

that there must exist vortex dynamics which are repeatable in each cycle, and which give rise to the 

fluid forcing component that is synchronized with the body motion. For reduced velocities beyond 

the regime for Mode III, another vibration mode was discovered that grew in amplitude and 

persisted to the limit of flow speed in the wind tunnel. The sphere dynamics of this “Mode IV” were 

characterized by intermittent bursts of large-amplitude vibration, in contrast to the periodic 

vibrations of Modes I-III. In addition, despite these intermittent bursts, the vibration frequency of 

this mode remained very close to the natural frequency throughout the range of up to at least U* = 

300. With the vortex shedding frequency between 40 and 50 times the oscillation frequency, the 

vortex shedding cannot be responsible for these large vibrations, and the origin of these transient 

bursts remains unknown. The amplitudes and the periodic nature of these oscillations for these 

modes are shown in Figure 1.4.1. 
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Figure 1.4.1. Amplitude response and periodicity ( 2 /rms maxy y ) for a tethered sphere, 

showing that the Mode IV response is not sinusoidal (from Jauvtis et al. (2001)). 

 

 

1.5 Scope of the present investigation 

 

In light of the comprehensive background information provided above, we are now able to present 

the scope of the present investigation. We first note the major limitation experienced by Govardhan 
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& Williamson (1997) and Williamson & Govardhan (1997): the ability to explore high reduced 

velocities is limited by the experimental arrangements. This was overcome to some extent by Jauvtis 

et al. (2001) by changing the focus from water tunnels to wind tunnels, albeit by investigating very 

high mass ratios (M* = O(100)). This enabled reduced velocities up to U* = 300 to be explored, and 

as a result, four distinct modes of sphere response were observed, two of which were observed for 

low mass ratios (M* = O(1)). 
 
This problem is also overcome numerically, simply because the range of Froude numbers (and hence 

reduced velocities) that is possible to investigate is infinite, as will be shown in Chapter 2. We 

observe that for the case of the flow-induced vibrations of a tethered sphere, the mass ratio is 

perhaps the most important parameter, and accordingly we choose to look at two distinct mass 

ratios: M* = O(0.1) and M* = O(1). For the M* = O(1) case, the tether length is also varied from L* 

= 5 up to L* = 10, in order to investigate to what extent the changes in the tether length affect the 

sphere response. Like Jauvtis et al. (2001), we examine higher reduced velocities, and undertake a 

detailed analysis into the flow physics with the intention of describing and characterizing the 

resultant motion of the tethered sphere. In addition, we present results for the first time of the 

theoretically important case of a neutrally buoyant tethered sphere, M* = 1. 
 
This thesis is organized as follows. In Chapter 2, we present the methods used to investigate the 

motions of a tethered sphere in a uniform flow. Derivations of the governing equations of motion for 

the sphere are performed in §2.1, and the procedure for time integration of these equations is shown 

in §2.2. In §2.3, we briefly discuss the spectral element method and its applications in unsteady 

flows, followed by the major differences in the numerical and experimental simulations in §2.4. We 

also examine a few visualization techniques presently used to elucidate vortical structures in 

complex flows (§2.5). Mesh independence is verified for a stationary sphere in §2.6 for Reynolds 

numbers of Re = 300 and Re = 500. Finally, the effect of the convergence criteria and the relaxation 

parameter is presented for a tethered sphere in §2.7 and the experimental method and setup is 

explained in §2.8. 
 
A discussion of the results commences in Chapter 3. We first look at a stationary sphere in Chapter 3 

and examine the flow structures observed at particular Reynolds numbers up to Re = 500. These 

results are then used as a basis of comparison to analyze the effect of sphere rotation as presented in 

Chapter 4. In particular, we examine in detail the outcomes of low-velocity rotations about the non-

streamwise (§4.2) and streamwise (§4.3) axes respectively. We then proceed to study the flow-

induced vibrations of a three-dimensional tethered sphere. We present findings in relation to the 

topic of this thesis, namely the flow-induced vibrations of a tethered sphere in Chapter 5, and look at 

a range of mass ratios and tether lengths, with the aim of examining the underlying physical 

mechanisms generating the observed motions. 
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In Chapter 6, we briefly summarize the results found in Chapters 3 - 5 for the four cases examined. 

Finally, a full list of references is presented at the end of the thesis. 



 
 
Chapter 2 
 
Methodology and Mesh 
Independence 
 
 
The flow-induced vibration of a tethered sphere when immersed in a uniform flow is a problem that 

has been investigated recently by experimental techniques exclusively. This study aims to 

investigate the dynamics of a tethered sphere computationally, which will be of great practical use to 

the ocean engineering industry. Furthermore, direct numerical simulations are employed without any 

turbulence or sub-grid scale models and, as a result, only laminar flow is under consideration, 

whereas the experiments described in the previous chapter were performed in turbulent flow 

conditions. The use of DNS enables the accurate evaluation of pressure, velocity and other flow 

variables of interest, in contrast to experimental techniques that do not provide as much insight to 

the flow physics. 
 
Since the geometry is axisymmetric, we employ a spectral-element discretization for the plane of 

symmetry. A Fourier expansion is used in the azimuth to extend the model to three dimensions. This 

chapter describes the implementation of this numerical procedure. In addition, tests are performed to 

verify the accuracy of the method as well as mesh independence. Furthermore, present techniques of 

vortex visualization are discussed and the experimental procedure used to analyze the response of 

the tethered sphere at low Reynolds numbers is outlined in the final section. 
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Figure 2.1.1. The problem geometry and coordinate system. 

 
 

2.1 Problem formulation and governing equations of the 

tethered sphere 

 

We examine the flow-induced vibrations of a tethered sphere using a spectral-element/spectral 

numerical method. The problem geometry and coordinate system is shown in Figure 2.1.1. The 

forces acting on the sphere are of three types: a structural force T (the tension in the tether); a 

buoyancy force B; and the fluid forces Fd, Fy and Fz, which denote the components of the fluid forces 

acting in the x-, y-, and z-directions respectively. We make only one assumption: the tether is 

presumed to be inextensible, ie. there is no radial movement along the tether axis. This assumption 

turns out to be a very good one, as Williamson (private communication, 2002) points out that 

experimentally there appears to be very little movement in the radial direction. 
 
A free-body diagram of the sphere shows that the tension in the tether is linked to the buoyancy and 

fluid forces by the relation 
 

 ( )cos sin cos sin sind y zT F F B Fθ θ φ θ φ= + + + . (2.1.1) 

 
We now invoke Newton’s 2nd Law of Motion to relate the acceleration of the sphere in terms of the 

forces acting on it as 
 

  (2.1.2) cosdmx F T θ= −��
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 ( ) sin cosymy F B T θ φ= + −��  (2.1.3) 

 sin sinzmz F T θ φ= −�� . (2.1.4) 
 
In order to avoid repetition, we will now work with only the x-component equation of motion, 

Equation (2.1.2). We then substitute Equation (2.1.1) into Equation (2.1.2) and collect like terms to 

yield 
 

 ( ){2sin cos sin sin cosd y zmx F F B Fθ }φ φ θ= − + +�� θ . (2.1.5) 

 
Equation (2.1.5) is in dimensional form, so the non-dimensional forms of the fluid forces and 

buoyancy are used (see nomenclature) to obtain 
 

 
2

2

2sin 1 cos sin cos sin
2

s
d y z

s

U A gVx C C C
V U A

ρρ θ φ φ θ
ρ ρ

         = − + − +        
         

�� θ . (2.1.6) 

 
Figure 2.1.1 is used to relate the polar coordinates in Equation (2.1.6) to Cartesian coordinates. The 

acceleration of the sphere thus becomes: 
 

 ( )
2

2 2
2 2

21
2

s
d y z

s

U A gVx L x C C y
VL U A

ρρ
ρ ρ

         = − − + − +        
         

�� C z x . (2.1.7) 

 
Finally, the governing parameters in Equation (2.1.7) are defined as follows: 
 

 * s

f

mM
m

sρ
ρ

= ≡  (2.1.8) 

 2

2 4
3

gV
U A Fr

α = ≡ 2

1  (2.1.9) 
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2 4
U A U

V D
γ = ≡ . (2.1.10) 

 
Note that Equations (2.1.8) and (2.1.9) define non-dimensional parameters, whereas γ defined in 

Equation (2.1.10) has units of acceleration. 
 
Substitution of the above parameters into Equation (2.1.7) results in the following equations of 

motion for the tethered sphere, where the y- and z-components are included for completeness: 
 

 ( )( )
2

*
*

1 1 1d y z
x x yC C M C

M L L L
α

γ

   z x
L

  = − − + − +     



      

��
 (2.1.11) 

 ( )( )
2

*
*

1 1 1y d
y y xC M C C

M L L L
α

γ

     = − + − − +           

��
z

z y
L

 (2.1.12) 
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 ( )( )
2

*
*

1 1 1z d y
z z xC C C M

M L L L
α

γ

   y z
L

  = − − + + −     



      

��
. (2.1.13) 

 
It is apparent from the form of Equations (2.1.11), (2.1.12) and (2.1.13) that the dynamics of the 

tethered sphere are described by a set of coupled, nonlinear equations. Thus, the solutions of these 

equations are best tackled with a predictor-corrector technique. 
 
Solving fluid-structure interaction problems generally involves the use of deforming and/or moving 

computational domains. The arbitrary Lagrangian-Eulerian (ALE) formulation has been used 

successfully in the past for spectral discretizations involving flow-induced vibrations (see, for 

example, Warburton & Karniadakis (1996)). However, for the tethered sphere problem the difficulty 

of using a deforming mesh is avoided by attaching the reference frame to the sphere. Using Figure 

2.1.1, this mapping is given by the following transformation: 
 

  (2.1.14) ( )x x X t′= +

  (2.1.15) ( )y y Y t′= +

 , (2.1.16) ( )z z Z t′= +
 
where 
 

  (2.1.17) ( ) ( )cosX t L tθ=

  (2.1.18) ( ) ( ) ( )sin cosY t L t tθ φ=

 ( ) ( ) ( )sin sinZ t L t tθ φ= . (2.1.19) 
 
Similarly, the velocity and pressure fields are transformed as follows: 
 

 
t

∂′= +
∂
Xu u  (2.1.20) 

  (2.1.21) p p′=
 
where X = (X,Y,Z)(t). 
 
Equations (2.1.14) - (2.1.16) provide the relationship between an inertial coordinate system (denoted 

by a prime) and the non-inertial coordinate system attached to the sphere. The equations for the 

tethered sphere ((2.1.11) - (2.1.13)) and the fluid (to be discussed in §2.3) are solved in the non-

inertial coordinate system and, for the purposes of presenting the results, are transformed back to the 

original coordinate system using Equations (2.1.14) - (2.1.16). 
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2.2 Time-advancement of governing equations 

 

The equations governing the motion of the fluid are the unsteady, viscous, incompressible Navier-

Stokes and continuity equations: 
 

 ( ) ( ) ( )1 , ,p
t

ν
ρ

∂ = − + + −
∂
u L u N u A X u∇ p

)n
B
−

 (2.2.1) 

 , (2.2.2) 0=u∇ i
 
written here in the reference frame of the sphere, where u = u(z,r,θ,t) = (u,v,w)(t) is the velocity 

field, N(u) represents nonlinear advection terms and A(X,u,p) is an additional acceleration 

introduced by the transformation (2.1.14) - (2.1.16) and is equivalent to the acceleration of the body. 

The variables z, r, θ, and t are the axial, radial, azimuthal and time coordinates and u, v, w are the 

velocity components in the axial, radial and azimuthal directions. The nonlinear operator in Equation 

(2.2.1) is defined as: 
 

 . (2.2.3) ( ) ( )= −N u u u∇i
 
Also, the linear operator L(u) in Equation (2.2.1) is defined as 
 

 . (2.2.4) ( ) ( ) ( )2≡ = − × ×L u u u u∇ ∇ ∇ ∇ ∇i
 
Because splitting methods generally result in inconsistent boundary conditions, splitting errors result 

which appear in the form of boundary layers in the velocity-divergence field (Karniadakis & 

Henderson (1998)). To minimize these splitting errors, we use a time-splitting algorithm developed 

by Karniadakis et al. (1991) that introduces a new pressure boundary condition. This reduces the 

thickness of the divergence boundary layers to O(ν∆t)J, where J is the order of the time-integration 

scheme employed. The advantage of this scheme is that it reduces the coupled system of Equations 

(2.2.1) and (2.2.2) into a set of separately solvable equations for the pressure and velocity, which is 

crucial in high-resolution computations for flows in complex geometries (Karniadakis (1990)). 
 
Using this scheme, the velocity and pressure fields are propagated over a time interval ∆t to 

determine the fields un+1, pn+1 in three substeps. However, given the initial displacement of the 

sphere, we first predict the velocity of the sphere (uB) and its displacement (xB) at the new time 

instant (n + 1). For the first time through the loop, this is given by: 
 

  (2.2.5) ( ) ( ) ( ) (1 * 1 23 3n n n
B B B
+ −= − +u u u u

 ( ) ( )
( ) ( ) ( )1 * 1

1 * 5 8
12

n n n
n n B B B

B B t
+ −

+ + −= + u u ux x ∆ . (2.2.6) 
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Note that Equation (2.2.5) is just quadratic extrapolation from known values at the previous 

timesteps. 
 
With these new estimates of the displacement and velocity of the sphere, we proceed to solve the 

fluid equations (2.2.1) - (2.2.4). The first substep involves solving the convective (nonlinear) terms 

for an intermediate velocity field  as follows: û
 

 
( )

( )
( ) ( )1ˆ n nn
B B

t t

+ −− = − ∆ ∆  

u uu u N u 

)1 n
B

+

)1 n
B

+

, (2.2.7) 

 
where the term in brackets is the acceleration of the sphere A(X,u,p). For the first time through the 

loop, Equation (2.2.7) is solved using a third-order Adams-Bashforth scheme. For subsequent 

iterations, we use a third-order Adams-Moulton method. The solution of Equation (2.2.7) is then 

given by: 
 

  (2.2.8) ( ) ( ) ( ) ( ) ( )(
1

1

0

ˆ
J

n n n q n
q B

q
t α

−
+ −

=
= + ∆ − −∑u u N u u

 
for the first time through the loop and 
 

  (2.2.9) ( ) ( ) ( ) ( ) ( )(
1

1 1

0

ˆ
J

n n n q n
q B

q
t β

−
+ + −

=

= + ∆ − −∑u u N u u

 
for subsequent iterations, where the constants αq, βq are the Adams-Bashforth and Adams-Moulton 

coefficients respectively and are compiled in Table 2.2.1 for schemes of order J (see Chapra & 

Canale (1998) or Gear (1973)). 

 

J α0 α1 α2 β0 β1 β2 

1 1      

2 3/2 -1/2  1/2 1/2  

3 23/12 -16/12 5/12 5/12 8/12 -1/12 
 

Table 2.2.1. Coefficients for Adams-Bashforth predictors and Adams-Moulton correctors. 

 

The second substep involves solving the equation for the pressure, namely: 
 

 ( ) ( 1
21 ˆ̂ ˆ np

t
+− = −

∆
u u ∇ ) , (2.2.10) 

 
where  is a second intermediate velocity field. By taking the divergence of Equation (2.2.10) and 

imposing the continuity constraint that the second intermediate velocity field be divergence-free, a 

Poisson equation for the pressure is obtained: 

ˆ̂u
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 2 1 ˆ 0p
t

−
∆

u∇ ∇ i = . (2.2.11) 

 
Equation (2.2.11) must be solved together with the appropriate Neumann pressure boundary 

condition on the surface of the sphere given by 
 

 
( )

( )
1

12

0

n J
n q n q

q
q

p
n

β ν
+ −

−

=

∂ = − ×∂ ∑n N u u∇ ∇i − ×   on Γ, (2.2.12) 

 
where n is the unit normal to the boundary Γ. Equation (2.2.12) is evaluated using information from 

the previous time steps, and the rotational form of the viscous term reduces splitting errors at 

prescribed velocity boundaries to the same order as the time-stepping. At solid or moving walls (ie. 

the surface of the sphere), the Dirichlet boundary conditions  for the fluid velocities are set to 

match the prescribed wall velocities as given by 

0uG

 
 . (2.2.13) ( )1

0
n u+ =u G

 
The third and final substep involves solving for the diffusion terms as follows: 
 

 
( )

( )
1 ˆ̂n

t
ν

+ − =
∆

u u L u  (2.2.14) 

 
This is performed implicitly using a Crank-Nicolson method that is second-order accurate in both 

space and time, together with a theta scheme modification (see Canuto et al. (1988)). This requires 

the velocity of the reference frame at the boundaries that comes from the current best estimate of 

. ( )1n
B
+u

 
Karniadakis et al. (1991) demonstrate that the above scheme produces time-differencing errors in the 

velocity field that are one order smaller in ∆t than the corresponding error in the boundary 

divergence. In particular, a time-treatment of first-order for Equation (2.2.12) can expect to produce 

second-order results in the velocity field. Note that higher-order accurate treatments are generally 

less stable and require reduced timesteps. 
 
We now have estimates of the fluid velocities and pressures at the (n + 1) step. We then use these to 

calculate the components of the fluid force coefficients acting on the body, ie. the drag, lateral and 

side force coefficients. The motion (acceleration) of the sphere is then calculated using Equations 

(2.1.11) - (2.1.13). 
 
The next step is then to update or correct the velocity and displacement of the sphere. For the first 

time through the loop, these corrections are given by: 
 

 ( ) ( )
( ) ( ) ( )1 1

1 * 25 2
24

n n n
n n

B B t
+ −

+ − += + ∆x x xu u
�� �� ��

 (2.2.15) 
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 ( ) ( )
( ) ( ) ( )1 * 1

1 * 5 8
12

n n n
n n B B B

B B t
+ −

+ + −= + u u ux x ∆ . (2.2.16) 

 
For subsequent iterations, the corrections are given as: 
 

 ( ) ( )
( ) ( ) ( )1 * 1

1 ** 25 2
24

n n n
n n

B B t
+ −

+ − += + ∆x x xu u
�� �� ��

 (2.2.17) 

  (2.2.18) ( ) ( ) ( ) { }(1 1 * 1 **n n n n
B B B Bε

′+ + + += + −u u u u )1 *

 ( ) ( )
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In Equation (2.2.18), we improve the convergence characteristics by employing underrelaxation, in 

which ε is the relaxation parameter. The underrelaxation parameter was introduced after extensive 

testing without it found that for some parameter combinations, the method was unstable except for 

very small timesteps. The introduction of underrelaxation improves the convergence quality 

considerably. The choice of an optimal value for ε is highly problem-specific and, because we are 

solving a very large system of PDEs that arise when modeling continuous variations of variables, the 

efficiency introduced by a wise choice of ε can be extremely important (Chapra & Canale (1998)). 

This will be further discussed in §2.7. 
 
The local truncation errors introduced by the approximations are typically of the order (∆t3) for both 

the third-order Adams-Bashforth predictors and the Adams-Moulton correctors used in the present 

method, although overall the combined problem is second-order accurate. Even though the errors are 

small, the position of the sphere drifts away from the surface defined by the tether, although only 

marginally over a single time step. However, when considering the long time traces that are needed 

for accurate determinations of oscillation amplitudes and frequencies for example, this position 

drifting is no longer insignificant. Accordingly, for the present simulations the position of the sphere 

 is projected onto the surface defined by the tether and, for consistency, the velocity of the 

sphere is also projected. This stabilizes the scheme without affecting the accuracy. 

( )1 **n
B
+x

 
Finally, convergence of the system is monitored by three convergence criteria. These are represented 

by the following formulae: 
 

 B
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 (2.2.20) 
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Equation (2.2.20) states that the normalized change in the velocity of the sphere between iterations 

must be less than some tolerance utol, whereas Equation (2.2.21) asserts that the normalized 

maximum change in the velocity field between iterations must be less than the tolerance utol at any 

point in the entire domain. The last convergence criterion ensures that the normalized change in the 

force of the body between iterations is less than some tolerance Ftol. For all of the simulations, the 

values of utol and Ftol were kept at 0.0001 and 0.01 respectively. If these criteria are not met, then the 

process restarts at the first substep, ie. the solution of Equation (2.2.7). However, if Equations 

(2.2.20) - (2.2.22) are satisfied, then we continue to the next step. 

 

2.3 Spatial-discretization: the spectral/spectral-element 

method 

 

Over the past few decades, three dominant grid-based classes of techniques for solving the Navier-

Stokes equations have emerged. These are the finite-difference, finite-element and spectral methods. 

Recently, the spectral-element method, developed by Anthony Patera and co-workers in the early 

1980’s, has become one of the most widely used computational tools applied to fundamental flow 

problems where high accuracy is important. This is mainly because the spectral-element method 

combines the generality of finite-element methods with the accuracy of spectral methods in a more 

flexible ratio than is found in either technique alone (Patera (1984)). As a result, complex problems 

may be studied that yield highly accurate results. 
 
The first unsteady and three-dimensional simulations of flow past a sphere were conducted by 

Tomboulides et al. (1993a). Like the present study, they used a spectral-element discretization in the 

z-r plane and analysed the flow in φ in its Fourier components because of the inherent periodicity of 

2π in the azimuthal direction. Similar spectral-element/spectral methods for axisymmetric 

geometries in cylindrical coordinates have been employed by Tomboulides (1992), Tomboulides et 

al. (1993b), Ghidersa & Dusek (2000), Thompson et al. (2001) and Blackburn & Lopez (2002), to 

name but a few. 
 
We start by considering the flow past a sphere in cylindrical coordinates z, r and φ, with the origin 

located at the centre of the sphere. The z-axis is parallel to the asymptotic flow velocity U, r is the 

distance to the z-axis and φ is the azimuthal angle. Having discussed the semi-discrete formulation in 

§2.2, we now turn to the spatial discretization of Equations (2.2.1) - (2.2.4). As previously 

mentioned, due to the homogeneity in the azimuthal direction, the velocity field can be decomposed 

using a Fourier series expansion in φ by 
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where the two-dimensional complex Fourier modes um are defined as 
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and m is an integer wavenumber. Substitution of Equation (2.3.1) into the governing Equations 

(2.2.1) - (2.2.2) results in the following transformed equations 
 

 ( )
2

2
2

1m m
m z

u p m u
t z

ν
ρ rz mr

 ∂ ∂
+ ℑ   = − + − ∂ ∂ 

 
N u ∇  (2.3.3) 

 ( )
2

2
2

1 1m m
m rzr

v p m v
t r r

ν
ρ

 ∂ ∂ ++ ℑ   = − + − −  ∂ ∂  
N u ∇ 2

2i
m m

m w
r

ν  (2.3.4) 

 ( )
2

2
2

1 i 1 2im
m m rz m

w m mp w
t r rφ

ν
ρ

 ∂ ++ ℑ   = − + − +  ∂  
N u ∇ 2 m

m v
r

ν , (2.3.5) 

 
where  refers to a Fourier transform in φ, and we have used the following definitions for the 

gradient and Laplacian 
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It is evident in Equations (2.3.4) - (2.3.5) that there is a strong coupling in the linear terms. 

Following Orszag (1974), and Tomboulides & Orszag (2000), to decouple these equations we 

introduce the following change of variables 
 

  (2.3.8) im mv v w= +�

 . (2.3.9) im mw v w= −�
 
Equations (2.3.3) - (2.3.5) then reduce to the uncoupled set 
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where 
 

  (2.3.13) ( ) ( ) ( )im m mr r φ
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In practice, we keep only the positive wavenumber half of the spectrum (m ≥ 0), as the modes 

possess the symmetry u-m = um. For reasons of efficiency, the z-derivative terms in Equations 

(2.3.10) - (2.3.12) are computed in Fourier space, whereas the nonlinear products are computed in 

physical space (Karniadakis (1989)). In other words, the nonlinear substep of the timestepping 

scheme is performed in physical space, and the second and third substeps are performed in Fourier 

space. 
 
The time-integration of Equations (2.3.10) - (2.3.12) (as discussed in the previous section) results in 

a set of Helmholtz-like equations for the velocity and pressure modes. The spatial discretization of 

these equations in the z-r plane is accomplished using two-dimensional spectral elements, as 

described in detail in Maday & Patera (1989) and reviewed here for completeness. We break the 

computational domain up into K elements, called “spectral elements,” where each element is given 

by Ωk = [ak, bk]. The dependent and independent variables in each spectral element are approximated 

by tensor-product polynomial expansions of order N. The Helmholtz equations are of the form 
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where um is either a velocity or pressure Fourier mode, and the constant λ2 is equal to zero for the 

pressure and γ0/(ν∆t) for the velocity equations (where γ0 is a coefficient associated with the order of 

the time-stepping used). To simplify the notation, Equation (2.3.15) may be written as 
 

 , (2.3.16) ( )2 2 gλ φ− =∇

 
subject to Dirichlet or Neumann boundary conditions on ∂Ω. 
 
The variational statement equivalent to Equation (2.3.16) is well documented in the finite-element 

literature (see Gresho & Sani (2000)). However, numerically we work with the weighted residual 

approximation resulting from Equation (2.3.16), so that the problem is thus: Find  such 

that 
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0Hφ∈ Ω
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where  and  is the Sobolev space for which all functions vanish at the boundary 

∂Ω. The spectral element discretization corresponds to numerical quadrature of the variational 

( )1
0Hψ ∈ Ω ( )1

0H Ω
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statement (Equation (2.3.17)) restricted to the discrete space Xh, which is defined in terms of the 

parameters K and N. We perform Gauss-Lobatto-Legendre quadrature and select appropriate Gauss-

Lobatto points k
pqξ  and corresponding weights pq p qρ ρ ρ=

[ ] 2

1

0

pq
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k

N
k

pq pq
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φ λ

ρ ψ

=

=

⋅ +
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where  is the Jacobian of the transformation from global to local coordinates. The next step is to 

choose a suitable basis which reflects the structure of the piecewise smooth space X

k
pqJ

h (Karniadakis 

(1990)). We use Lagrange polynomials that provide accuracy of order N for the solution over that 

particular domain and are given by 
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These polynomials are known as the Gauss-Lobatto-Legendre (GLL) interpolants. The chosen nodes 

ξi are the solutions of the equation 
 

 , (2.3.20) 0=

2

 
where LN (ξ) is the Legendre polynomial of degree N. Singular Sturm-Liouville theory (see Gottlieb 

& Orszag (1977)) states that the expansion of any smooth function using the GLL interpolants 

converges exponentially fast, which is an important reason for choosing this basis. 
 
For the present formulation, the GLL interpolants are used in all elements in the entire domain. This 

departs somewhat from the method employed by Tomboulides (1992), who used Lagrange 

interpolants based on zeroes of Jacobi (0,1) polynomials in the elements adjacent to the axis of 

symmetry and GLL interpolants in the rest of the elements. In the present approach, the singular 

terms in Equations (2.3.10) - (2.3.12) are set equal to zero at the axis. As pointed out by Blackburn 

& Lopez (2002), for modal variables other than u0,  and p0, this is equivalent to assuming that 

values go toward zero faster than r2 as r → 0. This retains the efficiency of standard spectral-element 

techniques as well as preserving spectral convergence for typical axisymmetric problems (see 

Gerritsma & Phillips (2000)). 
 
Having selected the basis, the dependent and independent variables are expanded in terms of tensor 

products as 
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where (r1, r2) defines a local coordinate system. The functions (2.3.21) are then inserted into (2.3.18) 

and the test functions ψmn chosen (which are non-vanishing at only one global node) to arrive at the 

discrete elemental equations for the Helmholtz operator, given by 
 

 , (2.3.22) ( )2 ˆ ˆk k k k
ijmn ijmn mn ijmn mnA B Bλ φ− = kg

 
where  is the stiffness matrix and  is the mass matrix, both of which are defined in 

Karniadakis (1989). To complete the development, direct stiffness summation is applied to Equation 

(2.3.22) in order to construct a global assembly of the elemental equations. The advantage of the 

procedure outlined above is that the separate elliptic equations for the pressure and velocity can be 

efficiently and robustly solved directly, using direct inversion of the linear matrix problems, that 

only needs to be performed once at the start of the timestepping. Following this, the pressure and 

diffusion substeps are efficiently tackled using only matrix multiplications. 

k
ijmnA ˆ k

ijmnB

 

2.4 Differences between experimental and numerical 

simulations 

 

The work of Govardhan & Williamson (1997), Williamson & Govardhan (1997) and Jauvtis et al. 

(2001) highlights the differences involved when performing experiments and running numerical 

simulations. The problem arises in the need to characterize the motion of the sphere in terms of a 

suitable parameter. Govardhan & Williamson (1997) realized that scaling their data against the 

Reynolds number did not provide much insight, but when they scaled against the reduced velocity, a 

lot more information was made available. This is not surprising, since the reduced velocity (which is 

the inverse of the system natural frequency) has been used extensively in vortex-induced vibration 

problems (see Chapter 1). 
 
However, a range of reduced velocity is obtained experimentally by increasing the flow velocity U. 

This has the undesirable side-effect (numerically speaking) of also increasing the Reynolds number 

Re. For example, in the experiments of Williamson & Govardhan (1997), a reduced velocity range 

of approximately 1 < U* < 9 was investigated for a mass ratio of M* = 0.082. This corresponded to a 

Reynolds number range of approximately 750 < Re < 13000. For a mass ratio of M* = 0.76 

(Govardhan & Williamson (1997)), a reduced velocity range of 1 < U* < 22 was made possible, 

corresponding to a Reynolds number range of roughly 1000 < Re < 14000. Furthermore, Jauvtis et 

al. (2001) investigated mass ratios up to M* = 940, which represented a reduced velocity range of 

roughly 3 < U* < 250. However, the corresponding Reynolds number range was not identified. 
 

 37 



Nonetheless, in all cases Reynolds numbers typically of O(103 - 104) were obtained. This differs 

greatly from the Reynolds numbers used numerically in the present study, which are typically an 

order of magnitude smaller. Moreover, the vortex dynamics in the near wake at the Reynolds 

numbers observed experimentally are essentially inviscid, with the effects of viscosity reduced to 

setting the boundary layer thickness at separation. Without knowing the precise effect of the 

Reynolds number, it is impossible to determine a priori if similar modes of response will be 

observed numerically, where the effects of viscosity are more pronounced. 
 
As previously mentioned, a range of reduced velocity is obtained by increasing the flow velocity 

(and hence Re) experimentally. When performing the computations, however, it is desirable to keep 

the Reynolds number fixed at a suitable value. This is because if one increases the Reynolds number 

numerically, smaller scales are gradually introduced as the flow undergoes transition to turbulence. 

In order to accurately capture these small scales, a finer mesh density is required, which translates to 

much higher computational overheads. The question is thus whether it is possible to obtain a range 

of reduced velocities without increasing the Reynolds number. 
 
Thankfully, the answer is yes. The expression for the natural frequency of the tethered sphere system 

is given by Williamson & Govardhan (1997) as 
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, (2.4.1) 

 
where Ca is the added mass coefficient for a sphere and is equal to 0.5. The reduced velocity U* is 

defined as the inverse of Equation (2.4.1). For any given numerical simulation or experiment 

performed, the mass ratio and tether length are kept constant. It is apparent then, that the reduced 

velocity is altered by varying the Froude number Fr, defined as 
 

 UFr
gD

= , (2.4.2) 

 
where g is the (constant) gravitational acceleration. Evidently, g cannot be altered experimentally, so 

the only easy way to vary Fr experimentally is to vary the flow velocity U. However, it makes more 

sense computationally to vary Fr by varying g rather than U. This results in a wide range of reduced 

velocity U*, while the Reynolds number is kept constant at some desirable value that is high enough 

so that the wake is fully three-dimensional and well developed but not fully turbulent. One could 

also vary U and D in combination, although experimentalists prefer just a single sphere. 

Furthermore, it is conceivably possible to numerically investigate reduced velocities up to U* = ∞, 

whereas the range of U* experimentally is limited to the speeds attainable in the flow facility. 
 
To some, the idea of changing g may seem absurd. On the other hand, as noted by Govardhan & 

Williamson (1997), over the entire range of Reynolds number (and U*) in their experiments, they 
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found that the vibrational response of the tethered sphere was essentially independent of the 

Reynolds number, but was a strong function of the reduced velocity. As a result, it is expected that 

similar large-amplitude oscillations will occur numerically although the Reynolds number is much 

smaller. 
 
The next question is, what Reynolds number should be used for the numerical simulations? Due to 

the high costs of computational time, Re should be restricted to the laminar flow regime. Because the 

experimental conditions dictate that the flow is highly unsteady and aperiodic, the same conditions 

should be observed numerically. This means that the (numerical) Reynolds number should be greater 

than approximately Re = 375 (Mittal (1999b)), corresponding to the Reynolds number at which 

planar symmetry is lost. Furthermore, to avoid the appearance of small scales in the flow, the 

Reynolds number should be less than approximately Re = 800 (Tomboulides & Orszag (2000)). 

Thus, the most reasonable Reynolds numbers lie in the range 375 < Re < 800. For all the simulations 

and results for the tethered sphere presented in Chapter 5, a Reynolds number of Re = 500 was 

chosen unless otherwise noted. 
 
Also note that on the related problem of a cylinder undergoing vortex-induced vibration, Blackburn 

et al. (2000) found that two-dimensional direct numerical simulations at a Reynolds number of Re = 

556 (corresponding to a reduced velocity of U* = 5) were inadequate for predicting the full nature of 

the response envelope and of the vortex shedding mechanics. However, three-dimensional 

simulations revealed computationally for the first time the existence of the 2P shedding mode, and 

the response amplitudes, although somewhat smaller than the corresponding experimental results at 

the same Reynolds number, were similar and imitated the experimentally observed behaviour quite 

well. 
 
In addition, the large-scale vortex dynamics that are observed in the wake of a stationary sphere for 

Re in the tens of thousands are fundamentally the same as those observed in the unsteady aperiodic 

regime (Re > 375), as indicated by Sakamoto & Haniu (1995). In conclusion then, we expect 

numerically to obtain large-amplitude oscillations for the tethered sphere at a Reynolds number of 

Re = 500, although whether or not the four distinct modes of vibration observed experimentally will 

also be captured numerically is still a matter for debate. 

 

2.5 Numerical flow visualization techniques 

 

There are a number of flow visualization techniques that are used by numericists to visualize vortex 

structures for laminar and turbulent flows. However, in order to identify vortical regions in complex 

flows, it is first necessary to define what exactly is a vortex. This simple question still lacks an 
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accepted answer. The definitions in §§2.5.1 – 4 for identifying vortex structures are the most widely 

accepted classifications used today. 
 
Lamb (1945) defined a vortex simply as the fluid contained within a vortex tube. This 

uncomplicated definition, however, does not apply to wall bounded flows, such as the laminar flow 

through a pipe in which there exists a vortex tube but obviously no vortex. Similarly, local pressure 

minima, pathlines and streamlines (Lugt (1979)) have been used intuitively to identify vortical 

regions. In order to clarify the debate, Jeong & Hussain (1995) have summarised the current 

techniques and have proposed the following requirements for a vortex core (since the size of a 

vortex in a viscous fluid depends on the identifier’s threshold selected): 
 

(1) A vortex core must have a net vorticity (and hence circulation). Thus, potential flow regions 

are excluded from vortex cores. 

(2) The geometry of the identified vortex core should be Galilean invariant, ie. independent of 

the frame of reference. 
 
Unfortunately, the above requirements do not result in a unique identification scheme. The following 

identification methods all satisfy the above requirements and are compared in order to obtain an 

identification scheme that is best suited for the unsteady viscous flow past bluff bodies. 

 

2.5.1 Vorticity 
 

The vorticity magnitude (ω )  has been used for decades to elucidate coherent structures and 

recently to identify vortex cores (see, for example, Hussain & Hayakawa (1987)). For the present 

purposes, however, this approach may not be very satisfactory because (  does not properly 

identify vortex cores in a shear flow, especially if the background shear is comparable to the 

vorticity magnitude. In the fore-mentioned case of laminar flow through a pipe, the maximum 

vorticity magnitude occurs immediately near the wall, and is characterized by shear, although there 

are by no means any swirling motions. The same may be said of the dynamics of coherent structures 

in near-wall turbulence (Schoppa & Hussain (2000)). Although these examples concern bounded 

flows, even in free shear flows the use of the vorticity magnitude as a vortex core identification 

scheme may prove potentially difficult. For example, Virk et al. (1994) investigated an 

axisymmetric vortex with a strong axial variation in vorticity, and found that a vorticity magnitude 

surface may terminate along the vortex axis (indicating segmented vortices) although there is only 

one continuous vortex column. However, note that for the present problem the background is not a 

shear flow. 

)ω
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For bluff body flows (especially circular cylinders), both experiments and numerical simulations 

have relied on visualizing the vortex structures using the vorticity magnitude. Williamson (1996) 

investigated the wake of a cylinder experimentally and visualized different modes of vortex 

shedding (namely modes A & B) in addition to the Kármán vortex street. Numerical visualizations 

of the vorticity magnitude by Thompson et al. (1996) clearly illuminated the same vortex structures. 

In the unsteady wake of a sphere, however, contours of the vorticity magnitude may not correctly 

identify the vortices, since the “vortical structures” visualized experimentally may be sole artefacts 

of dye propagation and may not necessarily correspond to “true” vortex structures, as pointed out by 

Thompson (private communication, 2003). 

 

2.5.2 Complex eigenvalues of ∇ u  

 

Chong et al. (1990) extended the work of Perry & Chong (1987) by studying three-dimensional flow 

fields from the point of view of the topology of three-dimensional critical points, ie. in a reference 

frame moving with the velocity of that point. The velocity gradient tensor ui,j (or equivalently ∇ u) 

may be decomposed into a symmetric and antisymmetric component, known as the rate-of-strain and 

rate-of-rotation tensors respectively, given by Sij = (ui,j + uj,I)/2 and Ωij = (ui,j – uj,I)/2. The 

eigenvalues σ can be determined by solving the characteristic equation 
 

 , (2.5.1) 3 2 0P Q Rσ σ σ− + − =
 
where the invariants P, Q and R are defined as 
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In Equations (2.5.2) and (2.5.3), the incompressibility constraint has been imposed, ie. ui,i = 0. 

Chong et al. (1990) propose that a vortex core is a region where the eigenvalues σ are complex, 

which implies that the local streamline pattern is closed or spirals in a reference frame moving with 

the point. Complex eigenvalues occur when the discriminant ∆ is positive, ie. 
 

 ( ) ( )3 21 1
3 2 0Q R∆ = + > . (2.5.5) 

 
In other words, whether or not a region of vorticity appears as a “vortex” depends on the local rate-

of-strain field induced by motions outside of the region of interest. However, the above definition of 

a vortex core is inadequate when considering coherent structures with core dynamics that exhibit 

helical vortex lines and strong axial flow (see Melander & Hussain (1993)), and especially for the 
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proper identification of vortices with non-uniform core sizes. This definition is also not suitable for 

mixing layers and evolving jets. 

 

2.5.3 The second invariant of ∇ u  

 

Hunt et al. (1988) defined an “eddy” as a region with positive second invariant of ∇ u, with the 

additional constraint that the pressure be lower than the ambient. The second invariant Q is defined 

in Equation (2.5.3), and represents the local balance between shear strain rate and vorticity 

magnitude. As shown by Jeong & Hussain (1995), Q vanishes at solid boundaries (as does ∆), unlike 

the vorticity magnitude. As a result, vortex identification schemes based on Q and ∆ do not suffer 

from the problems associated with the vorticity magnitude, which does not properly represent 

vortical structures near a wall (see §2.5.1). 
 
Although the definitions based on Q and ∆ produce results that are similar in many situations, the 

inadequacy of the definition based on Q becomes obvious when considering, for example, a 

conically symmetric vortex, as in the previous section. However, unlike the ∆ definition that predicts 

two separate vortical regions, the Q definition predicts a single vortical region with a narrow hollow 

core along the axis of the vortex, which is clearly wrong owing to the almost solid-body rotation of 

the fluid particles along the vortex axis. For most practical cases, the Q definition may be 

insufficient when considering vortices that are subjected to a strong external strain field. 

 

2.5.4 Negative λ2 
 

The inconsistencies between the existence of a pressure minimum and a vortex core described at the 

start of §2.5 arise due to two effects: unsteady straining and viscous effects. By discarding these 

effects, Jeong & Hussain (1995) proposed a new identification criterion that is based on the Hessian 

(p,ij) of the pressure, which contains information on local pressure extrema. By taking the gradient of 

the Navier-Stokes equations, the acceleration gradient tensor ai,j (like the velocity gradient tensor) 

may be decomposed into a symmetric and antisymmetric component as follows: 
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The second term in brackets in Equation (2.5.6) is antisymmetric and is the well-known vorticity 

transport equation, whereas the first term in brackets is symmetric and is given by 
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As stated above, the first two terms in Equation (2.5.7) represent unsteady irrotational straining and 

viscous effects respectively which, when discarded, should provide a better indication for the 

existence of a vortex. Furthermore, the occurrence of a local pressure minimum in a plane requires 

two positive eigenvalues of the tensor p,ij. Thus, only the third and fourth terms in Equation (2.5.7) 

determine the existence of a local pressure minimum due to vortical motion. A vortex core is then 

defined as a connected region with two negative eigenvalues of S2 + Ω2. With λ1, λ2 and λ3 being the 

eigenvalues and λ1 ≥ λ2 ≥ λ3, this definition is equivalent to the requirement that λ2 < 0 within the 

vortex core. Jeong & Hussain (1995) investigated a wide variety of flows where the vortex geometry 

is intuitively clear. They found that for all of the cases examined, the definition based on λ2 proved 

to be superior. 
 
To summarize, the vorticity magnitude definition does not have an a priori defined level, so that the 

identification of vortex boundaries are ambiguous. The definition based on ∆ tends to overestimate 

the size of vortex cores, resulting in noisy boundaries (especially for DNS data). The Q definition, 

although often producing results similar to that of λ2, may be inadequate when vortices are subject to 

a strong external strain field. On the other hand, the definition based on λ2 has been used very 

successfully in the visualization of vortex structures in bluff body flows, especially for spheres (see 

Johnson & Patel (1999)). As a result, for all flow visualizations presented in this thesis, the vortex 

identification scheme proposed by Jeong & Hussain (1995) based on λ2 has been used unless 

otherwise noted. 

 

2.6 Mesh independence: stationary sphere 

 

A detailed grid resolution study was performed to verify the suitability of the mesh used for all of 

the simulations of the flow past a stationary sphere. An initial mesh was used which was known to 

yield acceptable results (see Thompson et al. (2001)) and was scrutinized according to the following 

method. 
 
Two Reynolds numbers were chosen to measure mesh independence: Re = 300 and Re = 500. The 

former was selected to yield results that may be compared to both experimental and numerical data 

by previous investigators (see Chapter 1). Furthermore, at this Reynolds number of Re = 300, the 

flow past a sphere is known to be unsteady and characterized by the presence of periodically shed 

vortices. However, some of the results presented in Chapter 3 are computed at a Reynolds number of 

500 and, as a result, mesh independence needs to be addressed at this extent. 
 
The resolution of the grid was increased by two methods: increasing the order of the polynomial 

interpolants (p-refinement); and increasing the number of elements in the domain (h-refinement). 
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Figure 2.6.1. Variation of the Strouhal number with the order of the polynomial interpolants. 

 

The former is more suited to spectral element methods, due to the exponential convergence inherent 

in spectral techniques. However, in order to allow for a “cleaner” visualization of the vortex 

structures in the wake of the sphere, more elements were added to the original mesh. Furthermore, 

the size of the elements immediately adjacent to the sphere surface was reduced, in order to capture 

more completely the reduced thickness of the boundary layer at Re = 500. Given these adjustments, 

a p-refinement study was then conducted to obtain the particular value of p that was most suitable 

for the present applications. 

 

2.6.1 Re  = 300 

 

At a Reynolds number of Re = 300, drag and lift forces were computed, along with calculated vortex 

shedding frequencies expressed in terms of the Strouhal number St, for values of p in the range 6 < p 

< 10. These measurements are compared with those of selected and accepted previous results, 

namely: Johnson & Patel (1999), Tomboulides & Orszag (2000), Ormieres & Provansal (1999), 

Sakamoto & Haniu (1995), Sakamoto & Haniu (1990), and finally Roos & Willmarth (1971). As 

another convergence criterion, velocity fluctuations for the m = 1 azimuthal mode were measured in 

the near wake at a point 1 diameter downstream of the sphere and 0.5 diameter above the wake 

centreline. The percentage difference (PD) in the solution between the case of interest (p) and the 

highest resolved simulation (p = 10) is used as the primary indicator of mesh independence. For PD 

< 1%, we find that adequate resolution is obtained. 
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Figure 2.6.2. Variation of the drag coefficient with the order of the polynomial interpolants. 
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Figure 2.6.3. Variation of the lift coefficient with the order of the polynomial interpolants. 

 

Figure 2.6.1 shows the results of the mesh independence study for the vortex shedding Strouhal 

frequency. The percentage difference (PD) in the Strouhal number (between the present value and 

the St for the highest resolved case, ie. p = 10) behaves as follows: for p = 6, PD = 0.6%; for p = 7, 

PD = 0.4%; for p = 8, PD = 0.07%; and for p = 9, PD = 0.1%. For all cases, it is evident that the 

effect of increasing p is marginal, and that adequate resolution is obtained for p ≥ 6. We also note 

that the Strouhal number appears to be rather more sensitive to the (area) blockage ratio, as 

discussed shortly. 

 45 



p

u'

5 6 7 8 9 10 11
0.97

0.975

0.98

0.985

0.99

 
 

Figure 2.6.4. Variation of the streamwise fluctuating velocity component with the order of the 

polynomial interpolants. 

 
 
Figure 2.6.2 summarizes the results of the time-averaged drag coefficient. Again, the percentage 

differences are: for p = 6, PD = 1%; for p = 7, PD = 0.6%; for p = 8, PD = 0.3%; and for p = 9, PD = 

0.03%. Furthermore, we find that adequate resolution is obtained for p ≥ 7. 
 
Figure 2.6.3 depicts the results of the time-averaged lift coefficient. We find that for p = 6, PD = 3%; 

for p = 7, PD = 2%; for p = 8, PD = 0.6%; and for p = 9, PD = 0%. The lift coefficient is obviously 

more affected by increasing the resolution than the drag coefficient. In this case, we find that 

adequate resolution is obtained when p ≥ 8. 
 
Finally, measurements of the streamwise fluctuating velocity component are shown in Figure 2.6.4. 

For p = 6, PD = 2%; for p = 7, PD = 0.8%; for p = 8, PD = 0.5%; and for p = 9, PD = 0.07%. 

Clearly, adequate resolution is obtained for p ≥ 7. It is also apparent that due to the spatial position 

of the point used to extract the fluctuating velocities, which is located near the separating shear layer 

and hence provides a measure of the velocity gradients there, the resolution in the near wake is 

satisfactory: this notion is confirmed when examining the smoothness of the vorticity contours, 

which contains jumps at element boundaries when the resolution is insufficient. 
 
Given the measures employed in the previous paragraphs to determine the most efficient value of p 

to use for the simulations, we find that the most cost-effective case is obtained when p = 8. This is 

cost-effective in the sense that all scales observed in the flow for Reynolds numbers up to and 

including Re = 300 are clearly resolved, and running the simulations using p = 8 is much more 

efficient than corresponding simulation runs using p = 9, which only marginally increases the 
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Figure 2.6.5. Mesh used for the stationary and rotating sphere simulations: (a) macro-

elements in the entire domain; (b) close-up of the macro-elements around the sphere. 

 

(b) 

(a) 

resolution properties. For these reasons, all simulations up to and including Reynolds numbers of Re 

= 300 were simulated using p = 8 as the order of the Lagrange polynomial interpolants. The mesh 

used for these simulations is shown in Figure 2.6.5. 
 
Using p = 8 as the basis of the interpolating polynomials, we can now compare the values of Cd, Cl, 

and St to previous measurements and calculations by other authors, namely those cited at the 

beginning of this chapter. Table 2.6.1 shows the results of this comparison. 

 

 

 

 

 

 

 47 



Reference  Cd Cl St 

Present simulations 0.6492 0.0656 0.134 

Tomboulides & Orszag (2000) 0.6714 n/a 0.136 

Johnson & Patel (1999) 0.6560 0.0690 0.137 

Ormieres & Provansal (1999) n/a n/a 0.122 

Sakamoto & Haniu (1990) n/a n/a 0.15 – 0.18 

Sakamoto & Haniu (1995) n/a n/a 0.125 

Roos & Willmarth (1971) 0.6290 n/a n/a 
 

Table 2.6.1. Comparison of different flow quantities against previous research. 

 

For all of the variables employed in the comparison in Table 2.6.1, it is clear that the results from the 

present simulation match those from previous authors, especially those of Tomboulides & Orszag 

(2000) and Johnson & Patel (1999) who employed computational techniques. The experimental 

results of Ormieres & Provansal (1999) and Sakamoto & Haniu (1995) yield lower values of St, 

whereas the results of Sakamoto & Haniu (1990) and Roos & Willmarth (1971) yield higher values 

of the Strouhal number, as expected, probably because of the perturbations introduced by the support 

structures of the sphere and the errors in measuring the vortex shedding frequency. 
 
The effects of blockage were also analyzed by halving the radial and inlet extent of the domain, as 

well as doubling the extent. The values of Cd, Cl and St were all less than 0.1% different to that 

observed in the present simulations in Table 2.6.1, and hence are not depicted here. Furthermore, 

changing the outlet extent of the domain to 20D and 40D resulted in negligible difference in all flow 

quantities. 

 

2.6.2 Re  = 500 

 

An additional mesh independence study was performed at a Reynolds number of Re = 500, primarily 

because this is the Reynolds number that was chosen for the tethered sphere calculations. In 

hindsight, although excellent results were obtained for the stationary sphere and the rotating sphere, 

it appears that the original mesh used for the stationary and rotating sphere simulations for Reynolds 

numbers up to Re = 500 may be unsuitable for the tethered sphere simulations. This is solely due to 

the motion of the tethered sphere, since the flow variables in the immediate vicinity of the object 

need to be highly resolved in order to capture the accelerating movements. 
 
The mesh used for the stationary and rotating sphere computations was greatly altered to incorporate 

the accelerating motion of the tethered sphere. The number of elements around the sphere was 

increased, in order to resolve the deforming and developing boundary layer on the sphere surface. 
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Figure 2.6.6. Mesh used for the tethered sphere simulations: (a) macro-elements in the entire 

domain; (b) close-up of the macro-elements around the sphere. 

 

(b) 

(a) 

The radial and inlet extent of the domain were also decreased to 5D for computational efficiency, 

since it was shown in the previous section that halving the extent produced negligible error. 

Furthermore, perturbations due to the sphere decay away from the sphere at a rate proportional to 

1/r3, where r is the distance from the centre of the sphere, as shown by Batchelor (1967). This means 

that, according to potential theory, at the inlet and radial extent the velocity is less than 0.1% 

different from the freestream velocity. As a final reworking of the original mesh, it was decided to 

increase the extent of the outlet to 20D, simply to capture a minimum of three-to-four vortical 

structures being shed into the wake. This aids in understanding the vortex dynamics of the wake and 

hence in determining the origins for the motion of the sphere. 
 
A Reynolds number of 500 was chosen because this is well within the vortex shedding regime for a 

stationary sphere. The large-scale vortex structures at this Reynolds number are sufficiently strong 

enough to appreciably affect the motion of the sphere, and the planar symmetry observed at lower 

Reynolds numbers is not observed at Re = 500. Because the flow is unsteady and asymmetric, we 

expect to qualitatively observe similar behaviour at these low Reynolds numbers to that of higher 

Reynolds numbers commonly used in experiments cf. Williamson & Govardhan (1997), Govardhan 

& Williamson (1997), Jauvtis et al. (2000). In other words, although the amplitudes of oscillation 

are likely to be dissimilar, the small-scale structures observed for Re > 800 are expected to not 

substantially affect the vortex shedding characteristics of the flow. The macro-elements for the mesh 

used for these simulations are shown in Figure 2.6.6. 
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Also apparent in Figure 2.6.6 is the increased resolution in the immediate vicinity of the sphere. The 

size of the elements adjacent to the surface of the sphere was chosen according to the boundary layer 

thickness for axisymmetric laminar boundary layers (Schlichting (1979)). Given these estimates of 

the boundary layer thickness, the required size of the elements was derived following Tomboulides 

& Orszag (2000) and Gottlieb & Orszag (1977) for spectral methods. The results are shown in Table 

2.6.2 for select Reynolds numbers of Re = 100, 300, 500 and 1000. Note that Lreq is an estimate of 

the element thickness required for accurate resolution of the gradient there, and is obtained using the 

approximation Lreq ≈ N2δ/8 for a polynomial of degree 8 (Gottlieb & Orszag (1977)). 

 

Re 100 300 500 1000 

δ 0.113 0.065 0.05 0.035 

Lreq 0.69 0.40 0.31 0.21 

Lused 0.1 0.1 0.1 0.1 
 

Table 2.6.2. Estimated and required element thickness for accurate resolution of the boundary layer 

for Reynolds numbers less than Re = 1000. 

 

It is apparent that the size of the elements close to the sphere surface, as well as the order of the 

interpolating polynomials used within the elements, is more than sufficient to accurately resolve the 

strong gradients generated at the surface of the sphere as well as the near wake dynamics for all the 

Reynolds numbers of interest in this study. Furthermore, a quick calculation shows that polynomials 

of degree 5 can be used for accurate resolution of the boundary layer, even for a Reynolds number of 

Re = 1000. However, for the purposes of precisely capturing the near wake vortex dynamics, as well 

as the evolution of the vortices as they convect into the far wake, 8th-order Lagrange interpolants 

were used in all elements for Re ≤ 500. 
 
Having gone through the intensive process of achieving an accurate (2-D) mesh, the final issue 

remains concerning the accuracy of the results with respect to the azimuthal resolution. This was 

examined by altering the number of physical planes (ie. double the number of Fourier modes) in the 

azimuthal direction. For Reynolds numbers of Re ≤ 300, it was shown that 24 Fourier planes were 

sufficient to yield accurate results. The flow in this regime was found to be unsteady, although a 

plane of symmetry was observed in the wake (see Chapter 3). However, at a Reynolds number of Re 

= 500, the flow is known to be unsteady and asymmetric, and the variations of the vortex orientation 

in the azimuthal direction, as well as the smaller scales observed in the flow, need to be accurately 

resolved. As a result, the number of Fourier planes was increased from k = 24 to k = 32 for 

simulations in the range 300 ≤ Re ≤ 500. For spectral element methods, this resolution is known to 

be sufficient (Tomboulides & Orszag (2000)). Nevertheless, to confirm the validity of this choice for 
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k, drag and lift coefficients were determined for k = 24 and k = 32 at a Reynolds number of Re = 

500. Furthermore, the effect of increasing the 2-dimensional resolution was also examined by 

increasing p from p = 6 to p = 9 for each value of k. The results of this analysis are shown in Tables 

2.6.3 – 4. 

 

p Cd Cl 

6 0.563 0.057 

7 0.566 0.056 

8 0.565 0.055 

9 0.567 0.057 
 

Table 2.6.3. Drag and lift coefficients for k = 24. 

 

p Cd Cl 

6 0.566 0.058 

7 0.566 0.055 

8 0.566 0.056 

9 0.565 0.058 
 

Table 2.6.4. Drag and lift coefficients for k = 32. 

 

For all of the drag and lift coefficients shown in Tables 2.6.3 – 4, the simulations were run for a total 

non-dimensional time of ∆t* = 1000 units. For each value of p analyzed, the difference in the drag 

coefficient between k = 24 and k = 32 was less than 0.5%, whereas the difference in the net lift 

coefficient between k = 24 and k = 32 was less than 3%. However, due to the highly unsteady and 

aperiodic nature of the flow, a sufficiently long time trace is needed in order to obtain reasonable 

comparisons. Although the difference in Cl may be considered negligible, as a precaution all results 

presented in the following Chapters were simulated with p = 8 and k = 32. 

 

2.7 Tethered sphere: dependence on ε and the convergence 

criteria 

 

Knowing that the results are essentially independent of the mesh, we now proceed to examine the 

effects of altering the relaxation parameter ε. To this extent, we look at a typical tethered sphere 

simulation, in this case with the parameters M* = 0.8 and L* = 10 at two different reduced velocities, 

U* = 8 and U* = 20. The quantities chosen for evaluation of the relaxation parameter independence 
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are the time-averaged normalized x- and y-locations of the centre of the sphere, the root-mean-square 

(RMS) z-vibrational response of the sphere (since we are interested in the response of the tethered 

sphere in relation to ε) as well as the RMS drag coefficient. Furthermore, the average layover angle θ 

is also shown since this is the quantity that is the easiest to measure experimentally. In all cases, a 

sampling period of ∆t* = 800 time units has been used to calculate all quantities unless otherwise 

noted. 
 
Relaxation parameters in the range 0.2 < ε < 0.8 were investigated. For the tethered sphere 

simulations, the purpose of changing ε is to improve the convergence rate properties of the solver, 

rather than to improve the converged solution. As a result, increasing ε from 0.2 to 0.8 is not 

expected to significantly alter the vibrational response of the tethered sphere. The results of these 

simulations are shown in Table 2.7.1 for U* = 8 and Table 2.7.2 for U* = 20. 

 

ε x y z (RMS) Cd θ 

0.2 0.724066 9.973752 0.732397 0.776215 85.84777 

0.3 0.724069 9.973752 0.732398 0.776218 85.84776 

0.4 0.724068 9.973752 0.732397 0.776217 85.84776 

0.5 0.724066 9.973752 0.732394 0.776215 85.84777 

0.6 0.724070 9.973752 0.732400 0.776219 85.84775 

0.7 0.724066 9.973752 0.732401 0.776215 85.84777 

0.8 0.723730 9.973776 0.731104 0.775853 85.84970 
 

Table 2.7.1. Effect of changing ε for U* = 8. 

 

ε x y z (RMS) Cd θ 

0.2 3.203501 9.472992 0.481496 0.578522 71.3159 

0.3 3.204034 9.472812 0.515418 0.578629 71.31268 

0.4 3.200918 9.473865 0.498837 0.578002 71.33152 

0.5 3.203845 9.472876 0.493002 0.578591 71.31382 

0.6 3.218523 9.467899 0.529674 0.581547 71.22502 

0.7 3.197304 9.475086 0.501480 0.577275 71.35338 

0.8 3.210035 9.470782 0.515644 0.579836 71.27641 
 

Table 2.7.2. Effect of changing ε for U* = 20. 

 

For a low reduced velocity of U* = 8, we see that for ε < 0.8 the difference in all quantities measured 

is extremely small. For example, the x-y displacement of the sphere (and hence the corresponding 

layover angle θ) may be considered independent of the particular value of ε used. Similarly, the 
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RMS amplitude response changes by less than 0.001% for relaxation parameters in the range 0.2 < ε 

< 0.7. The maximum change in the drag coefficient is even less significant: within this range of ε, Cd 

changes by approximately 0.0005%. However, the results for ε = 0.8 are slightly different, mainly 

because a sampling period of only ∆t* = 500 time units was used due to unexplained discrepancies 

in the output of the numerical data. Nevertheless, the maximum change in the x and y displacement 

is less than 0.05% and 0.0003% respectively, whereas the maximum change in the RMS amplitude 

response is less than 0.2%. Similarly, the drag coefficient experiences a maximum change of less 

than 0.05% and the maximum change in the mean layover angle is approximately 0.002%. For 

practical applications, the maximum changes in all quantities may be considered negligible over the 

entire range of ε investigated. This is because at this reduced velocity, as we shall see in Chapter 5, 

the sphere is oscillating sinusoidally and is within the Mode II regime. 
 
For a higher reduced velocity of U* = 20, the sphere is no longer locked-in to the Mode II response. 

As a result, the motion of the sphere and the drag acting on it are expected to vary more significantly 

than that observed for U* = 8. That this is indeed the case is clearly seen in Table 2.7.2. For the 

entire range of ε investigated, the maximum change in the x and y displacements was 0.7% and 

0.08% respectively, corresponding to a maximum change in the mean layover angle of roughly 

0.2%. However, the maximum change in the z-vibrational response was approximately 10%, 

whereas the change in the drag coefficient was 0.7%. These higher discrepancies (as opposed to the 

results at U* = 8) are due mainly to the periodic and highly non-sinusoidal nature of the oscillations, 

since the layover angle of the tethered sphere at this higher reduced velocity causes greater 

fluctuations in the fluid forces and hence the vibrational response, as will be shown in Chapter 5. 

Furthermore, because the response is non-sinusoidal, far longer time traces are required to measure 

accurate RMS oscillation amplitudes. 
 
Finally, the results should theoretically be independent of the relaxation parameter if they are 

converged. Thus, it may be of use to test the results against the convergence criteria defined in 

Equations (2.2.20) - (2.2.22). In light of this, an investigation was performed in which the 

convergence criteria were decreased an order of magnitude from utol = 0.0001 and Ftol = 0.01 to utol = 

0.00001 and Ftol = 0.001. This was performed for a single simulation with the parameters M* = 0.8, 

L* = 10 and U* = 8 and a relaxation parameter of ε = 0.5. The results are depicted in Table 2.7.3. 

 

utol/Ftol x y z (RMS) Cd θ 

0.0001/0.01 0.724066 9.973752 0.732394 0.776215 85.84777 

0.00001/0.001 0.724070 9.973752 0.732399 0.776219 85.84775 
 

Table 2.7.3. Effect of decreasing the convergence criteria for U* = 8, ε = 0.5. 
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It is evident from Table 2.7.3 that decreasing the convergence criteria by an order of magnitude 

results in very little to no change in all of the measured quantities. From a practical point of view, 

the most important is the change in the z-vibrational response of the sphere, which changes by less 

than 0.0007% when the convergence criteria are decreased an order of magnitude. The minute 

changes in the quantities of interest are clearly not significant enough to warrant the additional 

computational time required for the iterations described in §2.2. In conclusion, in all of the results 

presented in Chapter 5, a relaxation parameter of ε = 0.5 was used, along with the convergence 

criteria of utol = 0.0001 and Ftol = 0.01. 

 

2.8 Experimental equipment and setup 

 

The results of Williamson & Govardhan (1997), Govardhan & Williamson (1997) and Jauvtis et al. 

(2001) have shown that a tethered sphere experiences large-amplitude vibrations over a wide range 

of reduced velocities. However, as previously mentioned, all of these experiments were performed at 

Reynolds numbers typically in the range 1000 < Re < 14000. For this range of Reynolds number, the 

flow past a sphere is turbulent. On the other hand, for Reynolds numbers less than Re = 800 (ie. 

when the flow is laminar), it is not known whether the different modes of vibration that occur at 

higher Reynolds numbers are also found at these lower Reynolds numbers. In addition, it is not 

known if the sphere even experiences large-amplitude oscillations in this laminar flow regime. It is 

the aim of the present experiments to find how the response of the tethered sphere is altered by 

laminar flow, and in particular if the aforementioned modes of vibration exist within this regime. 
 
These experiments are performed in the Monash FLAIR water channel. Figure 2.8.1 shows a 

schematic of the experimental equipment and setup. The water channel has a cross-section of 60cm 

by 80cm, and a maximum speed of 40 cm/s. For the present experimental simulations, the flow 

velocity varies from U = 4 cm/s to U = 6.2 cm/s. Since motion is observed primarily in the z-

direction, a digital video camera is placed underneath the channel and used to capture the movement 

of the sphere as the Reynolds number (reduced velocity) is altered. This camera is mounted on 80/20 

modular T-slotted aluminium frames and linear bearings to enable highly accurate positioning. 

Furthermore, the camera is connected to a personal computer and the corresponding displacements 

of the sphere are measured and analyzed using standard image-processing hardware. Similar data 

acquisition techniques were employed by Williamson & Govardhan (1997) in their experiments. 
 
For the sole purpose of examining the response of a typical tethered sphere at these low Reynolds 

numbers, we consider a single polypropylene sphere of diameter 12.7mm, which has a mass ratio of 

M* = 0.91. The sphere is tethered, using extremely fine superline of diameter 0.1mm, to a thin rod 

that traverses the water channel. This thin rod is placed at a position that is well below the free 
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Figure 2.8.1. Schematic of the present experimental equipment and setup. 

 

surface yet far enough from the base of the water channel so as to avoid boundary layer effects. The 

tethered sphere is thus free to move in all three directions. 

Accurate determinations of the oscillation response are obtained by analyzing every single digital 

video image. The sampling rate of the video feed is 25Hz, so that a characteristic oscillation cycle 

contains typically 75 data points. The movement of the sphere is calculated by numerically 

contrasting the bright edge of the sphere surface with the surrounding dark fluid, thereby obtaining 

displacements that are accurate to within roughly 2 pixels. Furthermore, temporally accurate results 

are obtained by recording hundreds of oscillation cycles. 
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Chapter 3 
 
Stationary Sphere 
 
 
The flow past a stationary sphere undergoes a number of transitions as the Reynolds number 

increases. §1 in Chapter 1 summarizes the main wake characteristics observed, and are repeated here 

for conciseness (note that the ranges for the Reynolds number are only approximate): 

• Re < 24, the wake is laminar, steady, axisymmetric and attached to the sphere; 

• 24 < Re < 212, separated flow is observed; 

• 212 < Re < 275, the wake is non-axisymmetric (or asymmetric). Planar symmetry is still 

maintained. “Double-thread” or “two-tailed” wake is observed; 

• 275 < Re < 350, the wake is unsteady. Periodic vortex shedding in the form of vortex 

loops or hairpin vortices is observed; 

• 350 < Re < 375, loss of planar symmetry. Shedding direction oscillates intermittently; 

• 375 < Re < 650, vortex shedding pattern becomes irregular; 

• 650 < Re < 800, the separated cylindrical vortex sheet pulsates and vortex tubes begin to 

be periodically shed in accordance with the pulsation; 

• 800 < Re < 3000, the vortex loops become turbulent with alternate fluctuations, both high- 

and low-mode Strouhal numbers coexist. 
 
Four primary Reynolds numbers are considered in this section, to coincide with the major transitions 

that the wake experiences with increasing Re. These are Reynolds numbers of Re = 100, 250, 300 

and 500. 
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Figure 3.1.1. Computed streamlines for steady axisymmetric flow, Re = 100. 

 

 

3.1 Steady axisymmetric flow 

 

3.1.1 Separation angle, length, vortex location and drag coefficient 

 

At Reynolds numbers less than Re = 212 (but greater than 24), the flow was found to be laminar, 

steady and axisymmetric. It is well known that within this regime, there exists a toroidal vortex in 

the immediate near wake of the sphere. This is evident in the computed streamline plot shown in 

Figure 3.1.1 for a Reynolds number of Re = 100, which shows the flow separating from the surface 

of the sphere at an angle θS from the front stagnation point and rejoining on the flow centreline at a 

location xS (taken from the rear of the sphere) to form a closed separation bubble (or toroidal vortex). 

The angle of separation shown in Figure 3.1.1 is approximately θS = 128º, whereas the separation 

length is about xS = 0.87D from the rear of the sphere. These values compare well to those of Taneda 

(1956), Rimon & Cheng (1969), Pruppacher et al. (1970), Shirayama (1992), Magnaudet et al. 

(1995) and Johnson & Patel (1999), as shown in Table 3.1.1. Note that all lengths are made non-

dimensional by the diameter of the sphere. 
 
Also shown in Table 3.1.1 are comparisons of the (x, y) location of the centre of the toroidal vortex 

(denoted by (xC, yC)) and the drag coefficient, Cd. For all of the parameters shown in Table 3.1.1, the 

present results compare very well to those of previous authors. 
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Figure 3.1.2. Drag coefficient for Reynolds numbers up to Re = 200: numerical results, • ; 

experimental results (Roos & Willmarth (1971)), . 

 

 

Author θS xS (xC, yC) Cd 

Present results 128 0.87 (0.75, 0.28) 1.09 

Taneda (1956) 128 0.87 (0.75, 0.27) n/a 

Rimon & Cheng (1969) 128 0.83 n/a 1.01 

Pruppacher et al. (1970) 128 0.95 n/a n/a 

Shirayama (1992) 127 0.84 n/a 1.10 

Magnaudet et al. (1995) 128 0.85 n/a 1.09 

Johnson & Patel (1999) 126 0.86 (0.75, 0.29) 1.11 
 

Table 3.1.1. Comparisons of axisymmetric flow for Re = 100. 

 

For all Reynolds numbers up to Re = 212 in this regime, the flow remains axisymmetric and 

topologically similar with changes only in the polar separation angle, separation length and vortex 

position. The drag coefficient in this steady, axisymmetric regime for Reynolds numbers up to Re = 

200 is shown in Figure 3.1.2, where the experimental results of Roos and Willmarth (1971) are 

plotted for comparison. The drag curve exhibits a trend that may be approximated well by a power 

law model, as pointed out in Pregnalato et al. (2002c). For all discrete values of the Reynolds 

number shown in Figure 3.1.2, the drag coefficient from the present simulations compare very well 

with the extensive measurements of Roos and Willmarth (1971). 

 58 



 

Figure 3.1.3. P

 

3.1.2 

 

Pressure coeff

Reynolds num

lines. The axis

from one majo

evident in the

contours, we fi

 

(a)
 

 
(b)
 
 

ressure coefficient contours for steady axisymmetric flow: (a) Re = 100; (b) Re = 200. 

 

Pressure and vorticity fields 

icient contours, Cp (defined in the nomenclature), are shown in Figure 3.1.3 for 

bers of Re = 100 and Re = 200. Note that negative values of Cp are depicted by dashed 

ymmetric pressure coefficient contours are similar at both Reynolds numbers, apart 

r difference: at Re = 200, a pressure minimum is observed in the wake, which is not 

 contours at Re = 100. By comparing Figure 3.1.1 with the pressure coefficient 

nd that this pressure minimum shows up as a ring of low pressure in the wake, located 
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Figure 3.1.4. Azimuthal vorticity contours for steady axisymmetric flow: (a) Re = 100; (b) Re 

= 200. 

 

(a) 

(b) 

very close to the centre of rotation of the toroidal vortex, as highlighted by the two circular contours 

in Figure 3.1.3b. Note that for Re < 200, the centrifugal force of the vortex’s rotation must be 

balanced by viscous forces as opposed to a radial pressure gradient, as pointed out by Johnson & 

Patel (1999). 
 
Azimuthal vorticity contours are depicted in Figure 3.1.4 for the same Reynolds numbers of Re = 

100 and Re = 200. Again, the dashed contour lines denote negative values. Evident is the thinning of 

the boundary layer as the Reynolds number is increased, as well as the convection of the vorticity 

further downstream for higher Reynolds numbers. However, although the vorticity and pressure 
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Figure 3.1.5. Vortical regions for steady axisymmetric flow as given by an isosurface of 

negative λ2 (see Chapter 2): (a) Re = 100; (b) Re = 200. 

 

(a) 

(b) 

plots convey information on the flow dynamics, they do not clearly convey information on the wake 

structure, especially at the higher Reynolds numbers to be discussed in the next sections. For 

example, the presence of spiraling streamlines is not evident in Figures 3.1.3 - 4. Therefore, the 

method of Jeong & Hussain (1995) as discussed in Chapter 2 is used to properly identify these 

vortical regions. The result is depicted in Figure 3.1.5 for an axisymmetric flow at Reynolds 

numbers of Re = 100 and Re = 200. The thinning of the boundary layer evident in Figure 3.1.4 is 

further revealed in Figure 3.1.5, which shows that the vortical structures are produced by the 

boundary layer moving over the convex surface of the sphere. Also apparent is the growth of the 
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vortical region at the higher Reynolds number, analogous to the growth of the toroidal vortex in 

Figure 3.1.1. Furthermore, it is noticeable that using the present quantitative method to visualize the 

vortical regions in the flow is much more advantageous than relying on streamlines, which are 

reference frame dependent. 

 

3.2 Steady asymmetric flow 

 

3.2.1 Transition to planar symmetry 

 

The onset of asymmetry (or non-axisymmetry) is well documented in the literature. Kim & 

Pearlstein (1990) previously considered the numerical determination of the first instability mode for 

the flow past a sphere. They found that the first most unstable mode is asymmetric (non-

axisymmetric) with azimuthal wavenumber m = 1, and report that the onset of the instability is 

through a Hopf bifurcation at a critical Reynolds number Re1 = 175. However, Natarajan & Acrivos 

(1993) used a linear stability analysis to find that Re1 = 210, in which the transition occurs through a 

regular bifurcation on the branch of axisymmetric base flows and the most unstable mode is the m = 

1 mode. The discrepancy between these results appears to lie in the complicated nature of the 

numerical problem. Tomboulides et al. (1993a, b) found that the flow past a sphere undergoes a 

transition to three-dimensionality at approximately Re1 = 212 through a regular bifurcation, in which 

the most unstable azimuthal mode was the m = 1 mode, in accordance with the results of Natarajan 

& Acrivos (1993). Furthermore, Johnson & Patel (1999) report a critical Reynolds number, Re1, of 

210 < Re1 < 212, by observing that the lift coefficient jumped from Cl = 0 at Re = 210 to Cl = -2.4 × 

10-2 at Re = 212. Also, Ghidersa & Dušek (2000) showed that the axisymmetry gives way to planar 

symmetry, with the orientation of the plane of symmetry being random (determined only by the 

initial conditions) in the absence of any external perturbations. Finally, Thompson et al. (2001) used 

the Landau model to verify that the transition to asymmetry occurs at a critical Reynolds number Re1 

= 212. 
 
In light of the results briefly reported above, direct numerical solutions were performed in 

increments of unity for Reynolds numbers inclusive in the range 209 < Re < 213. For each value of 

Re, the mean axisymmetric flow was obtained first and a random azimuthal perturbation was applied 

to the m = 1 mode, which was allowed to grow (or decay) depending on the stability of the flow at 

that particular Reynolds number. After the flow became statistically steady, the lift coefficient was 

measured for these Reynolds numbers and is shown in Figure 3.2.1. Note that for axisymmetric 

flows, Cl is naturally zero. It is evident in Figure 3.2.1 that for Reynolds numbers less than and equal 
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Figure 3.2.1. Lift coefficient versus Reynolds number, showing transition to three-

dimensionality. 

 

to Re = 211, the flow remains axisymmetric. When the Reynolds number exceeds the critical value 

of approximately Re1 = 212, the flow becomes asymmetric. Furthermore, this bifurcation is a 

regular or supercritical one in the sense that the transition process does not involve any hysteresis 

effects (Tobak & Peake (1982)). 
 
The flow past a sphere becomes asymmetric when the Reynolds number exceeds Re = 212. In 

contrast to the axisymmetric regime, the flow becomes asymmetric with a plane of symmetry 

remaining in the wake. For the present simulations, the plane of symmetry was allowed to arise 

naturally through numerical errors inherent in any numerical solver. For the purposes of presenting 

the results, however, the computed flow field was rotated such that the symmetry plane coincides 

with the x-y plane. As mentioned at the start of the chapter, a representative Reynolds number of Re 

= 250 was chosen to yield results in this steady asymmetric regime. 

 

3.2.2 Drag and lift coefficients 

 

Table 3.2.1 shows the drag and lift coefficients at a Reynolds number of Re = 250 obtained for the 

present study and those found in previous research. Note that Cl is the net lift coefficient of the 

sphere, as defined in the nomenclature. For both the values of Cd and Cl obtained in the present 

study, the comparisons to previous results are excellent. The only apparent discrepancy is in the lift 

coefficient found by Schlichting (1979), whose value of Cl = 0.220 also is much greater than the 
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numerical results obtained by Johnson & Patel (1999), Constantinescu & Squires (2000), and Kim & 

Choi (2002). 

 

Author Cd Cl 

Present results 0.704 0.0610 

Schlichting (1979) 0.70 – 0.72 0.220 

Johnson & Patel (1999) 0.70 0.0620 

Constantinescu & Squires (2000) 0.70 0.0617 

Kim & Choi (2002) 0.702 0.060 
 

Table 3.2.1. Comparisons of steady asymmetric flow for Re = 250. 

 

 

3.2.3 Streamlines 

 

The presence of a plane of symmetry is most obvious in the streamline plots shown in Figure 3.2.2. 

The streamlines constructed in this manner are from the global velocity components, so that the lines 

correspond to true three-dimensional streamlines and relate directly to what is observed 

experimentally using dye visualization, for example. It is also evident from the x-y symmetry-plane 

view in Figure 3.2.2a that the toroidal vortex has tilted, and that the size of the vortex differs in the 

azimuthal direction from the upper focus to the lower focus. The arrows on the streamlines also 

indicate that the upper focus is fed from fluid originating from upstream, whereas the lower focus 

actually releases fluid into the near wake. As a result, the separation bubble is no longer closed. 

Because of continuity, there must be fluid flowing out of the centre of the upper vortex as well as 

fluid flowing into the centre of the lower vortex. This flow is directly from the centre of the upper 

focus to the centre of the lower focus, as is clearly shown in Figure 3.2.2. 

 

3.2.4 Pressure and vorticity fields 

 

Pressure coefficient contours are depicted in Figure 3.2.3a for the x-y plane, and Figure 3.2.3b for 

the x-z plane. Also shown in Figure 3.2.3c are isocontours of Cp, depicted in an isometric view for 

clarity. The surface of the sphere is shaded blue, whereas the front stagnation region is green. The 

inconsistency of the size of the toroidal vortex in the azimuthal direction mentioned in the previous 

section is apparent in Figure 3.2.3c. The pressure minimum in the upper focus is clearly higher than 

the pressure minimum in the lower focus. This azimuthal pressure gradient drives the flow through 
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Figure 3.2.2. Three-dimensional streamlines at a Reynolds number of Re = 250: (a) x-y 

symmetry-plane; (b) x-z plane. 

 

(a) 

(b) 

the core of the toroidal vortex, resulting in the flow propagating from the centre of the upper focus to 

the lower, as mentioned in the previous paragraph. In contrast to the axisymmetric ring of low 

pressure at Re = 200 shown in Figure 3.1.3, at a Reynolds number of Re = 250 the ring is seen to 

have tilted, in accordance with the spiraling streamlines shown in Figure 3.2.2. The tilting of this 

ring of low pressure after the flow has become non-axisymmetric results in the conversion of 

azimuthal vorticity (which was prominent before the transition) to streamwise vorticity. This 

streamwise vorticity, shown in Figure 3.2.4, is positive on one side of the sphere and negative on the 

other. As in the previous figures, negative values are depicted by dashed contour lines. 
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Figure 3.2.3. Pressure coefficient contours for Re = 250: (a) x-y plane; (b) x-z plane; (c) 

isocontours of the pressure coefficient showing the detached ring of low pressure in the core 

of the toroidal vortex. Note that the sphere is shaded blue. 

 

(a) 

(b) 

(c) 
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Figure 3.2.4. Streamwise vorticity contours (ωx) in the x-z plane for steady planar-symmetric flow, 

Re = 250. 

 

As the flow develops, this streamwise vorticity convects downstream via two tails (also known as 

the “double-thread” or “two-tailed” wake), with very little migration from the flow centreline. 

 

3.2.5 Visualization of vortex structures 

 

Experiments indicate that the two-tailed wake appears quite suddenly once the critical Reynolds 

number, Re1, is reached. Visual observations of the wake in this regime are provided in Magarvey & 

Bishop (1961a,b), Nakamura (1976) and Ormières & Provansal (1999), to name but a few. 

Numerically, as in the previous section, we use the method of Jeong & Hussain (1995) to visualize 

the vortex structures in the wake of a sphere at a Reynolds number of Re = 250, shown in Figure 

3.2.5. Here, and in all subsequent figures, we plot an isosurface of –λ2 = 0.1. The isosurface has a 

degree of transparency associated with it in order to reveal the surface of the sphere. The plot in 

Figure 3.2.5 compares qualitatively very well with that of Johnson & Patel (1999), Thompson et al. 

(2001) and Kim & Choi (2002). It is noticeable that in the near wake, approximately one diameter 

downstream from the rear of the sphere, there is a kinking of the trailing vortex tails. Thompson et 

al. (2001) demonstrate that as the Reynolds number approaches the critical Reynolds number for 

transition to unsteadiness, the kinking of these trailing vortices increases, ie. the tails get closer 

together at this point before moving apart again. They go further to speculate that this may be 

associated with the transition to the periodic wake. 
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Figure 3.2.5. Visuali

 

 

 

(a)

 

 
(b)

 

 
(c)

  

zation of vortex structures for steady planar-symmetric flow at Re = 250: (a) x-y 

plane; (b) x-z plane; (c) isometric view. 
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3.3 Unsteady planar-symmetric flow 

 

When the Reynolds number is further increased to Re2 ≈ 275, the flow becomes unsteady with the 

appearance of periodic vortex shedding. This vortex shedding is represented by the occurrence of 

hairpin vortices or vortex loops, and the plane of symmetry that was observed in the steady flow is 

also preserved in this regime. This regime has received by far the most attention in the literature, 

with extensive measurements being made of the vortex shedding frequencies and wake structures. 

 

3.3.1 Transition to unsteadiness 

 

The critical Reynolds number for this transition to unsteadiness, Re2, is well documented from both 

experimental and numerical studies. Experimentally, Goldberg & Florsheim (1966) report a value of 

Re2 ≈ 270, whereas Magarvey & MacLatchy (1965) give a value of 300. Wu & Faeth (1993) 

observed the onset of vortex shedding at Re2 = 280, whereas Sakamoto & Haniu (1990) found a 

value of Re2 = 300. The discrepancies in the values reported in experiments appear to lie in the 

presence of the support structures, experimental determination of the free stream (or sphere) 

velocity, and hence an accurate determination of the Reynolds number, among other things. On the 

other hand, numerical studies have reported a much narrower range of Re2. For example, 

Tomboulides & Orszag (2000) find a value in the range 270 < Re2 < 285 with m = 1 being the most 

unstable mode. Similarly, Natarajan & Acrivos (1993) report a value of Re2 = 277.5 and m = 1, 

although their analysis is based on the axisymmetric base flow. This secondary Hopf bifurcation 

corresponds to the onset of time-dependence in the flow field. Finally, Thompson et al. (2001) found 

that Re2 = 272 by linear interpolation of the growth rate for the development of the periodic mode in 

the complex Landau equation. Nevertheless, it is interesting to note that the appearance of vortex 

shedding for a sphere occurs at a Reynolds number that is considerably higher than the 

corresponding critical Reynolds number for flow past a cylinder which is only 49 (Williamson 

(1996)). 

 

3.3.2 Drag and lift coefficients, Strouhal number 

 

A Reynolds number of Re = 300 was chosen to characterize the flow features in this unsteady, 

planar-symmetric regime. As in §3.2, the plane of symmetry was allowed to arise naturally through 

numerical errors in the solver, although for the presentation of the following results the flow field 

was rotated so that the symmetry plane coincided with the x-y plane. We first present results of the 
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Figure 3.3.1. Sample time history of the drag coefficient for Re = 300. 

 

∆t*

C L

1000 1100 1200 1300
0.04

0.05

0.06

0.07

0.08

0.09

 
 

Figure 3.3.2. Sample time history of the net lift coefficient for Re = 300. 

 

drag coefficient, shown in Figure 3.3.1. For these simulations at Re = 300, the flow was initialized 

with the corresponding axisymmetric solution at the same Reynolds number, along with a small 

perturbation in the m = 1 mode. The time history of Cd (and subsequent figures) was calculated for 

the duration of approximately 100 periods of motion, long after the flow has reached a statistically 

steady state, although for clarity only 20 oscillations are shown. The time-averaged drag coefficient 

observed in Figure 3.3.1 has a value of Cd ≈ 0.6449, with an oscillation amplitude of 2.3 × 10-3. This 
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compares well to the values of Cd = 0.671 with an oscillation amplitude of 2.8 × 10-3 of Tomboulides 

(1993), and Cd = 0.656 with an oscillation amplitude of 3.5 × 10-3 of Johnson & Patel (1999). 
 
A sample time history of the net lift coefficient Cl is depicted in Figure 3.3.2. The time-averaged 

value of the lift coefficient is Cl = 0.0656, with an oscillation amplitude of 1.3 × 10-2. Johnson & 

Patel (1999) found that Cl = 0.069 with an oscillation amplitude of 1.6 × 10-2. Also, Constantinescu 

& Squires (2000) report a value of Cl = 0.065, although no oscillation amplitudes are conveyed. 

Spectral analysis of the periodic waveforms presented in Figures 3.3.1 – 2 gives a dominant 

frequency of St = 0.134, corresponding to the frequency of vortex shedding from the sphere, and a 

second frequency at twice the Strouhal frequency, which appears to have a greater effect on the drag 

rather than the lift. This value of St = 0.134 compares well to that of recent previous research, both 

experimental and numerical, as listed in Table 3.3.1. 

 

Author Method St 

Present results Numerical 0.134 

Tomboulides & Orszag (2000) Numerical 0.136 

Constantinescu & Squires (2000) Numerical 0.136 

Johnson & Patel (1999) Numerical 0.137 

Ormières & Provansal (1999) Experimental 0.122 

Sakamoto & Haniu (1995) Experimental 0.124 

Sakamoto & Haniu (1990) Experimental 0.142 
 

Table 3.3.1. Comparisons of vortex shedding Strouhal numbers. 

 

The discrepancy in the results of Sakamoto & Haniu (1995) and (1990) lies in the fact that the 

results of Sakamoto & Haniu (1990) were obtained in a wind tunnel in which the free-stream 

velocity for Re < 400 was estimated using Roshko’s (1956) formula based on the vortex shedding 

frequency from a two-dimensional circular cylinder. For all of the Strouhal numbers reported in the 

numerical studies in Table 3.3.1, the maximum difference in St is approximately 2%. Furthermore, 

the present results compare very well to the experimentally observed vortex shedding frequencies 

obtained by Ormières & Provansal (1999) and Sakamoto & Haniu (1990, 1995), in which the 

maximum difference in St in this case is approximately 6%. At first glance, one may assume that the 

differences may be due to blockage effects. However, as pointed out by Modi & Akutsu (1984), 

blockage effects are essentially negligible for blockage (area) ratios up to 11%. As previously 

mentioned, the presence of support structures as well as accurate determinations of the Reynolds 

number may contribute to the disparities. 
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We now proceed to describe in some detail the structure of the wake in terms of streamlines, 

pressure, vorticity, and the wake vortical structure. With this knowledge of the structure of the wake, 

it is possible to describe the vortex shedding process in this unsteady planar-symmetric regime, with 

the hope of extending these results to the case of a tethered sphere in a uniform flow. Furthermore, it 

is assumed a priori that the vortex shedding process at Re = 300 is similar to that at Re = 500. This 

will enable direct comparisons to be made with the tethered sphere results to be presented in Chapter 

5. 

 

3.3.3 Streamlines 

 

This and the following sections aim to complement rather than replace the work performed in 

understanding the vortex shedding process by Sakamoto & Haniu (1990, 1995) and Shirayama 

(1992). In particular, we follow Johnson & Patel (1999) in noting that a complete picture of the 

vortex shedding process is obtained through regularly spaced snapshots of the wake. In this respect, 

given the Strouhal frequency of St = 0.134, we obtain snapshots of the flow quantities in equally 

spaced increments of φ = T/4, where T is the period of oscillation in Figure 3.3.2. Note that the 

initial temporal location of the sample period is arbitrary. 
 
Plots of instantaneous streamlines are depicted in Figure 3.3.3. Part (a) shows contours in the x-z 

plane, whereas (b) shows contours in the x-y plane. The most notable difference between the two 

diagrams is the presence of a plane of symmetry, which coincides with the x-y plane as previously 

mentioned. However, this planar-symmetry is not as obvious as it is in Figure 3.2.2 because of the 

unsteady nature of the flow, resulting in the calculation of streamlines that have an inherent error 

due to the corresponding time-integration in the post-processing stage. Furthermore, the x-y plane 

presented in Figure 3.3.3 does not correspond exactly to the plane of symmetry due to post-

processing difficulties. Also, the streamlines represent true three-dimensional streamlines (and hence 

actual particle paths), and thus provide insight into the dynamics of the wake, although the out-of-

plane components are not evident in these figures. In Figure 3.3.3(a), the streamlines for φ = 0 and φ 

= T/4 spiral into the centre of the focus, thereby rendering the focus “stable” (Tobak & Peake 

(1982)). On the other hand, as time moves on, for φ = T/2 and φ = 3T/4 the streamlines spiral out of 

the focus, making the focus “unstable”. The presence of a stable focus may be considered analogous 

to the vortex being stretched, whereas the unstable focus could represent a compression of the vortex 

axis (Johnson & Patel (1999)). 
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Figure 3.3.3. Continued. 

 

 

In Figure 3.3.3(b), at φ = 0 there is an unstable focus in the lower half of the x-y plane. The fluid 

emanating from this lower focus is expelled into the near wake from above the upper (also unstable) 

focus, which is enclosed by a limit cycle that is fed from fluid that originates from upstream of the 
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sphere. Note that the upper and lower foci are not “in-line”, ie. the toroidal vortex is tilted. At φ = 

T/4, the toroidal vortex has tilted further and the limit cycle enclosing the upper vortex has 

disappeared. Also, the previously entrained fluid has been ejected around the top of the upper focus 

and convects downstream. Meanwhile, the lower focus has become stable and is enclosed by a limit 

cycle that appears to be fed from the same fluid that was previously fed into the limit cycle of the 

upper focus. At φ = T/2, the upper focus has convected downstream and there appears a new smaller 

upper focus (although more streamlines are needed to highlight its appearance) that is in-line with 

the lower focus, ie. the vortex has been shed. At this same instant, the lower focus has now become 

unstable, and in the final frame at φ = 3T/4, the upper focus has grown in strength and remains in-

line with the lower focus. Furthermore, it is now fed by fluid originating from the upper upstream 

flow. At the completion of the period, this stable upper focus then becomes unstable at φ = 0, which 

appears to indicate that the limit cycle behaviour observed defines the crossing point of this 

transition (Johnson & Patel (1999)). 

 

3.3.4 Pressure and vorticity fields 

 

Contours of the pressure coefficient corresponding to the same snapshots as in Figure 3.3.3 are 

shown in Figure 3.3.4, where again the plane of symmetry does not coincide exactly with the x-y 

plane. As in §§1 and 2, dashed lines depict negative values of Cp. In Figure 3.3.4(a), at φ = 0, the 

axis of the toroidal vortex is clearly seen as the two closed contours of Cp. These two contours are 

negative, indicating a pressure minimum that is indicative of a vortex core. The pressure in the near 

wake increases by the time φ reaches 3T/4. The contours in the x-y plane in Figure 3.3.4(b) provide 

much more information about the periodicity of the flow. At φ = 0, the pressure minimum in the core 

of the upper focus is evident, as is the slightly higher pressure in the core of the lower focus. There is 

also an apparent pressure maximum immediately upstream of the upper focus. At φ = T/4, the 

pressure in the core of the upper focus has increased, and the previously closed contour of higher 

pressure upstream of the upper focus appears to have pushed the upper focus downstream. At φ = 

T/2, the pressure minimum in the lower focus has intensified, and the cores of the two foci have 

become aligned normal to the streamwise direction. In the final panel, the intensity of the relative 

foci have switched from one to the other, similar to the last panel of Figure 3.3.3(b). 
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Figure 3.3.5 shows contours of the streamwise vorticity in the x-z plane for each quarter period of 

motion as in Figures 3.3.3-4. The vorticity alternates sign in the streamwise direction and is 

antisymmetric about the x-y plane. Throughout the cycle, it is evident that the sign of the vorticity 

immediately adjacent to the rear surface of the sphere remains the same. Also, the alternating sign of 

the streamwise-propagating vorticity is due to the envelopment of the oppositely signed counter-

rotating vorticity (Johnson & Patel (1999)). 

 

3.3.5 Vortex shedding mechanism 

 

Having characterized the nature of the near-wake flow in terms of instantaneous pressure, vorticity 

and streamlines, it is possible now to construct a physical mechanism describing the shedding 

process. Following the observations of Johnson & Patel (1999), we note that there is an initial 

azimuthal pressure gradient set up on the axis of the toroidal vortex (at φ = T/2) that generates 

azimuthal flow from the centre of the upper focus to the lower. This stable focus generates radially 

inward flow and entrains fluid into the wake. Unlike the steady case (see §2), the increased inertia at 

this higher Reynolds number causes the upper focus to grow, rather than obtain an equilibrium state. 

As its size increases, it entrains fluid from its own side of the sphere, and its centrifugal acceleration 

sets up a greater radial pressure gradient (see φ = 3T/4). As a result of the increasing strength of the 

upper focus, at φ = 0, it has begun changing from a stable focus to an unstable focus, and its radial 

motion is against its own pressure gradient. The resultant reverse flow that impinges on the upper 

separating shear layer generates a pressure maximum that appears to push the upper side of the 

vortex away from the rear surface of the sphere, thereby shedding (although not completely) the 

vortex into the wake (φ = T/4). Following the convection of the upper part of the vortex, a strong 

shear layer remains at the interface of the impinging flow and the separated flow. This shear layer 

quickly rolls up to produce the new upper focus, and the process is repeated. 

 

3.3.6 Visualization of vortex structures 

 

As with the steady flow results, we note that the streamlines and vorticity contours do not clearly 

elucidate the vortical structures in the wake. Therefore, as in §§2 and 3, the method of Jeong & 

Hussain (1995) is used to provide a clear picture of the vortex structures often observed in 

experiments. Figure 3.3.6 shows isometric views of the unsteady planar-symmetric wake over a 

single cycle of vortex shedding at a Reynolds number of Re = 300. At φ = T/2 which, as previously 

mentioned, represents the start of the vortex shedding cycle, it is clear that a vortex structure is 

emerging from the upper surface of the vortical region that surrounds the sphere. The legs and head 
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Figure 3.3.6. Visualization of vortex structures over one period of vortex shedding for 

unsteady planar-symmetric flow at Re = 300. 

 

φ = 0 

φ = T/4 

φ = T/2 

φ = 3T/4 

of the lower (induced) vortex can be clearly seen in the immediate near wake. In the next panel, the 

legs of this upper vortex structure begin to separate from the surrounding region, and it is apparent 

 80 



that the emerging upper vortex structure at φ = T/2 is the actual head of the hairpin vortex whose 

legs are still attached to the vortical region surrounding the sphere, although the head does not 

register well enough as an isosurface of –λ2. At φ = 0, this hairpin vortex convects downstream and 

at φ = T/4, a new isolated structure appears underneath the upper hairpin vortex. It is evident that this 

new structure is the beginning of the lower induced hairpin vortex, which was apparently 

insufficiently strong enough previously to be registered as a vortex structure using the method of 

Jeong & Hussain (1995). Furthermore, the legs of this induced hairpin vortex cannot yet be seen, 

even in the surrounding vortical region of the sphere. It is immediately apparent then that the upper 

hairpin vortex is formed from the vortical region that surrounds the sphere, whereas the lower 

induced vortex is the result of the vorticity induced by the near-wake flow/outer flow interaction. 

These numerical flow visualizations compare very well to experimental observations. Furthermore, 

the numerical simulations and the vortex identification method of Jeong & Hussain (1995) reveal the 

existence of induced hairpin vortices, which are surprisingly not observed experimentally. However, 

numerical simulations by Johnson & Patel (1999) show that numerical streaklines, which correspond 

most directly to dye visualizations in experiments, do not reveal the induced hairpin vortices, which 

is an unusually interesting result. 

 

3.4 Unsteady asymmetric flow: Re ≤ 500 

 

3.4.1 Transition to asymmetry 

 

At a Reynolds number of Re = 500, the flow past a stationary sphere is unsteady and asymmetric. 

Because of the asymmetry, and the corresponding lack of periodicity, little research has been 

performed in this regime. As the title of this section suggests, the plane of symmetry that was 

initially encountered at the onset of three-dimensionality (see §2) has disappeared; the Reynolds 

number at which this occurs is subject to debate. Sakamoto & Haniu (1990) report a loss of planar 

symmetry at a Reynolds number of Re = 420. The numerical simulations of Mittal (1999b) found a 

value in the range 350 < Re < 375. In addition, the present numerical simulations at a Reynolds 

number of Re = 400 do not find a plane of symmetry. It appears, therefore, that the discrepancies 

between the experimental and numerical results may lie in the small-scale variations in the azimuthal 

location of vortex formation that indicate the loss of planar symmetry, which may be too small to 

register in experimental dye or smoke visualization (Mittal (1999b)). 
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Figure 3.4.1. Sample time history of the drag, lateral and side force coefficients for Re = 400. 
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Figure 3.4.2. Sample time history of the drag, lateral and side force coefficients for Re = 500. 

 

 

3.4.2 Drag and lift forces, Strouhal number 

 

As mentioned, the present simulations do not reveal a plane of symmetry at Reynolds numbers of Re 

= 400 and 500. Figures 3.4.1 and 3.4.2 show the time history of the drag, lateral and side force 

coefficients. The waveforms in Figures 3.4.1 - 2 illustrate a rather random behaviour, even at a 
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Reynolds number of Re = 400. This is in contrast to the periodic waveforms describing the drag and 

net lift coefficients for a Reynolds number of Re = 300 in §3. Although these force coefficients 

appear to be chaotic, the flow is still very laminar and appears not to have any small-scale flow 

structures that highlight the transition to turbulence. Vortex shedding, which is most evident through 

the oscillatory nature of the lateral and side forces, is less organized at these higher Reynolds 

numbers, as opposed to the periodic vortex shedding (and lateral and side force coefficients) 

observed at a Reynolds number of Re = 300. Also, the lateral and side force coefficients are 

approximately five times smaller than the drag coefficient at these Reynolds numbers. This implies 

that the sideways motion of spheres immersed in a uniform flow and involved in fluid-structure 

interactions could perhaps be neglected (Mittal (1999a)). However, this is not the case when 

studying the flow-induced vibrations of a tethered sphere, as shown by Williamson & Govardhan 

(1997). Note that the time traces obtained for both Re = 400 and Re = 500 represent approximately 

2000 non-dimensional time units, although only the last 1000 time units are shown for clarity. 
 
The Strouhal numbers corresponding to the waveforms in Figures 3.4.1 - 2 are shown in Figure 

3.4.3. These plots were obtained by performing a spectral analysis of the fluctuating w-velocity 

component of the m = 1 mode in the near wake for both the Re = 400 and Re = 500 simulation 

results. A numerical probe was positioned at a location that was 1D downstream from the rear of the 

sphere and 0.55D above the flow centreline, corresponding to a point that was close to the separating 

shear layer, and a sample space of ∆t* = 300 time units was used to calculate the dominant 

frequencies. At a Reynolds number of Re = 400, there is a dominant frequency of St = 0.12, 

corresponding to the frequency of vortex shedding from the sphere. When the Reynolds number is 

increased to Re = 500, this dominant vortex shedding frequency becomes St = 0.16, as seen in Figure 

3.4.3 (b). This compares well to the values obtained by Achenbach (1974) and Tomboulides & 

Orszag (2000) of 0.163 and 0.167 respectively. Note that the present results (and those of 

Tomboulides & Orszag (2000) that correspond to only 120 time units) require longer time traces for 

more accurate evaluations of these low frequencies. 
 
However, what is not directly evident from these plots is the existence of a plane of symmetry. This 

is further investigated in the next section. 

 

3.4.3 Analysis of fluid forces 

 

In this section, we report on results concerning the vortex dynamics of a stationary sphere when the 

flow is unsteady and asymmetric. Reynolds numbers of Re = 400 and 500 are chosen because of the 

availability of previous results for the purpose of direct comparison. Unfortunately, it is not possible 

to analyse in any detail the shedding process, mainly because of the loss of periodicity within this 
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Figure 3.4.3. Dominant frequencies of the w-velocity component at z = 1D, r = 0.55D: (a) Re 

= 400; (b) Re = 500. 

 

(a) 

(b) 

regime, unlike in §3. On the other hand, however, we focus our attention now on the instantaneous 

forces acting on the sphere, since these forces are the most important features from an engineering 

viewpoint. Furthermore, knowledge of the nature of these forces are crucial in analyzing the flow-

induced vibrations of a tethered sphere, as will be shown in Chapter 5. 
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Figure 3.4.4. Phase plot for unsteady planar-symmetric flow, Re = 300. 

 

The total fluid force acting on the sphere may be decomposed into its corresponding components: Fd 

denotes the drag force, which acts parallel to the uniform inflow (ie. parallel to the x-axis); Fy is the 

component of the force which acts parallel to the y-axis; and Fz indicates the component of the force 

acting parallel to the z-axis. At first glance, the discrepancies in using different coordinate systems  

(especially for the non-streamwise axes) may be obvious, and hence comparisons with various 

authors may be difficult to make; however, since the flow is asymmetric, this is not a major problem, 

and it is common practice to define a net lift force, Fl, as the total force acting perpendicular to the 

drag force. The angle of this force vector in the y-z plane is denoted as β. See Chapter 2 for the 

coordinate system used and for the definitions of the relevant parameters. 
 
Rather than use the dimensional quantities of Fd and Fl, it is more convenient to use the force 

coefficients instead. For the purposes of comparison, Figure 3.4.4 depicts the time history of the y 

and z force coefficients, denoted as Cy and Cz respectively, for a Reynolds number of Re = 300. This 

type of plot is known as a phase plot, since it relates information of the phase of Cy with respect to 

Cz and vice versa. For this and all subsequent phase plots, at least 20 periods of oscillation are 

illustrated, based on the vortex shedding Strouhal number. The distance from the origin (Cy = Cz = 0) 

in the phase diagram is equal to the net lift Cl and the angle β is the direction of the net lift, ie. tan β 

= Cy/Cz. Since the side force coefficients in Figure 3.4.4 maintain a constant phase angle for Re = 

300, the lift force angle does not change with time, indicating the presence of a plane of symmetry. 

In this particular case, the angle of this symmetry plane is approximately β = 81.86˚. 
 
Figures 3.4.5 (a) and (b) show the phase plots for Re = 400 and Re = 500 respectively. In both cases, 

the net lift coefficient Cl varies with both direction and magnitude, unlike the previous case for Re = 
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Figure 3.4.5. Phase plots for unsteady asymmetric flow: (a) Re = 400; (b) Re = 500. 

 

Cy

C
z

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Cy

C
z

1000 1100 1200 1300 1400 1500
-90

-60

-30

0

30

60

90

∆t*

β
( °

)

1000 1100 1200 1300 1400 1500
-90

-60

-30

0

30

60

90

∆t*

β
( °

)

1000 1100 1200 1300 1400 1500
-90

-60

-30

0

30

60

90

 Cy

C
z

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Cy

C
z

1000 1100 1200 1300 1400 1500
-90

-60

-30

0

30

60

90

∆t*

β
(°

)

1000 1100 1200 1300 1400 1500
-90

-60

-30

0

30

60

90

∆t*

β
(°

)

1000 1100 1200 1300 1400 1500
-90

-60

-30

0

30

60

90

 
 

Figure 3.4.6. Sample time histories of the net lift angle β: (a) Re = 400; (b) Re = 500. 

 

(a) (b) 

(a) (b) 

300. As a result, it is evident that a plane of symmetry no longer exists, and is lost within the range 

300 < Re < 400. As previously mentioned, Mittal (1999b) found a loss of planar symmetry in the 

range 350 < Re < 375, whereas the experimental study of Sakamoto & Haniu (1990) found a value 

of Re = 420. For a Reynolds number of Re = 400, the net lift coefficient appears to have a preferred 

orientation that lies in the lower right quadrant of the phase plot. When the Reynolds number is 

increased to Re = 500, a preferred orientation of the wake is less discernible. This is in agreement 

with the results of Mittal et al. (2002) who found that with increasing Reynolds number, the 

preference for any particular orientation of the wake diminished. 
 
More information on the vortex shedding process may be obtained from the angle of the lift force β. 

This is depicted in Figures 3.4.6 (a) and (b) for Re = 400 and Re = 500 respectively. Unlike the 
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Figure 3.4.7. Visualization of vortex structures for unsteady asymmetric flow at Re = 400. 

 

 
 

Figure 3.4.8. Visualization of vortex structures for unsteady asymmetric flow at Re = 500. 

 

previous case (Re = 300) in which β is constant, for the unsteady asymmetric case β appears to be 

chaotic. It is obvious in Figure 3.4.6 that the direction of the net lift coefficient varies considerably 

over time, so that the azimuthal angle of vortex formation varies from shedding cycle to cycle. 
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3.4.4 Visualization of vortex structures 

 

As previously mentioned, comparisons are made difficult in this regime because of the non-periodic 

unsteadiness of the flow. As a consequence, with regard to §3.3.6, visualization of the vortex 

structures over a period of vortex shedding is not possible because the period is irregular, although 

not in a time-averaged sense. Hence, the instantaneous vortex structures depicted in this unsteady 

asymmetric regime are obtained at arbitrary time instants. 
 
Figure 3.4.7 illustrates the typical vortex structures observed for a stationary sphere at a Reynolds 

number of Re = 400, whereas Figure 3.4.8 shows the vortex structures at a Reynolds number of Re = 

500. In both cases, isometric views are depicted in order to fully elucidate the three-dimensional 

configuration. At Re = 400, the wake appears similar to that at a Reynolds number of Re = 300, 

although in this case a plane of symmetry is not evident. The legs and head of a hairpin vortex can 

be seen emanating from the strong vortical region at the rear of the sphere, whereas the previously 

shed hairpin vortex and its corresponding induced hairpin vortex have clearly rotated as the 

structures convect downstream. When the Reynolds number is increased to Re = 500 (Figure 3.4.8), 

the wake is obviously less organized. The vortex formation length has also decreased substantially, 

as a vortex head appears to be emerging from the rear of the sphere and below this emerging head 

are the legs of an induced hairpin vortex. In the far wake, the vortex structures have rotated and 

deformed as they convect downstream. The difference in the orientation and clarity of the vortical 

structures between a Reynolds number of Re = 400 and Re = 500 as seen in Figures 3.4.7 – 3.4.8 is 

quite remarkable. 



 
 
Chapter 4 
 
Rotating Sphere 
 
 
Rotating spheres are found in many applications, yet very little research has been undertaken 

concerning the changes in flow topology as the Reynolds number and angular rotation rate are 

varied. For example, the trajectories of golf balls and baseballs (Watts & Ferrer (1985)) are highly 

dependent on the amount of spin on the ball, which affects the ball’s lift and drag characteristics. 

Furthermore, particle-laden and suspension flows (Höfler & Schwarzer (2000)) are widely 

encountered in production, and therefore it is of great practical interest to investigate particle motion 

in designing manufacturing equipment. The present study aims to explore the influence of rotation 

on the transition (or critical) Reynolds numbers for a sphere rotating about either the streamwise axis 

or the non-streamwise axis. 

 

4.1 Introduction and parameter range 

 

The majority of research on rotating spheres in the past has focused on relatively high Reynolds 

numbers, typically up to Re = O(106), as this regime has many practical applications (see, for 

example, Watts & Ferrer (1985), Schmitt (1997) and Davies (1949)). Conversely, a few authors have 

considered flow past a spinning sphere theoretically at low Reynolds numbers (Re < 10) because of 

the availability of the Stokes and Oseen approximations (Rubinow & Keller (1961), Dennis et al. 

(1980)). Only recently, however, has information become available regarding intermediate Reynolds 

numbers, namely 10 < Re < 104. Early work by Barkla and Auchterlonie (1971) provided a 

benchmark against which subsequent research has been measured. The experimental results obtained 
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by Tsuji et al. (1985) indicate that in the Reynolds number range 550 < Re < 1600 and for 

nondimensional angular velocity Ω < 0.7, the lift coefficient may be approximated by 
 

  (4.1.1) (0.4 0.1lC Ω= ± )
 
obtained empirically by comparing measurements of the range of flight of the sphere with the 

solution of its equation of motion. Similarly, for 10 < Re < 100, the drag coefficient may be 

calculated from 
 

 2

46.5 116.670.6167dC
Re Re

= + − . (4.1.2) 

 
However, Equation (4.1.2) neglects the effects of sphere rotation (which was considered negligible), 

which may produce drag coefficients differing by up to 5% for rotations between 0.05 < Ω < 0.25, 

according to the present simulations. 
 
More recent experimental data have been acquired by Oesterlé & Bui Dinh (1998) over the 

Reynolds number range 10 < Re < 150 and for (dimensionless) sphere rotation rates between 1 < Ω 

< 6. This particular parameter space was chosen principally to obtain measurements that would be 

compared to the theoretical results of Rubinow and Keller (1961) who used matched asymptotic 

expansions. They found that the lift coefficient increases with increasing rotation rate and decreases 

with increasing Reynolds number. Moreover, the results suggest that the influence of Ω vanishes for 

Re greater than 100. Despite the significant scatter in the experimental results, an expression was 

proposed to approximate the lift coefficient in terms of Ω and Re in the form 
 

 . (4.1.3) ( ) ( 0.4 0.70.45 2 0.45 exp 0.075lC Ω≅ + − − )ReΩ

 
Although providing a useful correlation, Equation (4.1.3) does not support rotation rates less than 

unity, and may be used primarily to supplement the existing results of Rubinow & Keller (1961), 

Barkla & Auchterlonie (1971) and Tsuji et al. (1985). 
 
More applicable to the present study are the computations performed on a rotating sphere in a linear 

shear flow (Kurose & Komori (1999)), for the parameter ranges 1 < Re < 500 and 0 < Ω < 0.25. A 

finite difference scheme based on the marker-and-cell method was used to calculate the drag and lift 

forces on the sphere. Based on simulations performed at particular Reynolds numbers and rotation 

rates, an approximate expression for the lift coefficient was obtained as 
 

 , (4.1.4) lC KΩ=
 
where K is a function of the Reynolds number and is listed as K2 in Table 3 of Kurose & Komori 

(1999). The drag coefficient was found to increase with increasing rotation rate, and the lift 

coefficient approached a constant value for Re > 200 for a given rotational speed. This asymptotic 
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Figure 4.1.1. Coordinate system and geometry for a rotating sphere. Note that rotations are 

positive counterclockwise. 

 

value of CL increased with increasing Ω, as did the Strouhal number, St. However, no attempt was 

made to explain these trends as details regarding the structure of the wake were not examined in any 

detail. 
 
Recently, laminar flow past a rotating sphere was investigated numerically by Kim & Choi (2002) at 

Reynolds numbers of 100, 250 and 300 and rotation rates of 0 < Ω < 1. In contrast to previous 

research, the rotations investigated were parallel to the streamwise axis. At Re = 100, the vortical 

structures in the wake were axisymmetric for all Ω and became stronger in the streamwise direction 

with increasing Ω. For Re = 250, at low rotation rates (Ω < 0.3) one tail of the double thread vortex 

became stronger and the other weaker. This effect was more pronounced at Ω = 0.3, at which one 

tail disappeared completely. However, for Ω ≥ 0.5 the tail reappeared and the two tails were twisted 

together in a complex pattern for higher rotations. For Ω ≤ 0.3, the vortical structure was “frozen” 

(ie. rotated without temporal variation in its shape and strength) and the lift and side forces were 

sinusoidal in time, but the magnitudes of the drag and lift forces were constant in time, a result first 

reported by Wang et al. (2001). For Re = 300 and low rotational speeds, the flows became unsteady 

asymmetric. At this Reynolds number, frozen flows were obtained at Ω = 0.5 and 0.6. However, no 

attempt was made to investigate the effect of different rotation rates on the wake transitions. 
 
The coordinate system and geometry are shown in Figure 4.1.1. As defined in the nomenclature, the 

drag, lateral and side forces are the components of the fluid forces acting on the sphere in the x, y 

and z directions, and are respectively denoted as Fd, Fy and Fz. Although the nature of the transitions 

to asymmetry and unsteadiness have been reported for non-rotating spheres, there has been very 
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little exploration regarding the transitions and vortical structures for flow past a rotating sphere, 

especially concerning the dependence on sphere rotation for Re > 300. The present study finds that 

the transition Reynolds numbers as well as the orientation of the wake are very much dependent 

upon the angular rotation direction and magnitude. We focus on Reynolds numbers in the range 10 < 

Re < 500 and (dimensionless) rotation rates in the range 0.05 < Ω < 0.25. Rotations about the x and y 

(or equivalently z) axes are performed. This particular parameter regime is chosen because the flow 

phenomena of interest, namely the transitions to asymmetry and three-dimensionality, are well 

observed in this regime. Furthermore, many results (such as lift, drag and Strouhal numbers) are 

available for a stationary sphere (Ω = 0) that provide a basis from which to validate the present 

results. Some of the results presented here were first reported in Pregnalato et al. (2001) and 

Pregnalato et al. (2002a,c). 

 

4.2 Non-streamwise sphere rotations 

 

The Magnus (or Robins) effect on rotating spheres has been well documented since the early 17th 

century (Barkla & Auchterlonie (1971)). In these early years, when many were interested in how the 

flight of tennis balls was affected by spin, it was thought that the “true explanation” was that the 

pressure is greatest on the side where velocity was least, but this is true only for frictionless fluids. 

With the advent of boundary layer theory in 1904, it was soon realized that the observed motion was 

due to the delayed separation of the boundary layer on the high velocity side of the sphere, thereby 

deflecting the wake and resulting in a net lift force. The calculation of this lift force is important in 

many applications, and is the focus of the next section. 
 
For the case of the non-streamwise rotating sphere, recent results have shed light on the drag and lift 

forces experienced by the sphere but transition Reynolds numbers have not been explored (Kurose & 

Komori (1999)). Moreover, the vortex shedding characteristics and nature of the flow at low 

Reynolds numbers have not been explored in any detail, in contrast to higher Reynolds numbers. To 

demonstrate the existence of (and clarify the effects of) the Magnus force, simulations were 

performed with the sphere rotating about the y- and z-axes independently. Moreover, y-force 

coefficients for z-axis rotations were numerically identical to z-force coefficients for y-axis rotations 

as expected, and subsequently all the results presented represent z-axis rotations. 

 

4.2.1 Drag and lift coefficients 
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Figure 4.2.1. Effect of non-streamwise sphere rotation on the drag coefficient. Present results: ♦, Ω = 

0.05; ■, Ω = 0.10; ▲, Ω = 0.15; ●, Ω = 0.20; ▼, Ω = 0.25. Tsuji et al. (1985) results: □. 
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Figure 4.2.2. Effect of non-streamwise sphere rotation on the lift coefficient. Present results: 

symbols as in Figure 4.2.1. Kurose & Komori (1999) results: ○, Ω = 0.063; ◊, Ω = 0.16; ∆, Ω = 0.25. 

 

Figure 4.2.1 shows the effect of non-streamwise sphere rotation rates on the drag coefficient for 

Reynolds numbers up to Re = 300. For comparison, the experimental results of Tsuji et al. (1985) 

are also displayed using Equation (4.1.2), which is obtained by assuming that the drag coefficient is 

not influenced by the rotation. Equation (4.1.2), which is strictly valid for Reynolds numbers less 

than Re = 100, provides a good fit in this range. Kurose & Komori (1999) numerically investigated 
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rotation rates of 0.063, 0.16 and 0.25 for Re up to 500. The power-law scaling of the drag coefficient 

compares well to that of Kurose & Komori (1999) in their Figure 17. Furthermore, similar behaviour 

is observed with the change in rotation rate: Cd increases with increasing Ω. This is especially 

noticeable at the higher Reynolds numbers, where the difference in drag between Ω = 0.05 and Ω = 

0.25 is approximately 9% at a Reynolds number of 300. 
 
Figure 4.2.2 shows the predicted variation of the lift coefficient with sphere rotation. Note that Cl is 

negative because the sphere is rotating counterclockwise. The results of Kurose & Komori (1999) 

are also shown using Equation (4.1.4). At low rotation rates and low Reynolds numbers, the 

approximation using Equation (4.1.4) is reasonable. For Re > 200 and higher rotation rates, the 

approximation is improved. However, the estimate at intermediate Reynolds numbers is inaccurate, 

and is probably the result of using too few points for the calculation of the interpolating functions. 

Initially, the predicted lift coefficient decreases at lower Re and reaches a minimum at a Reynolds 

number of 30, independent of the angular velocity magnitude. The magnitude of Cl then roughly 

increases linearly and approaches a constant value for Re > 200. This asymptotic value increases 

with increasing Ω, and compares well with the calculations of Kurose & Komori (1999) and the 

experimental measurements of Tsuji et al. (1985). However, the present results show that the 

magnitude of this asymptotic value is approximately equal to Cl (asymptote) = 0.065 + Ω. 

Nonetheless, although useful for engineering applications, these drag and lift coefficients do not 

describe very well the features of the wake, and cannot be used to accurately predict the transition 

process to unsteadiness. 

 

4.2.2 Streamlines, pressure and vorticity fields 

 

As with Figure 3.2.2, the presence of a plane of symmetry is most obvious in the streamline plots in 

Figure 4.2.3 for Ωz = 0.10 and a Reynolds number of 200. Once again, the streamlines represent true 

three-dimensional streamlines although the out-of-plane components are not clearly discernible. The 

main difference between this rotating case and the stationary sphere situation is the absence of an 

upper focus when the sphere is rotating, which is evident in the streamline plot in the x-y plane. Note 

that the sphere is rotating counter-clockwise in Figure 4.2.3 (b). In contrast to Figure 3.2.2, the lower 

focus is fed by fluid that originates from the lower upstream flow. Because of continuity, there must 

be fluid flowing out of the vortex and this fluid is clearly ejected into the near wake. 
 
Pressure coefficient contours for the x-z and x-y planes are shown in Figure 4.2.4 for Ωz = 0.10 and a 

Reynolds number of 200. Note that for a stationary sphere at this Reynolds number, the flow is 

axisymmetric. These contours are similar to the contours for non-axisymmetric flow illustrated in 

Figure 3.2.3 at a Reynolds number of Re = 250. As expected, the plane of symmetry coincides 
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Figure 4.2.3. Streamlines for a non-streamwise rotating sphere at Re = 200 and Ωz = 0.10: (a) 

x-z plane; (b) x-y plane. 

 

(a) 

(b) 

exactly with the x-y plane without the need to rotate the entire flow field, unlike the steady planar-

symmetric flow past a stationary sphere in which the symmetry plane is random if the original 

axisymmetry is perfect and in the absence of any external perturbations (Ghidersa & Dusek (2000)). 

It appears then that the out-of-plane velocity component is responsible for the breakdown of axial 

symmetry, as pointed out by Thompson et al. (2001). For a stationary sphere at a Reynolds number 

of Re = 200 (Figure 3.1.3) and a Reynolds number of Re = 250 (Figure 3.2.3), a detached ring of low 

pressure exists in the near wake. However, this ring of low pressure is not present in Figure 4.2.4. 

Three-dimensional visualizations of the pressure coefficient in Figure 4.2.4 (c) reveal that this U-

shaped ring of low pressure is attached to the rear of the sphere and is tilted, inducing flow along the 

vortex axis. Note that the surface of the sphere is shaded blue, whereas the front stagnation region is 

green, as in Figure 3.2.3. 
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Pressure coefficient contours for Re = 200, Ωz = 0.10: (a) x-z plane; (b) x-y plane; (c) 

isometric view of pressure isosurfaces. 

 

rticity contours are shown in Figures 4.2.5 for the same angular rotation of Ωz = 0.10 

 number of 200. The contours in Figure 4.2.5 are not unlike those for non-

flow past a stationary sphere, as seen in Figure 3.2.4, although there are some 

ne of the major differences is the direct generation of streamwise vorticity on the 

 sphere. Also, in Figure 3.2.4, vorticity is being convected downstream and is 
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Figure 4.2.5. Streamwise vorticity contours in the x-z plane for Re = 200, Ωz = 0.10. 
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Figure 4.2.6. Vortex shedding frequencies versus Reynolds number for varying rotation rates. 

Symbols as in Figure 4.2.1. 

 

accompanied by a small oval-shaped region of opposite-signed vorticity that is detached from the 

rear of the sphere (see Figure 4 of Thompson et al. (2001)) However, for a rotating sphere, this small 

region of vorticity is attached to the front of the sphere (and is produced by the high velocity 

gradients induced by the rotation of the sphere and the no-slip condition at the surface), and does not 

separate as the Reynolds number is increased. 
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4.2.3 Vortex shedding frequencies and vortex structures 

 

Vortex shedding frequencies f, in the form of Strouhal numbers (St = fd/U), were measured and are 

shown in Figure 4.2.6. Increasing the Reynolds number, as one might expect, increases the vortex 

shedding frequency. Furthermore, for any given Reynolds number, increasing the sphere rotation 

rate results in an increase in Strouhal number. This is probably due to the fact that the intensity of 

the reversed flow generated by the vortex increases with increasing rotation rate, and interferes with 

the separating shear layer (Johnson & Patel (1999)). This reverse flow effectively cuts off the vortex 

from the wake prematurely and increases the shedding frequency of the wake. 
 
Vortical structures in the unsteady wake are depicted in Figures 4.2.7 (a-c) for a typical case of Ωz = 

0.10 and Re = 300 in the x-y and x-z planes, as well as an oblique view to highlight its fully three-

dimensional structure. As mentioned in Chapter 2, the vortex structures are visualized as an 

isosurface of -λ2 = 0.1. At this Reynolds number, the flow has become unsteady, and the plane of 

symmetry that was observed for steady flow in the previous section is also apparent in Figure 4.2.7. 

The periodic shedding of hairpin vortices is instantly recognizable and resembles closely the flow 

past a stationary sphere at the same Reynolds number (see Chapter 3). In this case, however, the 

plane of symmetry that arises naturally for a stationary sphere is instead dictated by the direction of 

rotation of the spinning sphere. 

 

4.2.4 Critical Reynolds numbers 

 

For all of the Reynolds numbers investigated, the lift force was non-zero and indicates the presence 

of asymmetry. Recall that for a stationary sphere, axisymmetry is lost at a Reynolds number of 

approximately 212, and the resulting wake exhibits a two-tailed vortex structure. However, in the 

present simulations for a non-streamwise rotating sphere, the two-tailed wake is observed only when 

the Reynolds number is high enough to convect the streamwise vorticity far downstream into the 

wake. Furthermore, the plane of symmetry is dependent on the direction of rotation, ie. the x-y plane 

is the symmetry plane for rotations about the z-axis and the x-z plane for rotations about the y-axis 

(Pregnalato et al. (2001)). 
 
Because the out-of-plane velocity component (due to the sphere rotation) breaks the axisymmetry of 

the flow even at the low Re investigated, the transition to asymmetry was unable to be monitored. 

However, the transition to unsteadiness was more straightforward. As mentioned previously, the 

drag and lift coefficients presented in Figures 4.2.1 and 4.2.2 were steady until a Reynolds number 

of approximately 240. Side force coefficients, based on the force orthogonal to the mean flow 
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Figure 4.2.7. Vortex structures in the wake of a non-streamwise rotating sphere at Re = 300, 

Ωz = 0.10: (a) x-y plane; (b) x-z plane; (c) isometric view. 

 

(a) 

(b) 

(c) 

symmetry plane, were found to be zero for all of the Reynolds numbers investigated, meaning that 

the same x-y symmetry that was observed for steady flow was also present for unsteady flow. For Re 

= 240 onwards, the values of Cd and Cl depict time-averaged quantities and were sampled over 

approximately twenty periods. The critical Reynolds numbers for the transition to unsteadiness are 

shown in Figure 4.2.8 as a function of the rotation rate. 
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Figure 4.2.8. Critical Reynolds numbers as a function of sphere rotation rate for a non-streamwise 

rotating sphere. 

 

For Ωz = 0.05 and Ωz = 0.10, the flow was found to become unsteady at a Reynolds number of Re = 

250 ± 10. On the other hand, unsteadiness was observed initially in the range 220 < Re < 240 for Ωz 

= 0.15 and Ωz = 0.20. When the rotation rate was increased to Ωz = 0.25, the flow was initially 

unsteady but then decayed to a steady state. The critical Reynolds number for this case was the same 

as for the lower rotation rates of Ωz = 0.05 and 0.10. Since unsteadiness is observed for a stationary 

sphere at Re > 270, it is evident that the effect of non-streamwise rotation is to reduce the critical 

Reynolds number at which transition is observed. 

 

4.3 Streamwise sphere rotations 

 

Given the number of publications regarding rotating spheres, it is somewhat surprising to note that 

there is a significant lack of research concerning a streamwise rotating sphere. Indeed, the effect of 

streamwise rotation has not been examined in any detail and little is known concerning the flow 

transitions and vortical structures in the wake. For the purpose of presenting the following results in 

a systematic manner, some clarification needs to be addressed regarding identification of the fluid 

forces. In this respect, Cd is the coefficient of the drag directed parallel to the streamwise or x-axis. 

Similarly, Cy (lateral) and Cz (side) are the coefficients of force parallel to the y- and z-axes 

respectively. The lift coefficient Cl, therefore, is defined as the magnitude of the lateral and side 

force coefficients, and is directed in the plane normal to the x-axis. 
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Figure 4.3.1. Effect of streamwise sphere rotation on the drag coefficient. Symbols as in 

Figure 4.2.1. 

 

 

4.3.1 Drag coefficients 

 

Figure 4.3.1 shows the drag coefficient for a sphere rotating about the x-axis for Reynolds numbers 

up to 500. Similar behaviour of Cd is observed for a non-streamwise rotating sphere, shown in 

Figure 4.2.1, in particular the increase in Cd as the rotation rate increases, although not as much as 

that which is observed for the non-streamwise rotating sphere. However, the most notable distinction 

between the two plots is the difference in Cd at any given Reynolds number for the different angular 

velocities. For the non-streamwise rotating case, the difference in Cd is approximately 7% at Re = 

200, when the flow is still steady and asymmetric. On the other hand, for the streamwise rotating 

sphere the difference in CD between Ωx = 0.05 and Ωx = 0.25 is about 0.7% at the same Reynolds 

number. This difference is explained by the observation that for all rotations, up to Re = 200, the 

flow was found to be axisymmetric. Furthermore, it was found that if the rate of rotation is small 

enough, then the tendency of the flow to remain axisymmetric is increased. This is explored further 

in §4.3.6. 
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Figure 4.3.2. Vortex structures for a non-streamwise rotating sphere at Re = 260, Ωx = 0.05: 

(a) x-y plane; (b) x-z plane; (c) isometric view; (d) streamwise vorticity contours in the x-y 

plane. 

(a) 

(b) 

(c) 

(d) 
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4.3.2 Vortex structures 

 

Different views of the vortex structures in the wake of the sphere are shown in Figure 4.3.2 for a 

streamwise rotation rate of 0.05 and for Re = 260. At this Reynolds number, the flow has become 

unstable enough to make a transition to an asymmetric state, and exhibits the two-tailed wake 

observed in Figure 3.2.5. However, in contrast to Figure 3.2.5, the wake is no longer planar 

symmetric and the previously balanced two tails have become skewed with respect to the streamwise 

axis. Furthermore, the “strength” of one tail has become greater than the other. This is apparent in 

Figure 4.3.2 (d), which shows the streamwise vorticity in the x-y plane. Due to the no-slip condition 

on the surface of the sphere, it is evident that fluid passing over the surface of the sphere attains the 

strong non-streamwise velocity of the sphere. This serves to increase the streamwise vorticity that is 

in the same direction of rotation, and annihilates the streamwise vorticity that is in the opposite 

direction of rotation. This leads to two counter-rotating vortices of dissimilar strength, and causes 

them to migrate away from the flow centreline due to their mutual vortical interaction. The vorticity 

contours in Figure 4.3.2 (d) are also markedly different from those for a stationary sphere and a non-

streamwise rotating sphere, mainly because of the generation of the same-sign vorticity on both the 

upper and lower surfaces of the sphere. Furthermore, a small region of opposite-sign vorticity is 

generated at the front stagnation point, and the contours clearly do not show a plane of symmetry. 

 

4.3.3 The “frozen” vortex structure 

 

As previously mentioned, if the rotation rate is low enough (Ωx < 0.15) then a two-tailed wake 

structure is observed. However, for higher rotation rates, the stronger vortex overwhelms the weaker 

vortex and a single thread is observed immediately adjacent to the wake centreline. This is similar to 

the observations of Kim & Choi (2002) for their rotation rate of 0.3 at Re = 250. Figure 4.3.3 depicts 

the time variation of the drag, lateral and side force coefficients for Re = 240 and Ωx = 0.15. The 

simulation was initialized with the corresponding solution for a stationary sphere at the same 

Reynolds number. The drag coefficient remains constant in time, whereas the lateral and side force 

coefficients are sinusoidal with a frequency of Stf = 0.017. Note that Stf is a frequency based on the 

“frozen” state of the flow and is not the Strouhal frequency, St, associated with vortex shedding. 

Since the time-averaged lateral and side forces are zero, the vortical structures in the wake (see 

Figure 4.3.4) simply rotate in a frozen state. This “frozen” flow was discovered by Wang et al. 

(2001) and investigated in detail by Kim & Choi (2002) and the present results provide independent 

verification of such a flow feature for the spinning sphere. Note that the rotational speed of the 

vortical structure is in general different to that of the sphere. 

 103 



 

∆t*

C d

C
y

C z

500 750 1000 1250 1500 1750 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Cd

Cy

Cz

 
 

Figure 4.3.3. Sample time histories of the force coefficients for Re = 240, Ωx = 0.15. 

 

 
 

Figure 4.3.4. Isometric view of the “frozen” vortex structure in the wake of a streamwise rotating 

sphere at Re = 240, Ωx = 0.15. 

 

 

Care was needed in performing the simulations to ensure that the resultant flow state was saturated. 

For example, for Re = 220 and Ωx = 0.25, a nondimensional time of ∆t* ≥ 500 was required in order 

for the force measurements to reach a statistically steady quasi-periodic state. A further 1500 time 

units were required in this case to obtain a sufficiently large sample space of 20 periods of 

oscillation, given the low frequency of vortical rotation of St = 0.030. On the other hand, for many 
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Figure 4.3.5. Sample time histories of the drag coefficient at Re = 500 for select streamwise 

rotation rates. 

 

other simulations, the force measurements would exhibit unsteady behaviour and then saturate to a 

constant state. This fact highlights the importance of having a considerable time interval for 

integrating the governing equations and allowing for any disturbances to grow or decay. 

 

4.3.4 Higher Reynolds number simulations 

 

At the next Reynolds number of interest, Re = 500, for all rotations investigated the flow was found 

to be unsteady and asymmetric. Plots of the predicted drag coefficient are shown in Figure 4.3.5 

where, for clarity, only angular rotation rates of Ωx = 0.05, 0.15 and 0.20 are presented. For all of 

these rotation rates, the drag coefficient exhibits an aperiodic behaviour, very similar to that of a 

stationary sphere at the same Reynolds number. Time-averaging of these coefficients reveal that the 

drag increases with increasing rotation rate, in accordance with Figure 4.3.1. Furthermore, an 

increase in the rotation rate appears to influence the drag coefficient in such a manner as to induce a 

more regular pattern, as if the flow is approaching a frozen state. Figure 4.3.6 depicts the vortical 

structures in the wake for Ωx = 0.15 and Re = 500. The legs and the head of a hairpin vortex can be 

seen in the centre of the image. Immediately downstream of this hairpin vortex appears to be an 

induced hairpin vortex whose orientation has twisted so that it is no longer in line with the previous 

hairpin vortex. Finally, beyond this induced hairpin vortex is the head of a previously shed hairpin 

vortex that appears as a vortex loop. It is evident that the previously frozen state of the vortical 

structures at Re = 250 had now become unfrozen and the vortical structures show a distinct 
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Figure 4.3.6. Isometric view of the vortex structures in the wake of a streamwise rotating 

sphere at Re = 500, Ωx = 0.15. 

 

resemblance to that of a stationary sphere at the same Reynolds number. However, the hairpin 

vortices and vortex loops are clearly more distorted owing to the rotation of the sphere and the flow 

appears to be far more unstructured. For rotation rates in the range 0.05 < Ωx < 0.25 no frozen states 

were observed, lending weight to the conjecture of Kim & Choi (2002) that frozen flow fields for Re 

> 300 should occur only for higher sphere rotation rates, ie. Ωx ≥ 0.5. 

 

4.3.5 Dynamics of the frozen vortex 

 

Further insight into the behaviour of the lift coefficient may be gained by considering its phase 

diagram, as shown in Figure 4.3.7, which illustrate plots of Cy versus Cz for a rotation of Ωx = 0.15 at 

Reynolds numbers of Re = 240, 300, 400 and 500. Figure 4.3.7 (a) depicts the behaviour of the force 

coefficients when the flow, as mentioned previously, is frozen. Here, the phase diagram is drawn for 

the time interval of two periods of revolution of the vortical structures. As for the case of a 

stationary sphere (see Chapter 3), the net lift is given by the distance from the origin to the curve, 

and the angle β is the direction of the lift. For Re = 240, the phase diagram is a circle because the net 

lift itself is constant but the direction in which it acts changes with time. Note that the time-averaged 

lateral and side force coefficients are zero. For Re = 300, the phase diagram is still a closed curve but 

is no longer a perfect circle, and the direction of the lift coefficient rotates about the origin. This is 

because the flow is not frozen (but still, it is periodic and asymmetric) and both the magnitude and 

direction of the lift change with time. For higher Reynolds numbers, the phase diagrams are no 
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Figure 4.3.7. Phase diagrams of the net lift coefficient for Ωx = 0.15: (a) Re = 240; (b) Re = 

300; (c) Re = 400; (d) Re = 500. 

 

(a) (b) 

(c) (d) 

longer closed and show that the streamwise rotating sphere does not have a preferred azimuthal 

orientation of vortex loop formation, in contrast to that of a stationary sphere for Re < 1000 which 

appears to show a preferred azimuthal orientation (Mittal et al. (2002)). Note the different scales on 

the axes in the plots of Figure 4.3.7, which show that the net lift for Re ≥ 300 may be less than half 

the lift for Re = 240 for the same streamwise rotation. 
 
In general, the rotation rate of the vortical structures is different to that of the sphere. This may be 

observed by recording the time history of the lift angle β. The slope of β indicates the rotating 

velocity of the vortex structures, which for a stationary sphere is zero (in a time-averaged sense) at 

Re = 300 and appears to be quite erratic for Re = 500. For the streamwise rotating sphere, at Re = 

240, the ratio of the period of rotation of the vortical structures to that of the sphere (TV/TS) was 

approximately 1.63 for Ωx = 0.15. At Re = 300, this ratio decreased to 1.56. This is because the 
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Figure 4.3.8. Sample time histories of the angle of the net lift coefficient for Re = 400: (a) Ωx 

= 0.05; (b) Ωx = 0.10; (c) Ωx = 0.20; (d) Ωx = 0.25. 

 

(a) (b) 

(c) (d) 

vortex structures found at the two Reynolds numbers are completely different (single-thread as 

opposed to shedding hairpin vortices). Furthermore, for higher Reynolds numbers (Re > 300), the 

angle of lift progressively became more unpredictable as the flow became more aperiodic. 
 
The angular velocity of the frozen vortical structures in the wake is determined by the slope of β, i.e. 

Ωf ≡ angular velocity of frozen vortical structures = dβ/dt in rad/s. At a Reynolds number of Re = 

260, for example, the frozen vortex structures are rotating at a dimensionless angular velocity of Ωf = 

0.034, whereas the sphere is rotating at Ωx = 0.10. Continuing with this Reynolds number of Re = 

260, we find that increasing the rotation rate serves to increase the rotation rate of the frozen vortical 

structures, in an almost one-to-one correspondence. In other words, doubling the rotation rate of the 

sphere will double the rotation rate of the frozen vortical structures as well, assuming that the flow is 

still frozen at these higher angular velocities. Figure 4.3.8 shows typical time histories of the angle 
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Figure 4.3.9. Critical Reynolds numbers as a function of sphere rotation rate for a streamwise 

rotating sphere: (a) transition to asymmetry; (b) transition to unsteadiness. 

 

(a) 

(b) 

of lift β for different rotation rates at a Reynolds number of Re = 400. At low rotation rates, it is 

clear that vortices are being shed azimuthally in an aperiodic fashion, and hence Ωf is not constant. 

However, as the rotation rate increases, the flow becomes more organized, and the vortex structures 

are shed with a relatively constant angular velocity. It appears that increasing the rotation rate further 

will lead to the appearance of frozen vortical structures at these higher Reynolds numbers, as pointed 

out by Kim & Choi (2002), which is a topic of further study. Also, for all rotation rates investigated, 

there is no preferred angle of vortex orientation. 
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4.3.6 Critical Reynolds numbers 

 

The transition to asymmetry, which occurs at a critical Reynolds number Re1, is shown in Figure 

4.3.9 (a). Also illustrated is the second transition to unsteadiness (Figure 4.3.9 (b)), which occurs at a 

critical Reynolds number Re2. Note that Re2 in this sense denotes the Reynolds number at which 

vortex shedding first occurs and not necessarily the onset of time-dependence (since the frozen fields 

observed in Figure 4.3.4 are time-dependent although vortex shedding is not observed). This makes 

it somewhat easier to compare the present results concerning the wake transitions to that of a 

stationary sphere. It is apparent that for rotation rates less than Ωx = 0.2, the flow becomes 

asymmetric at a critical Reynolds number in the range 220 < Re1 < 240. For Ωx ≥ 0.2, the transition 

occurs in the Reynolds number range 200 < Re1 < 220. For a stationary sphere, this transition occurs 

at a Reynolds number of Re1 ≈ 212. It follows that small streamwise rotation rates cause a delay in 

the transition to asymmetry, whereas higher rotation rates appear to not affect the critical Reynolds 

number. Furthermore, vortex shedding first occurs in the range 260 < Re2 < 280 for rotation rates of 

Ωx = 0.05, 0.20 and 0.25, which is close to the value of Re2 ≈ 272 for a stationary sphere. However, 

for rotation rates of Ωx = 0.10 and 0.15, the transition occurs in the Reynolds number range 280 < 

Re2 < 300. 
 
In conclusion, the effect of streamwise rotation on the transition to unsteadiness is not as significant 

as that for non-streamwise rotation, as shown in Figure 4.2.8. When taking into account the 

uncertainties in the values of Re1 and Re2, we see from Figure 4.2.8 that the flow becomes unsteady 

at Re2 ≈ 240 regardless of the non-streamwise rate of rotation, whereas Figure 4.3.9 (b) shows that 

this transition occurs at Re2 ≈ 280 regardless of the streamwise rotation rate. Thus, since the wake of 

a stationary sphere becomes unsteady at Re2 ≈ 272, it is clear that the transition to unsteadiness is 

more affected by non-streamwise rotation than streamwise rotation. 



 
 
Chapter 5 
 
Tethered Sphere 
 
 
One of the most basic examples of fluid-structure interaction is a tethered body immersed in a 

uniform flow. In the maritime industry, physical examples include buoys, spars, submerged sea 

mines, pipelines, bathyscaphes and other underwater craft. Typical examples in the aerospace 

industry include weather balloons and satellite deployment. In all of these cases, it is a well-known 

fact that the structure will vibrate when exposed to oscillatory forcing, such as the action of surface 

waves on a tethered buoy. However, before the work of Williamson & Govardhan (1997), it was 

previously unknown whether such a system will vibrate in a uniform flow, despite the simple nature 

of the problem. Indeed, for a tethered sphere at least, the structure shows a remarkable tendency to 

vibrate over a wide range of Reynolds number and reduced velocity. It is the purpose of the present 

investigation to examine, in detail, under what circumstances the tethered sphere will oscillate, and 

in particular the physical mechanisms that cause these vibrations. 
 
As mentioned in Chapter 2, the geometry of the tethered sphere is defined by two non-dimensional 

parameters: the mass ratio M*, and the tether length L*. Between these two parameters, the mass 

ratio is the more important and significant. A “heavy” sphere corresponds to M* > 1, and may be 

thought of physically as a pendulum or a plumb line oscillating freely in an airflow. On the other 

hand, a “light” sphere corresponds to M* < 1, and could represent an ocean buoy tethered to the sea 

bed. In the present study, we focus on low mass ratios, ie. M* < 1, although the numerical procedure 

outlined in Chapter 2 is not limited to any particular realistic mass ratio. Furthermore, we examine a 

particularly significant case, M* = 1, representing a neutrally buoyant sphere. Similarly, the tether 
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lengths that are investigated range from L* = 5 to L* = 10, although there is no limit to how large (or 

small) L* can be (apart from the obvious limiting conditions at zero and infinity). 
 
This chapter is organized as follows. First of all, the natural frequency fn is defined in terms of the 

governing parameters, as outlined in the nomenclature. This is followed by preliminary experimental 

results of a tethered sphere at Reynolds numbers much lower than those previously investigated. The 

computational results begin by analysing the dynamics of low mass ratio tethered spheres, in 

particular for M* = 0.082. This mass ratio is chosen so that comparisons may be made with the 

pioneering work of Williamson & Govardhan (1997). The next section is devoted to an analysis of 

high mass ratios, specifically M* = 0.8, which enables some comparisons to be made with the work 

of Jauvtis et al. (2001). These results are compiled in §5.5 to investigate the suitability of using the 

reduced velocity as a scaling parameter. The next section analyzes the dynamics of a neutrally 

buoyant sphere, with particular emphasis on the oscillation trajectories. The vibrational responses 

observed for the tethered sphere are examined in detail in the following sections, in which the fluid 

forces, pressure and vorticity fields are inspected in order to determine the mechanisms of vibration. 

Finally, the existence of a critical mass is discussed and conclusions are presented in the final 

section with further work in the field. 

 

5.1 Calculation of the natural frequency 

 

Like any dynamical system, the tendency of the tethered sphere to vibrate is a function of the natural 

frequency of vibration of the system. As a result, the natural frequencies of vibration in the x, y and z 

directions need to be calculated. This is performed by recalling the equations of motion of the 

tethered sphere (Equations (2.2.1) – (2.2.4)), which we recast in the form 
 

 d
Tmx x F
L

+ =  (5.1.1) 

 y
Tmy y F B
L

+ = +  (5.1.2) 

 z
Tmz z F
L

+ = . (5.1.3) 

 
From these equations, we see that the natural frequency is the same in all three directions, and is 

given by the expression 
 

 1
2n

Tf
mLπ

= . (5.1.4) 

 
This dimensional natural frequency may be put in non-dimensional form, which is given by 
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Substituting the expression for the tension in the tether, collecting terms and using the non-

dimensional form of the fluid forces results in the following equation for the natural frequency of 

oscillation: 
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where the added mass coefficient Ca is introduced and has the value Ca = 0.5 for a sphere. For a 

stationary sphere, the time-averaged lateral and side forces are small compared to the drag force. 

Similarly, for the tethered sphere, the mass ratios of interest in this study are of O(0.1), so that the 

buoyancy term in parentheses is much greater than the lateral force over the entire range of reduced 

velocities investigated, and hence Equation (5.1.6) may be simplified to 
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The reduced velocity U* is defined as the inverse of the natural frequency Sn, so that 
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For all of the numerical results to be presented, Equation (5.1.8) has been used to calculate the 

reduced velocity. Experimentally, however, the  term is approximately 0.02% of the buoyancy 

term for many practical cases of interest. This means that the drag may be neglected in many 

instances, and the form of the natural frequency is then given by 

2
dC
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, (5.1.9) 

 
where α has been replaced with the corresponding Froude term as defined in the nomenclature. It is 

evident that for M* = O(1) (but not equal to one) and for high Froude numbers, the drag term is 

significantly greater than the buoyancy term, so that Equation (5.1.9) is not valid. However, for 

smaller (or much larger) mass ratios, the approximation to the natural frequency given by Equation 

(5.1.9) is adequate. For the experimental results of Williamson & Govardhan (1997), Govardhan & 

Williamson (1997) and Jauvtis et al. (2001), the inverse of Equation (5.1.9) was used to calculate the 

reduced velocity U*. 
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5.2 Experimental results at low Reynolds numbers 

 

The experimental procedure and setup was described in detail in Chapter 2. In this section, we 

investigate experimentally the dynamics of a tethered sphere at Reynolds numbers much lower than 

those previously investigated by Williamson & Govardhan (1997), Govardhan & Williamson (1997) 

and Jauvtis et al. (2001). In particular, we consider a tethered sphere governed by the parameters M* 

= 0.91 and L* = 10.24. This particular mass ratio was chosen because of the availability of buoyant 

polypropylene spheres of diameters suitable for low Reynolds number applications. A range of 

reduced velocity is obtained by increasing the Reynolds number, which correspondingly increases 

the Froude number. The reduced velocity used here is defined as the inverse of Equation (5.1.9), as 

is the case with the experiments of Williamson & Govardhan (1997), mainly because at these low 

layover angles the (Cd)2 term is much less than the ((1-M*)α)2 term. 
 
As mentioned in Chapter 2, the range of flow velocities for the present experiments ranged from 

0.04 < U < 0.062 m/s. The corresponding Reynolds numbers ranged from Re = 503 to Re = 780. 

This represents flow states that are similar to the present numerical simulations. In other words, 

within this range of Reynolds numbers, the flow past a stationary sphere is dominated by a vortex 

shedding pattern that is irregular, and the shedding direction oscillates intermittently (Sakamoto & 

Haniu (1990)). 

 

5.2.1 Time traces of the sphere response 

 

To the author’s knowledge, the flow-induced vibrations of a tethered sphere have not previously 

been investigated, either numerically or experimentally, when the flow (both upstream and in the 

wake) is laminar. It is not even known whether significant oscillations might be observed in this 

non-turbulent regime. In Figure 5.2.1, we present a sample time history of the experimentally 

obtained streamwise and transverse displacements of the sphere at a Reynolds number of Re = 503. 

Clearly, significant oscillations are observed experimentally, even at this relatively low Reynolds 

number. The magnitudes of the streamwise oscillations are evidently much smaller than the 

transverse oscillations, typically 16 times smaller. The higher Reynolds number experimental results 

of Williamson & Govardhan (1997) showed similar time responses of the sphere, although the 

streamwise oscillations were only 2 times smaller than the transverse oscillations. Nevertheless, we 

note from Figure 5.2.1 (b) that the peak-to-peak amplitude of the oscillations in the transverse 
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direction is approximately 0.75D, which is quite large considering that it was previously unknown 

whether the sphere would oscillate at all when the flow is laminar. 
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le time traces of (a) streamwise oscillations, and (b) transverse oscillations for 

M* = 0.91, L* = 10.24 at a Reynolds number of Re = 503. 
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Figure 5.2.2. Normalized oscillation amplitudes A* for M* = 091, L* = 10.24: as a function of 

Reynolds number, (a) x-oscillations, □; z-oscillations, ●; as a function of reduced velocity, (b) z-

oscillations, ● 

 

5.2.2 Oscillation amplitudes 

 

The normalized amplitude response of the sphere is shown in Figure 5.2.2 as a function of both 

Reynolds number and reduced velocity. Here, we define the normalized amplitude as A* = √2xrms/D, 

ie. the normalized root-mean-square response of the sphere. Throughout the entire range of 

Reynolds numbers investigated, the amplitudes of oscillation in the streamwise direction are never 

greater than about 0.3 times the amplitudes in the transverse direction. For Reynolds numbers 
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greater than Re = 600, the amplitudes in both directions do not vary considerably, whereas the 

amplitudes in the streamwise direction vary considerably for Reynolds numbers in the range 500 < 

Re < 600. It is also evident that the maximum amplitude in the transverse direction occurs at the 

lowest reduced velocity investigated, and is approximately equal to A* = 0.27. As the reduced 

velocity is increased further, the amplitudes of oscillation in the transverse direction decrease to a 

value of roughly A* = 0.17. As we shall see in the high mass ratio results to be presented in §5.4, the 

relatively large oscillation amplitudes at these reduced velocities indicate that the tethered sphere is 

oscillating within the Mode II regime. Note that the seemingly aberrant oscillation amplitudes at Re 

= 580 are probably due to the post-processing difficulties of the insufficient time series. 

 

5.2.3 Frequency response 

 

Because the large-amplitude oscillations are observed in the transverse direction, we focus now on 

the frequency response of those oscillations, which is depicted in Figure 5.2.3. The dash-dot line at 

f* = 1 denotes the natural frequency of vibration of the tethered sphere system. The results of 

Sakamoto & Haniu (1995) on the vortex shedding frequency from a stationary sphere show that fvo 

varies considerably within the range of Reynolds numbers used for the present experiments. For 

example, at a Reynolds number of Re = 500, the shedding frequency is approximately St = 0.18, 

which increases to St = 0.21 at Re = 650, and then decreases back to St = 0.18 at a Reynolds number 

of Re = 800. The frequency response of the tethered sphere, however, does not show this behaviour 

with increasing Reynolds number (or reduced velocity). Instead, as the reduced velocity is increased, 

the normalized frequency increases almost linearly, but remains more or less close to the natural 

frequency of the system within this range of U*. As a result, the normalized oscillation frequency of 

the tethered sphere does not correspond to the vortex shedding frequency over the entire range of 

reduced velocities investigated, and is in fact much smaller than the vortex shedding frequency 

within this regime. 

 

5.2.4 Comparisons with the numerical simulations 

 

Even though the present experiments were performed in the laminar flow regime, comparisons with 

the numerical simulations are difficult to make because of the range of Reynolds numbers 

investigated experimentally within this laminar flow regime. However, the lowest Reynolds number 

investigated experimentally was Re = 503, close to the value of Re = 500 that was used for all of the 

numerical simulations. As a result, a single numerical simulation was performed at Re = 500, with 

exact matching of the mass ratio and tether length with the experimental values. Consequently, 
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Figure 5.2.3. Normalized frequencies of oscillation in the transverse direction for M* = 0.91, 

L* = 10.24. 

 

direct comparisons may be made with the experimentally observed behaviour and the numerical 

solution, since the mass ratio, tether length, Reynolds number and Froude number all match. 
 
The normalized oscillations in the streamwise and transverse directions for this simulation are 

shown in Figure 5.2.4. These plots may be compared directly with the experimentally observed 

behaviour depicted in Figure 5.2.1, since the scales on both axes are the same. We see from Figure 

5.2.4 (a) that the magnitudes of the oscillations are very small in the streamwise direction, 

characteristically less than 0.02D, and exhibit a second frequency that is a subharmonic of the 

dominant frequency. The experimental results appear to show larger amplitudes of oscillation in the 

streamwise direction than the numerical results. However, these experimental amplitudes are 

roughly 0.02D, which for the present experiments equate to amplitudes of oscillation of 

approximately 1 pixel. For the 1/2” diameter sphere used in these experiments, the digital video 

camera recorded images of the sphere whose diameter was about 50 pixels. Since the streamwise 

response was only about 1 pixel in amplitude, the data acquisition techniques used to compute the 

motion of the sphere (as outlined in Chapter 2) were evidently not very accurate for such small 

oscillations. As a result, the experimentally observed response in Figure 5.2.1 (a) is likely to be an 

overestimate of the actual response, since the amplitudes of this response are well within 

experimental error. 
 
Furthermore, the amplitude response of the sphere in the transverse direction matches very closely 

between experiments and numerical simulations, as shown in Figures 5.2.1 (b) and 5.2.4 (b). In both 

plots, we see a single dominant frequency and an amplitude response that is very sinusoidal. 
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M* = 0.91, L* = 10.24 from the numerical simulations. 

 

compare the (reliable) results between the experiments and the numerical 

e transverse oscillation amplitudes, we find that the experimental results 

litude response, as expected. However, this overestimate is not as significant in 

on because of the large-amplitude oscillations, and we find that the difference 

onse between the experiments and the numerical simulations is only about 2%. 

requencies of oscillation in both the streamwise and transverse directions, the 

 the experiments and the simulations are roughly 4%. In either case, these 
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discrepancies are quite small and lead to the conclusion that the direct numerical simulations do 

indeed accurately predict the dynamics and forcing of a tethered sphere, at least in the laminar flow 

conditions investigated here. 
 

Method A* (transverse) St (transverse) St (streamwise) 

Experiments 0.3717 0.114 0.228 

Numerical Simulations 0.3640 0.119 0.238 
 

Table 5.2.1. Direct comparisons between the present experiments and numerical simulations. 

 

5.3 Low mass ratios 

 

This section is devoted to the dynamics of a very low mass ratio tethered sphere. As mentioned in 

Chapter 2, a Reynolds number of Re = 500 was used for all simulations. The geometrical properties 

of the tethered sphere were chosen so as to compare these low Re results directly to higher Re results 

obtained from previous experiments. These experiments were performed by Williamson & 

Govardhan (1997), who investigated a particular case of M* = 0.082 and L* = 9.3. The Reynolds 

numbers considered ranged from Re ≈ 1500 to approximately Re = 13250, which represented a 

reduced velocity range of 1 < U* < 9 using Equation (5.1.9). Unfortunately, the limits of the flow 

velocity attainable in the water channel did not allow a larger range of U* to be investigated. Also, 

these experiments were performed by attaching the sphere to the floor of the water channel. Note 

that for high layover angles θ, the presence of the water channel base may affect the motion of the 

sphere and must be taken into account. 

 

5.3.1 Mean layover angles 

 

The mean layover angle θ of the tethered sphere is shown in Figure 5.3.1 as a function of reduced 

velocity U*. The solid line is a line of best fit through the numerical data points. Also illustrated are 

the experimental results of Williamson & Govardhan (1997), which are plotted using the definition 

of reduced velocity given by Equation (5.1.8) as opposed to Equation (5.1.9) because of the 

availability of drag coefficient data. However, for this particular mass ratio and layover angles, the 

difference in the calculation of the natural frequency using Equation (5.1.9) as opposed to Equation 

(5.1.7) is less than 1%. Although these experiments were performed at Reynolds numbers typically 

an order of magnitude larger than those used for the simulations, it is evident that the experimental 

mean layover angles agree extremely well with those obtained through the numerical simulations, 

throughout the entire range of U* investigated. 
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Figure 5.3.1. Mean layover angle for M* = 0.082, L* = 9.3: present results, ●; Williamson & 

Govardhan (1997) results, □. The solid line denotes a best fit through the numerical data points, 

whereas the dashed line is the estimate using Equation (5.3.1). 

 
 
An analytical estimate of θ may be made by examining Figure 2.1.1. A simple force balance on the 

tethered sphere shows that the mean layover angle may be calculated from the relation 
 

 ( )*
tan

1
dC

M
θ

α
=

−
. (5.3.1) 

 
In Figure 5.3.1, the estimates given by Equation (5.3.1) are plotted as a dashed line. Here, we have 

used the time-averaged drag coefficient data for a stationary sphere at a Reynolds number of Re = 

500 which, from Chapter 3, is equivalent to Cd ≈ 0.537. The first two numerical data points, 

corresponding to reduced velocities of approximately U* = 2.7 and U* = 3.2 respectively, lie on the 

line obtained using Equation (5.3.1) for a stationary sphere. It appears then, that the drag coefficient 

for the tethered sphere at these low reduced velocities is similar to that of a stationary sphere, since 

the mass ratio and α are equivalent. Furthermore, for U* > 3.2, the mean layover angle obtained 

numerically is greater than that predicted using Equation (5.3.1), which is equivalent to the drag 

coefficient being greater than that for a stationary sphere. On the related study of the vortex-induced 

vibrations of a tethered cylinder, the two-dimensional numerical simulations of Pregnalato et al. 

(2002b) found that similar behaviour occurs, although at higher reduced velocities. This departure of 

the drag coefficient will be explored in more detail in §5.3.3. 
 
Note that the scale used on the dependent axis in Figure 5.3.1 is logarithmic. As a result, the 

differences in θ between the numerical, experimental and analytical results for U* < 3 may look 
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quite large, but are less than 0.1º at any given reduced velocity within this range, which may 

certainly be within experimental errors. However, for much higher reduced velocities of U* = 20, 

the difference in θ between the numerical and analytical results is approximately 30º. This is similar 

to the observations of Williamson & Govardhan (1997) who found that the sphere oscillations 

caused an increase in θ (and hence Cd) of up to 100% over that obtained using stationary sphere drag 

data. For example, at U* = 9, the experimental observations show an increase in Cd of approximately 

54%, whereas the numerical results show an increase in Cd of roughly 52%. 

 

5.3.2 Oscillation amplitudes 

 

Because the existence of the tether couples the three-dimensional motion of the sphere, oscillations 

are observed in all three directions. For the case of M* = 0.082 and L* = 9.3, the amplitudes of 

oscillation are shown in Figure 5.3.2. To enable comparisons with the work of Williamson & 

Govardhan (1997), the amplitude of oscillation is defined as A* = A/D. 
 
Figure 5.3.2 (a) depicts the normalized amplitudes of oscillation in the x (streamwise) and y (lateral) 

directions. For reduced velocities of U* ≤ 3.2, it is evident that the sphere is not oscillating much at 

all. At these reduced velocities, as mentioned in the previous section, the mean layover angle is less 

than 2º, so that the sphere is almost vertical in the framework of Figure 2.1.1, which is a result of the 

high buoyancy at these conditions. As U* increases, significant oscillations are observed, especially 

in the streamwise direction. This is because the mean layover angle is less than 45º, and hence the 

sphere is more prone to vibrate in the streamwise direction. As U* increases to U* = 11, the 

streamwise oscillation amplitudes decrease to approximately A* = 0.05, whereas the lateral 

oscillation amplitudes are slowly growing in magnitude. However, as θ approaches 45º, both the 

amplitudes of the streamwise and the lateral oscillations have the same magnitude, as one would 

expect, similar to the observations of a tethered cylinder (Pregnalato et al. (2002a)). Linear 

interpolation reveals that the layover angle becomes 45º when the reduced velocity reaches U* = 

17.68, which is close to the intersection of the predicted curves in Figure 5.3.2 (a). Beyond U* = 11, 

the amplitude of the lateral oscillations increases substantially, and at a reduced velocity of U* = 

19.9 it is roughly 1.7 times the amplitude of the streamwise oscillations. The maximum streamwise 

oscillation amplitude observed is A* = 0.194; the experiments of Williamson & Govardhan (1997) 

found a value of A* = 0.16. In either case, the maximum amplitudes were observed at the higher 

reduced velocities investigated. 
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s the normalized amplitudes of oscillation in the z (transverse) direction. Also 

sults of Williamson & Govardhan (1997). The first feature one notices is the 

ponse that is observed, both numerically and experimentally. For a stationary 

olds numbers, the magnitudes of the lateral and side (transverse) forces are 

 an order of magnitude smaller than the drag force. However, for the tethered 

rce (which is dominated by the buoyancy B) is relatively constant and typically 

er than the transverse force Fz. Because of this high buoyancy, the sphere is 
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more susceptible to the (fluctuating) transverse force, and hence large-amplitude vibrations are 

observed in the transverse direction. 
 
Returning to Figure 5.3.2 (b), it is evident that the behaviour observed numerically and 

experimentally have similarities and differences. However, this is to be expected given that the 

simulations were performed when the flow is laminar, whereas the experiments were performed 

when the flow is turbulent, and hence the details of the wakes will be different. Nevertheless, similar 

characteristics may be noted. For example, there is a sharp increase in oscillation amplitude when a 

reduced velocity of approximately U* = 3 is reached numerically. Experimentally, a more gradual 

increase in oscillation amplitude is observed when U* = 2.5. Furthermore, the computational 

oscillation amplitude saturates at a value of roughly A* = 0.3 numerically, after peaking at a value of 

about A* = 0.63, whereas the experimental results would appear to show an asymptotic amplitude of 

A* = 0.6 if a larger range of reduced velocity was obtainable. The major difference between the 

numerical and experimental responses is the observed decrease in amplitude after a reduced velocity 

of U* = 10 is reached, a phenomenon that is not expected to occur experimentally at this low mass 

ratio, as is the case with the high mass ratio results to be presented shortly. In addition, another 

major difference between the two sets of results is the appearance, at U* = 5, of a local inflection in 

the transverse experimental response amplitude that is not observed numerically. This “Mode I” 

response, as discussed by Williamson & Govardhan (1997), corresponds roughly to the natural 

frequency being approximately equal to the vortex formation frequency, which yields a resonance in 

the classical studies of vortex-induced vibrations (see, for example, Blevins (1994) and Naudascher 

& Rockwell (1994)). For the present numerical results, one would expect a Mode I response at a 

reduced velocity of U* = 6, which corresponds to a natural frequency of Sn = 0.16, since for a 

stationary sphere the vortex shedding frequency at this Reynolds number of Re = 500 is St = 0.16. In 

addition, the larger-amplitude oscillations at intermediate reduced velocities appear to indicate the 

existence of another mode of vibration, the “Mode II” response. Moreover, the decrease in 

amplitude in the computational results indicates the existence of a Mode III response, which will be 

discussed shortly. From the results of Jauvtis et al. (2001), the Mode I response appears to become 

less significant at lower mass ratios (M* « 1) and at higher mass ratios (M* » 1). For M* ≈ 1, the 

Mode I response is clearly evident, as shown by Govardhan & Williamson (1997) for their mass 

ratio of M* = 0.76 and Jauvtis et al. (2001) for their mass ratio of M* = 0.8. It is somewhat 

surprising that the numerical simulations appear to capture what seem like Mode II and III responses 

but not a Mode I response. 
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Figure 5.3.3. Change in the drag coefficient due to the tethered sphere oscillations for M* = 0.082, 

L* = 9.3. The solid line depicts Cd for a stationary sphere. Symbols as in Figure 5.3.1. 

 

5.3.3 Force coefficient behaviour 

 

The time-averaged drag coefficient is shown as a function of reduced velocity in Figure 5.3.3. Once 

again, the experimental results of Williamson & Govardhan (1997) are added for comparison, as 

well as the time-averaged drag coefficient for a stationary sphere at a Reynolds number of Re = 500 

depicted by the solid line, which has a value of Cd ≈ 0.537 (see Chapter 3). As mentioned in §5.2.1, 

the drag coefficient for the first two numerical data points at low reduced velocity is similar to that 

of a stationary sphere, which is to be expected since the motion of the tethered sphere at these low 

layover angles is very small. However, an increase in U* causes the drag coefficient to gradually 

increase to a value of approximately Cd = 0.85 at U* = 7.15. The experimental results also show this 

gradual rise in Cd. For higher U*, the numerical results depict a monotonic decrease in Cd that 

appears to bottom out to a value of Cd = 0.62, which asymptotes as the time-averaged layover angle 

passes 45º. The larger-amplitude Mode II response seems to be responsible for the gradual rise in the 

drag, as observed in the experimental measurements of Williamson & Govardhan (1997) in Figure 

5.3.3. The Mode III response observed at the highest Reynolds numbers does not seem to alter the 

drag a great deal. In addition, it is evident that the amplification in the drag coefficient due to the 

sphere oscillations is up to 58% greater than that of a stationary sphere at the same Reynolds number 

of Re = 500. For the same mass ratio (but at much higher Reynolds numbers), Williamson & 

Govardhan (1997) found an increase of up to 100% over the values measured by Wiselsberger 

(1922). 
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ncerning the forcing of the sphere is available in Figure 5.3.4, which shows the 

ctuating fluid forces in the x, y and z directions. Figure 5.3.4 (a) depicts the 

ding to the fluctuating drag and lateral force coefficients. The amplitude of Cd 

 the trend of the time-averaged drag coefficient shown in Figure 5.3.3, except 

uced velocities where the amplitudes are larger than those observed at the peak 

e. On the other hand, the lateral (y) coefficient starts off small at the onset of the 

 gradually increases to a value of approximately 0.025 at the end of the Mode II 

est reduced velocities investigated, the amplitude of Cy remains relatively 
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unchanged at a value of 0.016. Overall, the magnitudes of the amplitudes for both the drag and 

lateral coefficients are relatively small, especially at the lower reduced velocities. In contrast, the 

magnitudes of the amplitudes for the transverse (z) coefficients may be 30 times as large, as shown 

in Figure 5.3.4 (b). A large jump in the amplitude of the transverse forcing is observed after a 

reduced velocity of U* = 3.2 is reached. The amplitude of this transverse force coefficient peaks at 

about 0.4 times the mean drag coefficient, and is responsible for the large increase in the transverse 

oscillation amplitude observed in Figure 5.3.2 (b). However, although the oscillation amplitude in 

the Mode II regime stays at roughly the same value and is essentially independent of the reduced 

velocity as U* is increased, the amplitude of the transverse forcing decreases almost exponentially 

and appears to approach zero at the highest reduced velocities investigated. This raises the question: 

what sustains these transverse oscillations if the transverse forcing is small? The answer to this 

question will be dealt with shortly. 

 

5.3.4 Frequency response 

 

We turn our attention now to the frequency of oscillation of the tethered sphere. The frequencies of 

oscillation in the x, y and z directions were computed using spectral analysis of the oscillation time 

traces and are shown in Figure 5.3.5. The dashed line represents the vortex shedding frequency (fvo) 

of a stationary sphere at a Reynolds number of Re = 500, whereas the dashed-dotted line signifies 

the natural frequency of vibration of the system. In both the x and y directions, it is evident that the 

sphere, over the entire range of reduced velocities investigated, oscillates at neither the natural 

frequency of vibration nor the vortex shedding frequency. From results concerning the vortex-

induced vibrations of a circular cylinder (Brika & Laneville (1993)), one would expect the 

oscillation frequency to be at the natural frequency, especially for high mass ratios. However, the 

present results for a low mass ratio tethered sphere show a similar deviation from fn as do the low 

mass ratio results for a cylinder from Khalak & Williamson (1997). 
 
For U* < 11, the normalized frequency of oscillation in both the streamwise and lateral directions is 

much higher than both the natural frequency and the vortex shedding frequency, shown by the 

“upper” branch in Figure 5.3.5. However, for higher reduced velocities, the oscillation frequency 

switches to much lower values, as highlighted by the data points at the end of the reduced velocity 

extent. At the lowest reduced velocities, the frequencies of oscillation in the streamwise and lateral 

directions are dissimilar and do not appear to follow any trend. 
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uencies of oscillation in the z direction are portrayed in Figure 5.3.5 (c). It is 

t that the frequencies of oscillation in the transverse direction within the Mode 

e corresponding frequencies in both the streamwise and lateral directions. The 
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exception occurs at higher reduced velocities, at which the frequencies of oscillation are extremely 

small in the streamwise and lateral directions but relatively large in the transverse direction. Note 

that at these higher reduced velocities, the layover angle of the sphere is greater than 45º, at which a 

noticeable change in the sphere response is observed, for example, in the oscillation amplitude 

response (Figure 5.3.2). Note that in the time traces of displacement used to calculate the oscillation 

frequencies, there was a second, less dominant frequency in the time traces of the streamwise and 

lateral oscillations that was half the frequency of the more dominant oscillations. This corresponds 

to the frequencies observed in the transverse oscillations, since the motion in all three directions is 

coupled. As U* was increased from the start of the upper branch in Figures 5.3.5 (a, b) to the end of 

the upper branch, this second frequency became more pronounced and appears to have dominated 

the vibrational response for higher reduced velocities as the frequencies switch from the upper 

branch to the lower values depicted in Figures 5.3.5 (a, b). 

 

5.3.5 Oscillation time traces 

 

Figure 5.3.6 shows sample time histories of the streamwise and transverse oscillations for a reduced 

velocity of U* = 5.32 as well as the x-z phase plots from experiments. This reduced velocity was 

chosen to closely match the case studied by Williamson & Govardhan (1997), who present the 

oscillation time traces as a function of Reynolds number as opposed to reduced velocity. In Figure 4 

of their paper, the Reynolds number was 9176, which corresponded to a reduced velocity of 

approximately U* = 6.17. In Figure 5.3.6 (a), we plot the same streamwise and transverse 

oscillations, and we see that the response is very similar, although the simulations were run at a 

Reynolds number of Re = 500. In the numerical results, the amplitudes of the transverse oscillations 

are almost nine times that of the streamwise oscillations, and are approximately 0.5D in magnitude. 

Experimentally, Figure 4 of Williamson & Govardhan (1997) show that these transverse oscillations 

have a magnitude of roughly 0.4D at a slightly higher reduced velocity. However, at this low 

reduced velocity, the tethered sphere for these experiments oscillates within the Mode I regime, 

whereas it appears to oscillate within the Mode II regime for the numerical simulations. 

Furthermore, it is evident that the frequency of the in-line vibrations is at twice the frequency of the 

transverse vibrations, as depicted in Figure 5.3.5, despite the fact that the natural frequency of 

vibration is the same in all directions. 
 
 

 

 

 

 129 



x/
D

50
-0.1

-0.05

0

0.05

0.1 0.8

 
z/D

-0.1 -0.
-0.8

-0.4

0

0.4

0.8

 

Figure 5.3.6. T

oscillations, das

Wil

The x-z phase plot f

that a cycle of osc

accordance with the 

which shows a simila

large streamwise vib

numbers investigated

numerical simulation

 

(a)
∆t*

z/D

0 510 520 530 540 550
-0.8

-0.4

0

0.4

 

(b)
x/D
05 0 0.05 0.1

 
 

ime traces of sphere oscillations for U* = 5.32: (a) solid line – streamwise 

hed line – transverse oscillations; (b) x-z phase plot of the oscillations; (c) 

liamson & Govardhan (1997) results for Re = 9176, U* = 6.17. 

 

or this low reduced velocity is shown in Figure 5.3.6 (b), which demonstrates 

illation maps out a skewed figure-of-eight displacement pattern. This is in 

experimental results of Williamson & Govardhan (1997) (see Figure 5.3.6 (c)), 

r displacement pattern although with much larger streamwise vibrations. These 

rations are probably related to the more complex wake at the large Reynolds 

. Correspondingly, the clarity of the displacement pattern is much greater in the 

s than in the experiments, due to the fact that the numerical simulations were 
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performed in the laminar flow regime whereas the experiments were performed under turbulent flow 

conditions. 
 
Figure 5.3.7 (a) shows similar time traces of the streamwise and transverse oscillations, although at a 

higher reduced velocity of U* = 7.19. Figure 5 of Williamson & Govardhan (1997) agrees 

qualitatively very well with Figure 5.3.7 (a), although the Reynolds number associated with the 

experiments was Re = 11310, corresponding to a reduced velocity of approximately U* = 7.6. 

Numerically, the transverse oscillation amplitude has grown to 0.64D, whereas the experimental 

results depict an amplitude of 0.6D. In both cases, the sphere oscillates within the Mode II response 

envelope, and the frequency of oscillation in the streamwise direction is still twice that of the 

transverse direction. The time trace of the streamwise oscillations in Figure 5.3.7 (a) clearly shows a 

second frequency that corresponds to the frequency of the transverse oscillations, and hence is 

associated with the transverse oscillations since the motion is coupled as discussed in the previous 

section. Furthermore, the amplitude of the transverse oscillations remains at roughly nine times the 

magnitude of the streamwise oscillations. 
 
The x-z phase plot at this slightly higher reduced velocity again shows similar behaviour between the 

numerical and experimental results. Numerically, as before, a cycle of oscillation maps out a figure-

of-eight displacement pattern, although the phase plot in this instance is not nearly as skewed as at 

the previous reduced velocity investigated. Once more, the phase plot in Figure 5 of Williamson & 

Govardhan (1997) in Figure 5.3.7 (c) shows comparable behaviour although, as stated before, the 

turbulence of the flow has demarcated the limit cycle response that is clearly observed numerically. 

Indeed, one would imagine that time-averaging of the experimental displacement patterns would 

result in the removal of the unwanted small-scale motions associated with the turbulence and give 

rise to the displacement patterns analogous to those in Figures 5.3.6 (b) and 5.3.7 (b). 

 

5.4 High mass ratios 

 

The high mass ratio sphere considered in this study corresponds to M* = 0.8. As before, we consider 

a tether length of L* = 10, and we investigate the effect of changing the tether length at the end of 

this section. This particular mass ratio was chosen to enable comparisons to be made with the work 

of Govardhan & Williamson (1997) and Jauvtis et al. (2001), who investigated mass ratios of M* = 

0.76 and M* = 0.8 respectively. However, the tethered sphere study by Jauvtis et al. (2001) did not 

mention the tether lengths investigated. In particular, the results of Govardhan & Williamson (1997) 

include, among other things, the frequency response that is observed over a large range of reduced 

velocity, which was not obtained for the very low mass ratio tethered sphere discussed in §5.2.2. 

Also, the reduced velocity range they investigated varied from U* = 3 to approximately U* = 20.  
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 higher mass ratio results of Jauvtis et al. (2001) represented a reduced velocity 

 U* < 14. For both of these studies, the limits of the flow speeds attainable in 

ntrolled the range of reduced velocities investigated and, as a result, only the 

ses were observed. Furthermore, Govardhan & Williamson (2002b) report the 

al mass for the tethered sphere having a value of M* = 0.30. For a freely 

the critical mass is M* = 0.54 (Govardhan & Williamson (2002a)). In other 

s less than M* = 0.30, the tethered sphere will oscillate indefinitely in the Mode 
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II regime, regardless of how large the reduced velocity is. This appears to be the case both 

numerically and experimentally for the low mass ratio results presented in §5.2.2. 

 

5.4.1 Mean layover angles 

 

The mean layover angle θ for this high mass ratio case is depicted in Figure 5.4.1. As with the low 

mass ratio case investigated, the analytical estimate using Equation (5.3.1) with the drag for a 

stationary sphere at a Reynolds number of Re = 500 is also shown. Although Jauvtis et al. (2001) 

investigated a tethered sphere with an identical mass ratio, they do not present any mean layover 

angles and the corresponding drag coefficients. However, from Figure 5.4.1, it is evident that for 

reduced velocities less than or equal to 4, the mean layover angle lies on the predicted line using the 

analytical estimate, which is equivalent to the tethered sphere having a drag coefficient comparable 

to that of a stationary sphere. When the reduced velocity is slightly increased, from U* = 4 to U* = 

4.25, the calculated mean layover angle departs significantly from that using Equation (5.3.1). As 

with the low mass ratio, this indicates a considerable increase in the drag coefficient to values much 

larger than that observed for a stationary sphere, as we shall see in §5.3.3. This trend continues until 

a reduced velocity of approximately U* = 11.2 is reached, after which the layover angle switches 

back to that predicted using the analytical estimate. Any further increases in U* have little effect on 

the calculated mean layover angle. These developments are similar to the response of the tethered 

sphere at low mass ratios which, as explained in §5.3.1, exhibits a mean layover angle that is much 

higher than that predicted using Equation (5.3.1) over the entire range of reduced velocity 
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investigated except, of course, at extremely low reduced velocities where negligible oscillations are 

observed and at the highest reduced velocities investigated. It appears then that there are two distinct 

modes of oscillation for these low Reynolds number cases, namely Mode II and Mode III responses. 

However, what is not clear from Figure 5.4.1 is whether a Mode I response is observed, which is 

considered in the next section. 

 

5.4.2 Oscillation amplitudes 

 

The normalized streamwise and lateral oscillation amplitudes are shown in Figure 5.4.2 (a) as a 

function of reduced velocity. Note that comparisons with experiments are difficult to make due to 

the lack of non-transverse oscillation data in the studies of Govardhan & Williamson (1997) and 

Jauvtis et al. (2001). Here, we define the amplitude of oscillation as * 2 /rmsA =x x D , where xrms is 

the root-mean-square response of the sphere in either the x, y or z directions. For purely sinusoidal 

oscillations, this is equivalent to A* = A/D, as defined in the nomenclature. In accordance with the 

mean layover angle results presented in the previous section, at low reduced velocities of U* ≤ 4, the 

sphere displays minute oscillations in both the streamwise (x) and lateral (y) directions. For reduced 

velocities greater than U* = 4, the oscillations in the streamwise direction jump up to a magnitude of 

approximately 0.04, whereas the lateral oscillations exhibit a magnitude of roughly 0.005. The 

streamwise oscillations are around 8 times the lateral oscillations, which is a consequence of the 

high net buoyancy (which depends on the Froude number) of the sphere at these small layover 

angles that resists motion in the lateral direction. The sphere continues to oscillate at more or less the 

same amplitude until U* = 11 is reached, after which both the streamwise and lateral oscillations 

decrease slightly before increasing dramatically in magnitude. This is in contrast to the behaviour 

observed for a very low mass ratio sphere (see §5.2.2), which does not exhibit a decrease in either 

the streamwise or lateral oscillation amplitudes as the reduced velocity is increased. For the present 

high mass ratio case, further increases in reduced velocity result in a steady increase in the 

oscillation amplitude, which peaks at U* = 14. Desynchronization appears to occur at reduced 

velocities in the range 22 < U* < 24.5, during which the sphere oscillations in both the streamwise 

and lateral directions are very small. Beyond these reduced velocities, the oscillations build up to 

values that are higher than those previously observed, especially in the lateral direction. Because of 

the low frequency of oscillations in this regime, as will be illustrated shortly, as well as the non-

sinusoidal nature of the oscillations, much longer time traces are needed to accurately compute the 

observed normalized root-mean-square vibrational amplitudes of motion. However, note that for U* 

> 30, the normalized amplitude is calculated using the maximum amplitude as opposed to the RMS 

amplitude (cf. Jauvtis et al. (2001)), because of the non-harmonic nature of the oscillations at these 
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high velocities, as will be shown shortly. For all of the data points displayed in Figure 5.4.2, time 

histories of at least ∆t* = 1000 units were used to calculate the RMS responses. 
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Figure 5.4.2 (b) shows the normalized amplitude of response in the transverse (z) direction. Also 

illustrated for comparison are the results of Jauvtis et al. (2001), for the same mass ratio. It is evident 

that the experimental results at higher Reynolds numbers capture both the Mode I and Mode II 

responses. The Mode I response is depicted by the local maximum in oscillation amplitude that 

occurs at a reduced velocity of approximately U* = 5.6, corresponding to a natural frequency of 

roughly Sn = 0.18. For these experiments, the Reynolds number was typically of the order of Re = 

10000. For a stationary sphere, the vortex shedding frequency for Reynolds numbers in the range 

5000 < Re < 14000 (which correspond to the Reynolds numbers obtained in the experimental results 

of Jauvtis et al. (2001)) is approximately St = 0.18 (see Sakamoto & Haniu (1990)). It appears then 

that the Mode I response observed experimentally is due to a lock-in of the vortex shedding 

frequency with the natural frequency, as pointed out by Williamson & Govardhan (1997). 
 
For higher reduced velocities of approximately U* = 10 and above, the experiments of Jauvtis et al. 

(2001) depict a Mode II response with a saturation amplitude of A* = 0.89. The maximum reduced 

velocity reached experimentally was U* = 13.7 which, as with the experiments performed by 

Govardhan & Williamson (1997), represented the maximum flow velocity attainable in their 

experimental facility. The numerical results, on the other hand, once again do not capture a Mode I 

response, as with the previous mass ratio investigated. However, a Mode II response is found and 

occurs in the reduced velocity range of 4.25 < U* < 10. This Mode II response commences at a 

lower reduced velocity than that observed experimentally, although it is unfortunate that higher flow 

speeds were unobtainable experimentally to see if the observed Mode II response occurs at finite 

reduced velocities at this mass ratio. Furthermore, the amplitude of oscillation in this regime is A* = 

0.4, which is approximately 0.44 times that observed experimentally. It is also evident that a 

comparison with the very low mass ratio results in §5.3.2 shows that increasing the mass ratio results 

in a decrease in the synchronization regime (of the Mode II response), a result confirmed by the 

tethered sphere experiments of Jauvtis et al. (2001) and well known in the field of vortex-induced 

vibrations of a cylinder (see Khalak & Williamson (1999)). 
 
As previously mentioned, the regime of synchronization ends at a reduced velocity of U* = 10. 

Beyond this, the (transverse) oscillation amplitude decreases gradually to an amplitude of roughly 

A* = 0.12. It is somewhat surprising that these low Reynolds number simulations do not exhibit a 

sudden decrease in transverse amplitude at the end of the Mode II synchronization regime. 

Nevertheless, the large-amplitude sinusoidal oscillations exhibited at higher reduced velocities are 

defined here as a Mode III response, which will be explored in more detail in §5.8. Furthermore, at 

the highest reduced velocities investigated (which occurs when the mean layover angle passes 45º), 

the very large-amplitude non-sinusoidal oscillations are defined as a Mode IV response. For this 

particular mass ratio of M* = 0.8, a Mode III response was not observed experimentally because of 

the inability to reach higher reduced velocities. However, this problem was overcome by 
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investigating higher mass ratios, since the definition of reduced velocity in Equation (5.1.8) is highly 

dependent on M*. Using tethered spheres of mass ratios of O(10), Jauvtis et al. (2001) were then 

able to reproduce similar Mode III and IV responses as observed numerically, although with much 

larger amplitudes, and the transition from the desynchronization region to the Mode III regime was 

clearly more pronounced probably owing to the high mass ratios of the spheres in this case. 

However, what is significant is that the present results show that the Mode III and Mode IV regimes 

are real phenomena that exhibit vortex dynamics that cannot be explained, unlike the Mode I 

response, as a classical lock-in phenomenon that is so prevalent in vortex-induced vibration studies. 

 

5.4.3 Force coefficient behaviour 

 

Figure 5.4.3 shows the drag coefficient as a function of reduced velocity for this high mass ratio 

case. Also shown as the solid line is the drag coefficient for a stationary sphere at this Reynolds 

number of Re = 500, equal to Cd = 0.537. As with the results for M* = 0.082, the drag coefficient at 

low reduced velocities is similar to that of a stationary sphere, since the vibrations of the sphere are 

quite modest at these small layover angles. However, as soon as the large-amplitude vibrations of 

the Mode II response kick in at a reduced velocity of U* = 4.25, the drag coefficient responds 

accordingly with a large increase in Cd from 0.572 before the transition to 0.731 at the start of the 

Mode II synchronization regime. The maximum increase in Cd is approximately 36%; the results of 

Govardhan & Williamson (1997) for a mass ratio of M* = 0.76 and tether length of L* = 8.93 
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indicated an increase in Cd of roughly 79%. As the reduced velocity is increased in this Mode II 

regime the drag coefficient steadily decreases until the end of the synchronization region, after 

which it attains a relatively constant value of roughly Cd = 0.592. This is in contrast to the very low 

mass ratio results (Figure 5.3.3), which show an initial slight decrease in the drag that then appears 

to saturate to a constant value that is much greater than that of a stationary sphere. Because the drag 

for the very low mass ratio sphere never approaches that of a stationary sphere, it seems that the 

Mode II regime extends indefinitely for that case. However, for the present case of M* = 0.8, the 

drag does indeed decrease back to that of a stationary sphere, signaling the end of the Mode II 

regime. Any further increases in U* seem to have little effect on the drag coefficient. 
 
The root-mean-square drag, lateral and transverse force coefficients are depicted in Figure 5.4.4. 

Because of the large variation in the observed forces, a logarithmic scale is used to compare the 

differences. At low reduced velocities (U* ≤ 4), the variations in the lateral and transverse force 

coefficients are comparable and typically twice as large as the corresponding variations in the drag 

coefficient. When the Mode II oscillations begin at U* = 4.25, the variations in the lateral force 

coefficient decrease by approximately 87%, whereas those of Cz increase to a value of Cz’ = 0.34, 

which represents a relative increase of almost 10 times the previous value. The same trend in the 

transverse force coefficient is observed for the lower mass ratio cases. It is apparent that this large 

transverse forcing is initially responsible for the large-amplitude vibrations observed in the 

transverse direction, leading to a Mode II response. However, further increases in the reduced 

velocity result in a reduction in Cz, until desynchronization occurs after U* = 10.  
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It is interesting to note that towards the end of the Mode II regime, the variations in the transverse 

forcing that initially gave rise to the large-amplitude vibrations approach values comparable to that 

of the lateral forcing. In other words, although the transverse forcing changes from Cz = 0.34 at the 

start of the regime to Cz = 0.019 at the end of the regime (a decrease of approximately 18 times), the 

large-amplitude vibrations persist until the end of the synchronization regime. A better 

understanding of this Mode II response will be presented in §5.8. 
 
For U* > 15 and less than U* = 27, the variations in the transverse force coefficient are relatively 

constant, although the variations in the drag and lateral force coefficients are not uniform and 

relatively small. However, within this range of reduced velocity, the tethered sphere experiences 

further oscillations in the transverse direction, as shown in Figure 5.4.2 (b). The fact that significant 

vibrations are observed although the forcing is quite small (together with the observation that the 

forcing is at a much higher frequency) makes this region quite unlike that of the Mode II regime. 

Jauvtis et al. (2001) were the first to discover this Mode III vibrational response, albeit by 

investigating higher mass ratios (M* > 1). That the present numerical results show that this mode is 

observed at much lower mass ratios and amplitudes is a significant finding in itself, and is evidence 

that at least one of the higher modes of vibration of a tethered sphere is not due to the high mass 

ratios that are typically used experimentally. In addition, for U* > 30, the variations in all three of 

the force coefficients are relatively the same, although very large-amplitude non-harmonic 

oscillations are observed which, as mentioned before, are indicative of a Mode IV response. The 

dynamics of both of these responses will be explored in detail in §§5.9 and 5.10. 

 

5.4.4 Frequency response 

 

From the previous results concerning the low mass ratios, we know that the frequency of oscillation 

in both the streamwise and transverse directions are the same, but not necessarily the same as that in 

the transverse direction. Figure 5.4.5 (a) shows these frequencies in the x (or y) direction. It is 

evident that throughout the range of reduced velocities investigated, the sphere does not oscillate at 

either the vortex shedding frequency or the natural frequency. Furthermore, the frequency of 

oscillation in the lateral direction is the same as that in the streamwise direction for all reduced 

velocities investigated, except for U* ≤ 5. The normalized frequency of oscillation for reduced 

velocities in the range 6 < U* < 12 is much higher than the natural frequency and vortex shedding 

frequency, which is in agreement with the Mode II response that was observed for the lower mass 

ratios and the corresponding observed frequencies. At the end of the Mode II regime, the oscillation 

frequencies in both the x and y directions drop to much lower values, typically lower than the natural 

frequency, during which the sphere displays very slow oscillations in the x and y directions. 
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es higher than U* = 19, the normalized frequencies of oscillation increase 

e than twice the natural frequency. Finally, at the highest reduced velocities 

e streamwise and transverse oscillation frequencies decrease to values in the 

e sphere exhibits slow, non-sinusoidal vibrations. 

uencies of oscillation in the transverse direction are shown in Figure 5.4.5 (b). 

s in the range of the Mode II response, it is clear that the transverse oscillation 

he streamwise (and lateral) oscillation frequency, in agreement with the results 

atio presented in §5.3.4. Also, within this regime, the sphere appears to be 
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vibrating at close to the natural frequency of the system, in contrast to the oscillations in the 

streamwise and lateral directions. However, at the end of the Mode II regime, the transverse 

frequency of oscillation remains at values slightly above the natural frequency, whereas both the 

streamwise and lateral oscillations display extremely low-frequency oscillations. For reduced 

velocities greater than U* = 19, the frequency of oscillation in all three directions is the same. For 

the low mass ratio sphere results, the frequency of oscillation was the same in all three directions 

when the layover angle passed through 45º. However, for the present results with a mass ratio of M* 

= 0.8, the frequencies are the same when the mean layover angle exceeds 18º. Govardhan & 

Williamson (1997) investigated a sphere of mass ratio M* = 0.76 and tether length L* = 8.93, and 

found that the Mode II response existed up until a mean layover angle of at least 23º. Jauvtis et al. 

(2001) investigated a mass ratio of M* = 0.8 and found a similar result. In both cases, the maximum 

flow velocities were attained before the end of the synchronization regime was reached, and hence 

the determination of the onset of the Mode III oscillations was unattainable. 
 
The transverse normalized frequencies of oscillations in the Mode III regime are evidently linearly 

increasing with increasing reduced velocity, similar to the observations for the Mode II response. 

However, the onset of the Mode IV response at reduced velocities greater than U* = 28 results in 

oscillation frequencies that are independent of the direction of oscillation, as previously mentioned. 

For the Mode III and IV responses observed by Jauvtis et al. (2001), the oscillation frequency 

remained very close to the natural frequency, which was to be expected since the high mass ratio 

spheres they investigated were typically of the order of M* = 80. They also point out that it is 

apparent that the Mode III dynamics of the sphere cannot be explained as a lock-in of the vortex 

shedding frequency with the oscillation frequency since fvo is much greater than fn, although it is 

possible that the vortex shedding is altered by the low-frequency body motion such that self-excited 

motion will follow. However, because of the high mass ratios they investigated, the frequency of 

oscillation always coincided with the natural frequency, thus not providing much insight into the 

wake vortex dynamics. The present results, on the other hand, are not affected by such problems and 

show a large variation in the oscillation frequency as the reduced velocity increases. They also 

present a more realistic situation that is of practical use to the ocean engineering industry. 
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Figure 5.4.6. Normalized frequencies of the fluid force components for M* = 0.8, L* = 10: drag 

coefficient, ●; lateral (y) coefficient, ×; transverse (z) coefficient, ○. 

 

To investigate whether the fluid forcing frequency coincides with the body oscillation frequency, we 

plot in Figure 5.4.6 the dominant frequencies of the drag, lateral and transverse force coefficients as 

a function of reduced velocity. As with the body oscillation frequencies, the frequencies of the fluid 

force coefficients in the streamwise and lateral directions do not correspond to either the natural 

frequency or the vortex shedding frequency of a stationary sphere over the entire range of reduced 

velocities investigated. For U* < 19, the frequencies of the drag force are the same as the streamwise 

oscillation frequency, except at U* = 4.5 at which the body oscillation frequency is roughly 0.4 

times that of the drag frequency. Similarly, over this same range of reduced velocity, the lateral 

frequency of oscillation corresponds directly with the lateral force frequency, except at reduced 

velocities in the range 14.9 < U* < 18.6 and U* = 12.9, during which the lateral forcing frequency is 

roughly 4 times the oscillation frequency. For higher reduced velocities in the range 19 < U* < 24, 

the drag frequency is approximately twice that of the streamwise oscillations, whereas the lateral 

forcing frequency is the same as that of the oscillations. The transverse forcing frequency, on the 

other hand, is essentially the same as that of the transverse oscillations throughout the entire range of 

U*. However, the most notable exception occurs at the highest reduced velocities investigated (ie. 

U* > 29), which corresponds to the Mode IV response and at which the mean layover angle of the 

sphere is greater than 45º. In this regime, the frequencies of all three fluid force components are 

relatively the same and greater than the corresponding oscillation frequencies by up to a factor of 

four. It is apparent that these large-scale vibrations in this Mode IV regime cannot be explained as a 

lock-in of the fluid forcing frequency with the body oscillation frequency. Nevertheless, the 

dynamics of this response will be explored in more detail shortly. 
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Figure 5.4.7. Effect on the normalized transverse oscillation amplitude of changing the tether length 

from L* = 10 to L* = 5 for M* = 0.8: L* = 5, ●; L* = 10, □. 

 

5.4.5 Effect of changing L*  

 

Having gone through the process of investigating the dynamics of the tethered sphere as a function 

of mass ratio, we now turn our attention briefly to the outcome of altering the tether length L*. 

Because a longer tether length will invariably require a longer time to reach equilibrium, it was 

decided to decrease the tether length, so that numerical simulations were performed with the 

parameters L* = 5 and M* = 0.8. Due to the limited computational resources available, only a few 

simulations were performed representing reduced velocities in the range 2 < U* < 10. Figure 5.4.7 

shows the normalized transverse oscillation amplitude as a function of reduced velocity for the two 

cases of L* = 5 and L* = 10. It is apparent that there is very little change in the transverse amplitude 

response when a shorter tether is used. This phenomenon is also observed in the drag coefficient, 

which is plotted in Figure 5.4.8 along with the previous results for L* = 10. Again, very little change 

is apparent in the drag coefficient when the tether length is altered. Govardhan & Williamson (1997) 

investigated a mass ratio of M* = 0.76 and varied the tether length from L* = 3.83 to L* = 8.93. 

When plotting the normalized transverse RMS amplitude against the Reynolds number, they found 

that the saturation value of the amplitude (of the Mode II response) was unaffected by variations in 

the tether length. Furthermore, the RMS response for L* = 3.83 was shifted to higher Reynolds 

numbers than the RMS response for L* = 8.93, which suggested that the Reynolds number might not 

be the most suitable parameter to normalize the fluid velocity with. 
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Figure 5.4.8. Effect on the drag coefficient of changing the tether length from L* = 10 to L* = 5 for 

M* = 0.8: L* = 5, ●; L* = 10, □. 

 

However, when plotting the amplitude response against the reduced velocity, they found an 

excellent collapse of the response data. For example, the onset and peak amplitude of the Mode I 

response was virtually identical, as was the onset and saturation amplitude of the observed Mode II 

response. Numerically and experimentally, it is apparent then that the effect of changing the tether 

length is insignificant and by far the most important parameter governing the tethered sphere system 

is the mass ratio. 

 

5.5 Putting the results together: suitability of the reduced 

velocity 

 

So far, we have computationally investigated the response of a tethered sphere for mass ratios 

ranging from M* = 0.082 to M* = 0.8. We have also investigated tether lengths ranging from L* = 5 

to L* = 10. In addition, we have performed experiments at low Reynolds numbers for a mass ratio of 

M* = 0.91 and tether length of L* = 10.24. We put all of these results together in this section to 

observe the changes in amplitude response, drag coefficient and frequency response as a function of 

reduced velocity when the mass ratio and tether length are varied. 
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Figure 5.5.1. Amplitude response as a function of reduced velocity: M* = 0.082, L* = 9.3, ▲; M* = 

0.8, L* = 5, □; M* = 0.8, L* = 10, ●; M* = 0.91, L* = 10.24, × (experiments). 

 

Figure 5.5.1 shows the effect of increasing the mass ratio and tether length on the normalized 

amplitude response. First of all, we note that for the sphere with mass ratio M* = 0.8, increasing the 

tether length from L* = 5 to L* = 10 results in practically no change in the amplitude response, as 

mentioned in §5.4.5. Furthermore, increasing the mass ratio from M* = 0.082 to M* = 0.91 appears 

to decrease the normalized oscillation amplitude. The Mode II response is observed for all of the 

mass ratios investigated. In addition, a Mode III response is observed for the numerical simulations, 

regardless of the mass ratio. However, the limited range of the present experiments did not allow 

higher reduced velocities to be evaluated, and hence a Mode III response was unobtainable. 

Nevertheless, the numerical simulations and the experimental results all show a gradual decrease in 

amplitude at the end of the Mode II regime. The slope of this decrease is more severe for the lower 

mass ratios, and appears to be less severe as the mass ratio increases. 
 
Also note the appearance of a Mode IV response that only exists for the higher mass ratios. As 

pointed out in §5.4, this Mode IV response occurs when the mean layover angle exceeds 45º. 

However, for the low mass ratio case (M* = 0.082), the layover angle exceeds 45º well before a 

reduced velocity of U* = 20 is reached, although the sphere still exhibits Mode III-type oscillations. 

This apparent lack of a Mode IV response highlights the existence of a critical mass, which will be 

discussed more detail in §5.11. 
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Figure 5.5.2. Change in the drag coefficient as a function of reduced velocity. Symbols as in Figure 

5.5.1. 
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Figure 5.5.3. Frequency response as a function of reduced velocity. Symbols as in Figure 5.5.1. 

 

The relationship between the drag coefficient and the mass ratio is depicted in Figure 5.5.2. For the 

high mass ratio cases, it is clear once again that a change in the tether length yields very little change 

in the drag coefficient. Furthermore, decreasing the mass ratio results in an increase in the drag 

coefficient, which is a direct consequence of the larger-amplitude oscillations that occur for the 

lower mass ratio as shown in Figure 5.5.1. As the reduced velocity is increased, the drag coefficient 

gradually decreases to values slightly above that of a stationary sphere, regardless of the mass ratio. 
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In addition, we have seen from the previous sections that the harmonic oscillations cause an upsurge 

in the drag coefficient, for example, in the Mode II regime as seen in Figure 5.5.2. However, for M* 

= 0.8, even larger-amplitude oscillations are observed within the Mode IV regime, but the drag 

coefficient hardly changes at all. This is because the oscillations in the Mode IV regime are not 

harmonic, as we shall see in §5.10. 
 
Finally, the normalized frequency response of the sphere is shown in Figure 5.5.3. At low reduced 

velocities (ie. U* < 4), the sphere is desynchronized and significant oscillations are not observed, in 

spite of the mass ratio. On the other hand, throughout the entire Mode II regime, the sphere 

oscillations become synchronized and oscillate harmonically. The agreement in the frequency 

response for all of the mass ratios investigated, both numerically and experimentally, within this 

Mode II regime is remarkable. Furthermore, with increasing reduced velocity, a large jump occurs in 

the frequency response between the “lower” Mode II branch and the “upper” branch, which signifies 

a change in dynamics from the Mode II response to the Mode III response. The agreement in f* 

within this Mode III regime is also remarkable, for both the high and low mass ratio cases 

investigated. It is also clear from this plot that the sphere with mass ratio M* = 0.082 does indeed 

oscillate within the Mode III regime. As a final point, at the highest reduced velocities investigated, 

the response of the high mass ratio sphere switches to a Mode IV response, which is highlighted by 

the presence of extremely low-frequency vibrations, even though the vortex shedding frequency is 

much higher. 
 
In conclusion then, we see from Figures 5.5.1 – 5.5.3 that the reduced velocity (as defined in 

Equation (5.1.8)) as a scaling parameter does indeed collapse the data suitably. This is especially 

true for the normalized frequency response, which shows the different modes of vibration and the 

corresponding range of U* at which they occur to be essentially independent of the mass ratio and 

tether length. Nevertheless, for the oscillation amplitude (and the corresponding drag coefficient), 

the vibration modes exist at more or less the same reduced velocities, but the magnitudes differ 

depending on the mass ratio. However, similar trends were observed by Williamson & Govardhan 

(1997). 

 

5.6 The neutrally buoyant tethered sphere: M* = 1 

 

So far, we have investigated in detail the dynamics of a tethered sphere for mass ratios of M* < 1. 

Higher mass ratios of M* >> 1 have been investigated by Jauvtis et al. (2001) and to some extent by 

Govardhan & Williamson (1997). However, a particularly significant case is the neutrally buoyant 

sphere, M* = 1 of which, to the author’s knowledge, despite the significance of studying the 

dynamics of a neutrally buoyant tethered sphere in a steady flow, there are virtually no experimental 
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or numerical investigations concerning such a problem, apart from the preliminary work of 

Provansal (2003, private communications). 
 
However, before we begin the analysis of the dynamics of a neutrally buoyant tethered sphere, some 

clarification needs to be addressed concerning the definition of reduced velocity in Equation (5.1.8). 

In particular, note that the buoyancy term in braces becomes zero for the present case. As a result, 

increasing the Froude number (or decreasing α) has no effect on the natural frequency, and hence the 

reduced velocity. Accordingly, the procedure of obtaining a wide range of reduced velocity as 

outlined in Chapter 2 and applied in the previous sections has no meaning when the buoyancy is 

zero. Instead, at least for the present simulations, we adopt the practice of increasing the Reynolds 

number, as is the case with experiments. 
 
In this light, the present simulations were performed at Reynolds numbers of Re = 300, 350, 400, 

450 and 500. This represents a range of flow states from unsteady, planar-symmetric flow at the 

lowest Reynolds numbers to unsteady asymmetric flow at the highest Reynolds numbers. Note that 

mesh independence, as examined in Chapter 2, has not been verified for Reynolds numbers greater 

than Re = 500 and as a result, simulations were not performed for Re > 500. In addition, each 

simulation was initialized with a small perturbation that was random in space, and hence any 

preferred orientation of the wake was only dependent on the initial perturbation. 

 

5.6.1 Amplitudes of oscillation 

 

We begin by investigating the vibrational response of the sphere as the Reynolds number is 

increased. This is depicted in Figure 5.6.1 (a), where the axis on the left of the figure represents the 

normalized amplitude response in the streamwise and transverse directions, and the axis on the right 

corresponds to the lateral oscillations. Note that at a Reynolds number of Re = 300, the response of 

the sphere is not particularly harmonic, and so the relative amplitude response depicted in Figure 

5.6.1 should not be taken as meaningful. On the other hand, as will be shown shortly, the response of 

the sphere at the higher Reynolds numbers is quite harmonic, resulting in accurate determinations of 

the corresponding normalized amplitudes of motion. It is somewhat surprising that at a Reynolds 

number of Re = 300 such a disordered response is observed, even though the flow is laminar and 

characterized by periodically shed vortices as described in Chapter 3. 
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flow past a stationary sphere is unsteady and asymmetric. Figure 5.6.1 shows that for Re > 300, the 

transverse oscillations are insignificant, except at a Reynolds number of Re = 500, at which the 

transverse oscillation amplitude is roughly A* = 0.052. This represents an increase in A* of almost 

130 times greater than that observed at the previous Reynolds number. This is probably due to the 

increasing complexity of the wake as the shedding direction oscillates intermittently and the vortex 

shedding pattern becomes irregular, as discussed in Chapter 1. In any case, the oscillations observed 

when the tethered sphere is neutrally buoyant are much smaller than the oscillations observed for 

non-zero mass ratio spheres, at least for the Reynolds numbers (and reduced velocities) investigated 

in this study. 

 

5.6.2 Force coefficient behaviour 

 

The changes in the drag coefficient when the sphere is oscillating are depicted in Figure 5.6.2 as a 

function of Reynolds number. For comparison, also shown are the stationary sphere drag data 

obtained at Reynolds numbers of Re = 300, 400 and 500 from Chapter 3. For both the stationary and 

tethered sphere cases, the flow was unsteady and hence the data represent time-averaged values. At 

all of the Reynolds numbers investigated, the drag for both the tethered sphere and the stationary 

sphere decrease monotonically in accordance with the power law model put forth in Chapter 3. 

However, at the lowest Reynolds numbers investigated, the drag coefficient for the tethered sphere is 

greater than that of the stationary sphere by approximately 4.3%. When the Reynolds number is 

increased to Re = 400, this difference becomes roughly 7.3%. 
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Figure 5.6.2. Change in the drag coefficient due to the tethered sphere oscillations for M* = 1, L* = 

10.: tethered sphere results, ●; stationary sphere results from Chapter 3, □. 
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Figure 5.6.3. RMS force coefficients for the neutrally buoyant sphere, M* = 1: drag coefficient, ●; 

lateral (y) coefficient, ×; transverse (z) coefficient, ○. 

 

Finally, at a Reynolds number of Re = 500, the difference in drag between the tethered sphere and 

the stationary sphere is about 9.9%. It is clear that as the Reynolds number increases and the flow 

develops on its way to turbulence, the oscillations of the neutrally buoyant sphere increase in 

magnitude and the drag coefficient adjusts accordingly. As the oscillations become more harmonic 

for Re > 300, the drag coefficient departs more significantly from that of a stationary sphere. At a 

Reynolds number of Re = 300, the oscillations are far from harmonic (even though the amplitudes 

are quite large), and so the drag coefficient departs considerably less from that of a stationary sphere. 

This increase in Cd for harmonic excitations is a well-observed phenomenon in flow-induced 

vibration problems. 
 
Figure 5.6.3 shows the amplitudes of the fluid force coefficients. It is evident that the fluctuations of 

the lateral force coefficient are greater than those of the streamwise and transverse force coefficients 

for all of the Reynolds numbers except Re = 300. However, at this Reynolds number, the oscillations 

are not very ordered, as discussed in the previous section. It is also clear that the amplitude of the 

transverse force coefficient over the entire range of Reynolds numbers investigated is less than Cz’ = 

0.01. Nevertheless, the amplitude of this force coefficient does not depart significantly from zero 

except at Reynolds numbers of Re = 300 and Re = 500. A comparison with Figure 5.6.1 shows that 

this increase in Cz’ at these Reynolds number extremes is responsible for the observed increase in 

amplitude. A similar scenario occurs for the fluctuating drag coefficient and the corresponding 

streamwise oscillation response. At a Reynolds number of Re = 300, Cd’ is larger than that observed 
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at the higher Reynolds numbers. Accordingly, the amplitude response in the streamwise direction is 

larger at Re = 300 than at the higher Reynolds numbers. For the fluctuating lateral force component, 

Cy’ increases logarithmically to a value of approximately Cy’ = 0.039. The corresponding amplitude 

response of the lateral oscillations also increases logarithmically, except at a Reynolds number of Re 

= 300, as shown in Figure 5.6.1. It follows then that for the neutrally buoyant tethered sphere, the 

oscillations in all three directions are caused directly by the fluctuations of the equivalent fluid 

forces. 

 

5.6.3 Frequency response 

 

The dominant frequencies of oscillation for the neutrally buoyant sphere are depicted in Figure 5.6.4 

as a function of reduced velocity. Also shown as the dashed line are the (normalized) vortex 

shedding frequencies for a stationary sphere, which range from St = 0.134 at Re = 300 to St = 0.16 at 

a Reynolds number of Re = 500. Note that the relationship between the shedding frequency and the 

Reynolds number is presumed to be linear within this range of Re, solely for the purposes of 

comparison. For Reynolds numbers greater than Re = 300, the oscillation frequency of the tethered 

sphere in all three directions does not correspond to either the natural frequency of the system or the 

vortex shedding frequency at the equivalent Reynolds number. At a Reynolds number of Re = 300, 

the oscillation frequencies in the streamwise and lateral directions are the same and twice that of the 

transverse oscillations. 
 
For U* > 35 (corresponding to Re ≥ 400), the frequency of oscillation in the streamwise direction is 

much greater than both the natural frequency and vortex shedding frequency. On the other hand, the 

oscillation frequencies in the lateral and transverse directions are greater than the natural frequency 

but less than the vortex shedding frequency of a stationary sphere. In addition, for U* = 36.6 (ie. Re 

= 500), the transverse frequency of oscillation decreases as the relatively large-amplitude vibrations 

commence. In either case, the normalized frequencies of oscillation for the neutrally buoyant sphere 

at these reduced velocities are greater than those observed over the same range of U* for non-zero 

mass ratio conditions. For example, Figure 5.4.5 for a mass ratio of M* = 0.8 shows that the 

normalized oscillation frequencies in all three directions lie in the range 1 < f* < 2 for reduced 

velocities in the range 29 < U* < 34, which is representative of a Mode IV response. For the 

neutrally buoyant sphere, f* varies in the range 7 < f* < 8 for the streamwise oscillations and 3.5 < f* 

< 4 for the non-streamwise oscillations. Obviously, the dynamics of the sphere when the buoyancy is 

not zero are very different from the dynamics observed when the buoyancy is zero. 
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Figure 5.6.4. Normalized frequencies of oscillation for M* = 1, L* = 10: streamwise frequencies, ●; 

lateral frequencies, □; transverse frequencies, ▲. 
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Figure 5.6.5. Normalized frequencies of the fluid force components for M* = 1, L* = 10: drag 

coefficient, ●; lateral coefficient, □; transverse coefficient, ▲. 

 

The dominant normalized frequencies of the fluid forces are shown in Figure 5.6.5. It is clear that for 

the entire range of reduced velocities investigated, the frequencies of the fluid forces give rise to the 

frequencies of the sphere oscillations, since the fluid forces themselves are directly responsible for 

the sphere oscillations, as discussed in the previous subsection. The only exception occurs at a 

reduced velocity of U* = 34.3, which corresponds to a Reynolds number of Re = 300. As already 

 153 



mentioned, at this Reynolds number, the motions are not harmonic and as a result the frequencies of 

the forces and the oscillations are not expected to be identical. 

 

5.6.4 Trajectories of sphere motion 

 

We have seen that the motion of a neutrally buoyant sphere is highly dependent on the Reynolds 

number. Also, it is known that the sphere trajectories vary experimentally from a zigzag-type motion 

to a circular displacement pattern, depending on the Reynolds number and the timescale used to 

observe the dynamics (Provansal (2003), private communication). . This section investigates the 

trajectories of the sphere displacements as a function of the Reynolds number, in order to observe 

whether the aforementioned zigzag or circular displacement patterns can be obtained numerically. 
 
The timeframe used for each simulation corresponded to ∆t* = 2000 units. However, only the last 

approximately 1000 time units were statistically steady and used for computing the displacement 

trajectories shown in Figure 5.6.6. Here, we increase the Reynolds number in increments of 50 and 

record the y-z displacement as a function of time. Because harmonic oscillations were not observed 

at a Reynolds number of Re = 300, the y-z displacement pattern is not plotted. However, at higher 

Reynolds numbers, the oscillations were harmonic and the resultant motion of the sphere is depicted 

in Figure 5.6.6. At a Reynolds number of Re = 350, the oscillations in the lateral direction are more 

than 500 times greater than those in the transverse direction, and exhibit a limit cycle behaviour. 

Accordingly, the sphere oscillates more or less vertically on a straight line. In an experimental 

towing tank facility, these displacements may be viewed as a zigzag-type motion as the sphere is 

towed through the channel. 
 
When the Reynolds number is increased to Re = 400, the magnitudes of the lateral and transverse 

oscillations remain relatively unaltered. Furthermore, the limit cycle observed at the previous 

Reynolds number still exists and the sphere oscillates on almost the same vertical plane as it did at 

the previous Reynolds number. In addition, the vibration cycles appear to be slightly more 

“rounded” than the oscillations at Re = 350. 
 
At a Reynolds number of Re = 450, the magnitude of the oscillations in the lateral direction remain 

virtually unchanged, but the transverse oscillations experience an increase in magnitude of 

approximately twice that observed at Re = 400. Like the previous case, the oscillations are slightly 

more elliptical, and it appears that further increases in the Reynolds number might lead to circular 

displacement patterns. However, at a Reynolds number of Re = 500, the displacement pattern is an 

irregular figure-of-eight shape. Furthermore, the oscillations in the lateral direction have increased 

slightly in magnitude, whereas those in the transverse direction have increased by almost 20 times. 
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5.7 Mode I response 

 

Because the numerical simulations do not reveal the existence of the Mode I response for all of the 

mass ratios, tether lengths and reduced velocities investigated, it is impossible to investigate in any 

detail the dynamics of the sphere in this regime. However, the experimental results of Williamson & 

Govardhan (1997), Govardhan & Williamson (1997) and Jauvtis et al. (2001) all show clearly a 

Mode I response for the range of mass ratios of 0.082 < M* < 80. Furthermore, altering the tether 

length merely changed the Reynolds number at which the Mode I response was observed, although 

the change in reduced velocity and oscillation amplitude (as well as the overall shape of the response 

curve) was found to be relatively independent of the tether length. It is apparent then that the 

appearance of the Mode I response, as well as the higher modes of vibration discussed in §§5.8 and 

5.9, are primarily dependent on the mass ratio. 
 
With this in mind, it is useful to look at the shape of the response curve when the mass ratio is very 

low (M* = 0.082), low (M* = 0.8) and high (M* = 2.8 to M* = 80). In Figure 5.7.1, the maximum 

oscillation amplitude results of Williamson & Govardhan (1997) are reproduced for their mass ratio 

of M* = 0.082. Figure 5.7.2 shows the RMS-amplitude results of Govardhan & Williamson (1997) 

for their mass ratio of M* = 0.76, whereas Figure 5.7.3 duplicates the RMS-amplitude results of 

Jauvtis et al. (2001) for their mass ratio of M* = 2.8. Note that with the work of Jauvtis et al. (2001), 

the normalized amplitude A* is plotted (defined in §5.4.2) which, for the Mode I response, 

corresponds to the RMS-amplitude since the oscillations are sinusoidal. First of all, it is immediately 

clear that when the maximum amplitude is plotted (as opposed to the RMS-amplitude), the local 

peak corresponding to the Mode I response is not very clear. This is because the RMS provides more 

information about the oscillations (namely the energy of the motions) than the maximum amplitude. 

This is especially the case when the oscillations are non-harmonic and display strong amplitude 

modulation, which is the case for many of the numerical (and also experimental) results presented in 

this study. 
 
Since the response plotted using the maximum amplitude does not provide much information from a 

physical point of view, we compare now the shape of the response curve for M* = 0.76 and M* = 

2.8, ie. Figure 5.7.2 and Figure 5.7.3. For the Mode II response, as discussed in §5.4, it is clear that 

increasing the mass ratio decreases the synchronization regime. For the Mode I response, the range 

of synchronization is approximately 5 < U* < 6 for a mass ratio of M* = 0.76. Although not 

reproduced here, for a mass ratio of M* = 0.8 the synchronization regime increases to 5 < U* < 7 

(Jauvtis et al. (2001)). For the high mass ratio of M* = 2.8, the Mode I response is hardly noticeable 

and does not even register as a local peak in the normalized oscillation amplitude A*. In either case, 
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the amplitudes of the oscillations for the Mode I response are smaller than those of the other three 

modes of vibration (see Jauvtis et al. (2001)). 
 

 
 

Figure 5.7.1. Transverse amplitude response for mass ratios of M* = 0.082, 0.729 from Williamson 

& Govardhan (1997). 

 

 
 

Figure 5.7.2. Transverse amplitude response for M* = 0.76 of Govardhan & Williamson (1997): ●, 

L* = 8.93; ○, L* = 3.83. 
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Figure 5.7.3. Transverse amplitude response for M* = 2.8 of Jauvtis et al. (1997). 

 

An analysis of Figures 5.7.1 - 5.7.2 reveals that the Mode I response occurs at a reduced velocity of 

approximately U* = 5 - 6. This corresponds to a natural frequency of Sn = 0.2 – 0.167. For the range 

of Reynolds numbers investigated experimentally, the Strouhal number of the vortex shedding for a 

stationary sphere is roughly St = 0.18 (Sakamoto & Haniu (1990)). Because the natural frequency is 

approximately equal to the vortex shedding frequency, it is this condition that yields a resonance in 

the classical studies of the vortex-induced vibrations of cylinders, as pointed out by Williamson & 

Govardhan (1997). It appears then that the Mode I response is a result of the vortex shedding 

frequency locking-on to the natural frequency of the system. 
 
The question remains as to why the Mode I response is clearly observed experimentally but not 

numerically, regardless of the mass ratios investigated. From §§5.3 and 5.4, it is possible that the 

incremental steps in reduced velocity investigated may have been too large to reveal a local peak 

corresponding to a Mode I response whose range of synchronization is of order unity. However, the 

vortex shedding frequency for a stationary sphere for the Reynolds numbers investigated 

numerically (ie. Re = 500) is approximately St = 0.16. If the tethered sphere was oscillating in the 

Mode I regime, the natural frequency would thus also be Sn = 0.16, corresponding to a reduced 

velocity of U* = 6.25. At this reduced velocity, from Figure 5.3.2 and Figure 5.4.2, the sphere is 

clearly oscillating in the Mode II regime, so that the scenario of the scale of computed reduced 

velocities being too small is unlikely. This discrepancy, however, may lie in the range of Reynolds 

numbers under investigation. From Chapter 2, the lowest experimental Reynolds number in the 
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results of Govardhan & Williamson (1997) was approximately Re = 1000; the highest Reynolds 

number was roughly Re = 14000. Under these conditions, the flow was fully turbulent with a 

relatively constant vortex shedding frequency. On the other hand, the numerical simulations were 

performed exclusively at a Reynolds number of Re = 500, representing a flow that was laminar and 

asymmetric. The observed differences between laminar and turbulent flow may well result in the 

existence (or lack thereof) of a Mode I response. 

 

5.8 Mode II response 

 

Having discussed the vibrational response of the tethered sphere in the Mode I regime, we now turn 

our attention to the Mode II response. Although a Mode I-type response was not revealed from the 

numerical simulations, the DNS results presented in §§5.3 – 5.4 clearly revealed a Mode II-type 

response in the nomenclature of Jauvtis et al. (2001). The dynamics of this Mode II response are 

unlike those of the Mode I response, which is a result of the vortex shedding frequency locking on to 

the natural frequency of the system, a phenomenon that leads to the large-amplitude vibrations of a 

cylinder undergoing vortex-induced vibrations (see Khalak & Williamson (1999) and Govardhan & 

Williamson (2000)). For a tethered sphere, on the other hand, at least for the mass ratios investigated 

in this study, the oscillation frequency does not correspond to the vortex shedding frequency, 

although large-amplitude oscillations are observed. This section aims to analyze in detail the 

dynamics of the Mode II response, focusing on the mechanisms causing the vibrations via detailed 

examinations of the flow fields throughout a typical oscillation cycle. In this respect, as with the case 

of a stationary sphere in Chapter 3, we concentrate mainly on the pressure fields, as well as the 

vortex structures that would be observed if dye visualization was possible. 
 
To investigate how the sphere responds when the reduced velocity is increased within the Mode II 

regime, reduced velocities of U* = 5 and U* = 10 are chosen for the mass ratio of M* = 0.8 and 

tether length of L* = 10. From §5.4.2, the range of synchronization of the Mode II response 

corresponds to reduced velocities in the range 4.25 < U* < 10, so that the chosen values of U* = 5 

and U* = 10 lie close enough to highlight the dynamics at the onset of synchronization, as well as far 

enough to observe how the flow develops within this regime as the large-amplitude oscillations 

sustain. Furthermore, because the large-amplitude vibrations are observed in the transverse direction, 

we focus on the dynamics of the tethered sphere in the transverse (z) direction. 
 
In both cases, we consider a typical oscillation cycle and examine the displacement, forces, pressure 

and vortex structures at four equally spaced increments of φ = T/4, where T is the period of 

oscillation. In this way, as with the vortex shedding process for a stationary sphere described in 

Chapter 3, we hope to obtain a straightforward and coherent explanation of the dynamics of this 
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Figure 5.8.1. A typical oscillation cycle for M* = 0.8, L* = 10 at U* = 5: (a) transverse 

displacement (solid line) and force (dashed line); (b) pressure (solid line) and viscous (dashed 

line) components of the transverse force. 

 

(a) 

(b) 

Mode II response. We begin by examining the dynamics at the start of the synchronization regime, 

ie. U* = 5. 
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Figure 5.8.2. Dominant oscillation frequencies at U* = 5 for M* = 0.8, L* = 10. 

 

5.8.1 Sphere displacement and forces, U*  = 5 

 

Figure 5.8.1 shows the transverse displacement and forcing over a typical cycle of oscillation for U* 

= 5. Note that for this reduced velocity, there is a second, less dominant frequency that is 0.25 times 

the dominant frequency, as shown in Figure 5.8.2. As a result, the motion of the sphere is not purely 

sinusoidal, and so the oscillation cycle in Figure 5.8.1 is merely a best approximation. In part (a) of 

Figure 5.8.1, it is clear that the fluid forcing is in phase with the body oscillations. In other words, 

the maximum positive (negative) displacement occurs when the fluid forcing is maximum and 

positive (negative). As the fluid force increases, the sphere responds by displacing in the direction of 

the force. Similarly, as the fluid force decreases, the sphere responds by displacing in the opposite 

direction. At this particular value of reduced velocity, the amplitude of the oscillations is 

approximately A/D = 0.35, and the amplitude of the total transverse force is roughly Cz’ = 0.5. 
 
The pressure and viscous components of the total fluid transverse force are shown in Figure 5.8.1 

(b). At this reduced velocity, it is evident that the pressure component of the fluid force leads the 

viscous component by approximately φ = T/8. Furthermore, the maximum (in magnitude) pressure 

observed in the cycle is approximately pz = -0.64, and this occurs when the sphere is displaced at its 

minimum position. On the other hand, the maximum viscous force observed is roughly vz = 0.24. 

That is, the maximum pressure force is greater than the maximum viscous force by almost three 

times. 
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5.8.2 Pressure fields 

 

The pressure contours over a cycle of oscillation for U* = 5 are shown in Figure 5.8.3. At φ = T/4, 

the tethered sphere is being displaced towards the positive z-axis. On the upper surface of the sphere, 

there is an extremely strong region of negative pressure (shown by the dashed lines and the dark 

blue shaded areas) on the upper surface of the sphere. In contrast, on the lower surface of the sphere, 

there is a weak region of negative pressure. This large (and negative) pressure gradient between the 

upper and lower surfaces produces a suction effect that moves the sphere upwards. In addition, there 

is a local pressure minimum in the immediate near wake, which extends downstream in between two 

ovals of high pressure, as well as a local pressure minimum in the intermediate wake at 

approximately x/D = 5. 
 
By φ = T/2, the sphere has reached its maximum position and is on its way back down. The 

previously strong negative pressure on the upper surface has diminished in size, and is now 

accompanied on the opposite surface by an equally strong pressure minimum. However, this new 

pressure minimum is slightly larger in size, resulting in a small negative pressure gradient that 

slowly pulls the sphere downwards, as is evident in the displacement plot shown in Figure 5.8.1. The 

region of low pressure in the near wake extends into a thin protrusion that terminates at a streamwise 

distance of x/D = 2.5, and is separated from the surrounding wake by a local pressure maximum at 

x/D = 1.6. Furthermore, the local pressure minimum that existed at x/D = 5 has now convected 

downstream to roughly x/D = 6. 
 
At φ = 3T/4, it is clear that the pressure field is not 180º out of phase with the pressure field at φ = 

T/4. This is indicative of an oscillation cycle that may have more than one frequency, which is 

indeed the case as shown in Figure 5.8.2. Nevertheless, at this point in the cycle, the pressure 

minimum on the upper surface of the sphere has diminished greatly in size and magnitude. On the 

other hand, the pressure minimum on the lower surface has increased in magnitude, resulting in a 

strong negative pressure gradient that drives the sphere downwards. The magnitude of the gradient 

of this force is evident in Figure 5.8.1, which shows both the pressure force and the viscous force to 

have steep negative slopes. Furthermore, the protrusion of low pressure that extended to x/D = 2.5 at 

the previous time instant has now convected downstream to x/D = 3.5, and is seen to have separated 

from the surrounding low-pressure region. This finger of low pressure is encircled by three regions 

of high pressure, and the local pressure minimum previously located at x/D = 6 has convected to 

approximately x/D = 7. 
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Figure 5.8.3. Pressure coefficient contours at U
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* = 5 for M* = 0.8, L* = 10. 



At the end of the cycle at φ = T, the sphere has reached its minimum position and is on its way 

upwards. This is evident in the pressure plots, which shows that there is a strong pressure minimum 

on the lower surface of the sphere. On the opposite side of the sphere, there is also a strong pressure 

minimum that extends along the surface from about x/D = 0.2 to the rear of the sphere. This 

extended region of low pressure above the x-axis is slightly greater than that below the axis, 

resulting in a slightly positive pressure gradient that slowly pulls the sphere upwards, analogous to 

the pressure field at φ = T/4. A relatively strong projection of low pressure extends from the rear of 

the sphere diagonally upwards to roughly x/D = 3. In addition, the oppositely oriented extension of 

low pressure that extended to x/D = 3.5 at the previous time instant has convected to x/D = 4.5, and 

the local pressure minimum that existed at x/D = 7 has now traveled out of the frame. 

 

5.8.3 Visualization of vortex structures 

 

As described in Chapter 3, visualizations of vorticity in the wake of a sphere do not adequately 

correspond to the vortex structures that are observed experimentally using dye visualization, for 

example. On the other hand, the Mode A and B vortex structures that are observed experimentally in 

the wake of a circular cylinder are satisfactorily visualized by plotting isosurfaces of streamwise 

vorticity. Thus, we choose not to examine the vorticity fields over a cycle of sphere oscillation, but 

instead examine the flow structures that should be observed experimentally by plotting isosurfaces 

of –λ2, which was defined in Chapter 2. 
 
These vortex structures are shown in Figure 5.8.4 in the x-z plane (a) and the x-y plane (b) 

respectively. A glance at the structures in the x-y plane shows that there exists a plane of symmetry 

that happens to be the x-z plane. Furthermore, although these plots represent the vortex structures at 

a Reynolds number of Re = 500, they look much more ordered than the stationary sphere vortex 

structures (see Chapter 3) observed at the same Reynolds number. Indeed, the vortices and the 

vortex shedding process (not to mention the presence of a plane of symmetry) look much more like 

the stationary sphere data at a Reynolds number of Re = 300. 
 
At φ = T/4, the sphere is moving upwards and there is a vortical region in the immediate near wake 

that is angled diagonally downwards. Out of this vortical region extend the legs of a hairpin vortex, 

which showed up on the corresponding pressure plots as a thin, elongated region of low pressure. It 

is interesting to note that the head of this hairpin vortex does not appear to register very strongly as a 

pressure minimum. Also, there is an induced vortex that emanates from underneath the previous 

hairpin vortex. However, the head (and to some extent the legs) of this induced hairpin vortex does 

register as a local pressure minimum, which is located at x/D = 5 in the pressure plots. Further 
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downstream in the wake, the vortex loops that were shed in the previous cycle can be seen 

propagating downstream above and below the flow centreline. 
 
A quarter of a cycle later, the vortical region emanating from the rear of the sphere has convected 

downstream. It is evident that this vortical region has developed into a hairpin vortex. The head and 

the legs of this vortex may be seen as a low-pressure region on the corresponding pressure contour 

plots. At this point in the cycle, the sphere has reached its uppermost position and is in the process of 

moving downwards. This is apparent in the isosurface of –λ2 that envelops the front and lower 

surface of the sphere and not the upper surface, as was the case at the previous time instant. The 

previous hairpin vortex does not register anymore as a region of low pressure, but the induced 

hairpin does and is now located at x/D = 6 as it convects downstream. 
 
By φ = 3T/4, the sphere is on its way to its minimum displacement. The legs and head of the hairpin 

vortex that was located within the vortical region surrounding the sphere have traveled downstream 

and still register as a pressure minimum. However, the base of the legs is not connected to the 

surrounding vortical region anymore and is seen to be cut off from this region by the local spots of 

high pressure that essentially push the vortex away from the sphere. At this same location there 

appears a new hairpin vortex, with the legs emanating from the rear of the sphere and the head 

clearly visible in Figure 5.8.4 (b). The previously shed hairpin vortex whose head was located at x/D 

= 6 can still be seen in the lower half of the figure, and is strong enough to register as a pressure 

minimum at a location of approximately x/D = 7. 
 
In the final frame of the oscillation cycle, the sphere has reached its minimum displacement and is 

traveling slowly upwards. The separated vortical region at the rear of the sphere is obviously the 

head of a developing hairpin vortex. Above the head of this emergent vortex are the legs and head of 

the previously developing hairpin vortex. Both the legs and head of this vortex can be clearly seen in 

Figure 5.8.4 (b), and exposes very strongly as a pressure minimum in Figure 5.8.3. To the left of this 

vortex is a local region of high pressure that appears to push the vortex away from the sphere, 

effectively “shedding” it into the wake. In addition, the head of the shed vortex from the previous 

frame may be seen as a pressure minimum located at x/D = 4.5. The vortex loops and hairpin 

vortices are unmistakably distinguished in Figure 5.8.4 (b). 
 
It is apparent from visualizations of the vortex structures in the wake at this reduced velocity that 

two vortices are shed for the oscillation cycle shown in Figure 5.8.1. It is also clear that the lower 

vortex is shed at the top of the oscillation cycle (ie. between φ = T/4 and φ = T/2) and the upper 

vortex is shed at the bottom of the oscillation cycle (ie. between φ = 3T/4 and φ = T). This is 

equivalent to the observation that the frequency of the drag coefficient is twice the frequency of the 

transverse force coefficient, which is indeed the case as shown in Figure 5.4.6.  
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Figure 5.8.4
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φ = 3T/4
 
 

isualization of vortex structures (plotted using an isosurface of –λ2) at U* = 5 for M* 

= 0.8, L* = 10: (a) x-z plane; (b) x-y plane. 
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Figure 5.8.4. Continued. 
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5.8.4 Sphere displacement and forces, U*  = 10 

 

When the reduced velocity is increased to U* = 10, the resultant motion of the body with respect to 

the forces acting on it are shown in Figure 5.8.5. Once again, as with the previous reduced velocity 

investigated, it is clear that the body motion and the fluid forcing are in phase. However, this time 

the oscillations are sinusoidal with a single dominant frequency, as shown in the power spectral 

density plot in Figure 5.8.6. Furthermore, the sphere oscillations remain at roughly the same 

amplitude as those observed for the U* = 5 case. 
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 typical oscillation cycle for M* = 0.8, L* = 10 at U* = 10: (a) transverse 

line) and force (dashed line); (b) pressure (solid line) and viscous (dashed line) 

components of the transverse force. 
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Figure 5.8.6. Dominant oscillation frequencies at U* = 10 for M* = 0.8, L* = 10. 

 

On the other hand, quite surprisingly, the total fluid force in the transverse direction has decreased 

almost an order of magnitude. 
 
Figure 5.8.5 (b) shows the components of the fluid forces over the same cycle of sphere oscillation. 

At this reduced velocity, which is at the end of the Mode II synchronization regime, the lag of the 

viscous component with respect to the pressure component of the total fluid transverse force has 

increased to approximately φ = T/4. In addition, because the total fluid force has decreased by 

almost an order of magnitude, the corresponding pressure and viscous components have decreased 

by roughly 8 times and 3 times respectively, and both the pressure and viscous contributions to the 

total fluid force are of the same order. It is somewhat surprising to note that although the fluid 

forcing has decreased by almost an order of magnitude, large-amplitude vibrations still occur. 

 

5.8.5 Pressure fields 

 

The pressure contours over a cycle of sphere oscillation for U* = 10 are shown in Figure 5.8.7. A 

quick comparison with Figure 5.8.3 shows that the downstream extent of the region of low pressure 

in the near wake has increased at this higher reduced velocity, which lies near the end of the Mode II 

synchronization regime. At φ = T/4, the sphere has almost reached the top of its oscillation cycle. 

Accordingly, at this point, the fluid forcing is a maximum because the pressure component is 

positive (although decreasing) and the viscous component is positive and increasing. The pressure 
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minimum on the upper surface of the sphere is stronger than that on the lower surface, providing a 

suction effect that results in a strong positive pressure. At the rear of this low-pressure region that 

envelops the base of the sphere, there exists a protruding arm of low pressure that terminates at x/D 

= 4. In addition, this arm is flanked on both sides by small elliptical regions of high pressure. 
 
At φ = T/2, the sphere has almost reached its equilibrium position. The low-pressure regions on the 

upper surface has diminished in size and magnitude, and is overpowered by the much stronger 

negative-pressure on the lower surface of the sphere. This strong negative pressure gradient pulls the 

sphere downwards. However, at this instant the pressure and viscous components of the transverse 

force are almost the exact opposite, producing a net force that is not quite zero. Nevertheless, the 

pressure component is strong and negative and the viscous component is positive but decreasing, 

resulting in a total force that is steadily decreasing. There also exists a small oval of low pressure in 

the lower half of the near wake at roughly x/D = 1.8. The previous arm of low pressure in the wake 

appears to have been pushed downstream by the two ovals of high pressure that bordered it. This 

low-pressure arm is seen to have convected now to x/D = 5.5. 
 
By φ = 3T/4, the sphere is approaching its minimum displacement. The most noticeable feature of 

the pressure plots at this point in the oscillation cycle is that the pressure contours are completely 

symmetric about the x-y plane with respect to the contours a half a cycle earlier, ie. at φ = T/4. This 

is not surprising considering that the oscillations are sinusoidal with a single dominant frequency, as 

seen in Figure 5.8.6. Because the sphere is near its minimum location, the pressure component is 

strongly negative (but increasing) and the viscous component is also strongly negative (and 

decreasing), resulting in a total fluid force that is strongly negative and almost a minimum. The 

small oval of low pressure that was previously in the lower half of the wake at x/D = 1.8 has shifted 

across to the upper half of the wake to x/D = 1.6, and is helping the pressure minimum on the upper 

surface of the sphere to pull the sphere up. Furthermore, there is a new arm of low pressure that 

extends diagonally upwards to x/D = 4, again bordered by two elliptical regions of high pressure. 
 
At the end of the oscillation cycle, the small oval of low pressure that was previously at x/D = 1.6 

has drifted down slightly because of the accelerated flow over the upper surface of the sphere and 

the fact that the sphere is moving upwards. At this instant, the total fluid force is almost zero, and the 

relative contributions of the pressure and viscous components are positive and negative respectively, 

both of which are increasing. The previous arm of low pressure that extended to x/D = 4 has now 

been pushed away from the sphere and into the wake to x/D = 5.5 by the two elliptical regions of 

high pressure that are now located behind the sphere. Once more, the pressure contours at this phase 

in the cycle are symmetric about the x-y plane with respect to the contours at φ = T/2. In addition, as 

with the previous locations in the cycle, the strong negative pressure gradient that exists between the 

upper and lower surfaces of the sphere acts to pull the sphere upwards. 
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Figure 5.8.7. Pressure coefficient contours at U
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5.8.6 Visualization of vortex structures 

 

As with the previous reduced velocity, we now show visualizations of the vortex structures in the 

wake of the tethered sphere at U* = 10, again by plotting isosurfaces of –λ2. These plots are shown 

in Figure 5.8.8 (a) in the x-z plane and Figure 5.8.8 (b) in the x-y plane respectively. Again, as with 

the results at U* = 5, the vortex structures are symmetrical about the x-z plane, even though the 

Reynolds number is Re = 500 which, for a stationary sphere, does not exhibit a plane of symmetry. 

In addition, comparisons between Figures 5.8.8 (b) and 5.8.4 (b) show that at the higher reduced 

velocity investigated, the vortex structures appear more unambiguous and ordered. This is not very 

surprising considering the fact that the observed motions near the end of the Mode II 

synchronization regime are more harmonic than the oscillations at the start of the regime. 

Furthermore, the spacing between the vortices indicate that the vortex formation length has 

increased as the reduced velocity increases from U* = 5 to U* = 10, although the Reynolds number 

is fixed at Re = 500. 
 
At φ = T/4, the sphere is nearing its maximum displacement. There exists a vortical region that 

envelops the entire surface of the sphere except the upper rear exterior. The large vortical region 

immediately behind the sphere appears to be the developing head of a hairpin vortex. In the vicinity 

of this vortex are the legs of another hairpin vortex. The legs and head of this vortex extend 

diagonally downwards all the way to x/D = 4, and register on the pressure contours in Figure 5.8.7 as 

an elongated arm of low pressure. Beyond this fully developed vortex is another hairpin vortex that 

was shed in the previous cycle, and whose head and legs are clearly visible in Figure 5.8.8 (b). The 

small oval region of low pressure at x/D = 1.6 marks the beginning of the legs of the hairpin vortex, 

and the soon-to-be-developed head of the next hairpin vortex. 
 
A quarter of a cycle later, the hairpin vortex that emerged out of the vortical region surrounding the 

sphere has been shed into the wake. This is clearly seen in the pressure plots, which shows that the 

elliptical regions of high pressure have pushed the vortex away from the sphere and into the wake, 

thereby disconnecting it from the surrounding vortical region. The head of this vortex has traveled to 

x/D = 5.5 and still registers strongly as a concentrated region of low pressure. The head of the 

previously developing hairpin vortex has convected downstream to approximately x/D = 2.5, and the 

base of the legs of this vortex register as a strong local pressure minimum in Figure 5.8.7. In 

addition, the vortical region on the lower surface of the sphere appears to highlight the emergence of 

a new hairpin vortex. 
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Figure 5.8.

 

(a)
8. 
φ = T/4
φ = T
φ = T/2
φ = 3T/4
 
 

Visualization of vortex structures (plotted using an isosurface of –λ2) at U* = 10 for 

M* = 0.8, L* = 10: (a) x-z plane; (b) x-y plane. 
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Figure 5.8.8. Continued. 
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At φ = 3T/4, the head of a new vortex appears and is separated from the rear of the sphere by about 

0.5D. At this time instant, the pressure minimum previously located at the base of the legs of the 

hairpin vortex that was developing has now shifted to the upper half of the wake, as the sphere 

moves down to its minimum displacement and the vortex convects downstream. The head and legs 

of this vortex can clearly be seen in the pressure plots, denoted as an arm of low pressure that 

protrudes from the low-pressure region at the rear of the sphere and extends diagonally upwards to 

roughly x/D = 4. The previously shed vortex that was cut off from the surrounding vortical region 

can be seen traveling downstream, and the legs and head are noticeably discernible in the x-y plane 

as shown in Figure 5.8.8 (b). Along with the pressure contours, the vortex structures are clearly 

symmetrical between φ = T/4 and the present frame at φ = 3T/4. 
 
At the end of the oscillation cycle, at φ = T the sphere is approaching its equilibrium position of z/D 

= 0. The vortex in the near wake that registered as a strong pressure minimum has been shed into the 

wake. This is clear from both the isosurfaces of –λ2 and from the pressure contours, which show the 

vortex being pushed out to x/D = 5.5 by the localized regions of high pressure that essentially pinch 

the base of the legs off from the surrounding vortical region. The head of the developing vortex has 

convected from x/D = 2 to about x/D = 3. Even in the far wake, the vortex structures can clearly be 

seen, even though they are convecting away from the flow centreline (where the computational 

resolution is not as good as it could be) as the sphere completes its oscillation cycle. 
 
As with the vortex structures observed at the start of the Mode II regime, at the present reduced 

velocity of U* = 10 it is evident from Figure 5.8.8 that two vortices are shed per oscillation cycle, 

one at the top of the cycle and one at the bottom of the cycle. The major differences between the two 

reduced velocities are the single-frequency nature of the oscillations at the higher reduced velocity, 

as well as the increased formation length. This increase in formation length is equivalent to an 

increase in the period of oscillation, or more importantly a decrease in the vortex shedding 

frequency. 

 

5.8.7 Dynamics of the Mode II response 

 

From the previous subsections, it is clear that the Mode II response is kicked off by the large 

transverse fluid forcing that causes the sphere to oscillate vigorously with large amplitudes. For the 

stationary sphere at a Reynolds number of Re = 500, this fluid forcing (in both the transverse and 

streamwise directions) is of the order of 0.1. On the other hand, for the tethered sphere we see from 

Figures 5.3.4 and 5.4.4 that the transverse fluid forcing at the start of the Mode II regime jumps up 

to roughly Cz’ = 0.35. However, as the reduced velocity is increased within this regime, the fluid 
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forcing dies down substantially to values smaller than those observed for the stationary sphere. 

Evidently, this decrease in the fluid forcing does not sustain the large-amplitude vibrations. 
 
We have also seen from visualizations of the vortex structures in the wake near the start and close to 

the end of the Mode II regime that two vortices are shed for each cycle of oscillation, resulting in a 

drag force that has twice the frequency of the transverse force. In addition, the normalized 

oscillation frequency increases from f* = 0.93 to f* = 1.10 as the reduced velocity increases from U* 

= 5 to U* = 10. Although the oscillation frequency increases, the number of vortices shed per cycle 

stays the same, so that the normalized frequency of vortex shedding also increases from f* = 0.93 to 

f* = 1.10. It appears then that the large-amplitude vibrations that occur at the onset of the Mode II 

regime are due to the vortex shedding frequency being close to the natural frequency of vibration, a 

classical “lock-in” effect that was described in Chapter 1 for both the tethered sphere at high 

Reynolds numbers and for the vortex-induced vibrations of circular cylinders. 
 
However, as the reduced velocity is increased within this regime, the large-amplitude oscillations 

modulate the vortex shedding from the sphere such that the vortex shedding frequency remains the 

same as the oscillation frequency. This modulation between the vortex shedding frequency and the 

oscillation frequency guarantees that self-excited motion ensues and remains until the end of the 

synchronization regime, after which the oscillation amplitude decreases and the frequency of the 

drag force is no longer twice the frequency of the transverse force. 

 

5.9 Mode III response 

 

The Mode III response discovered by Jauvtis et al. (2001) was observed for mass ratios of M* = 28 

and above. Because of this high mass ratio, the oscillations were always at the natural frequency, 

which was quite high, and it was assumed that the vortex formation frequency was the same as that 

of a stationary sphere. As a result, the oscillation frequency was assumed to be much greater than the 

vortex shedding frequency, so what was the cause of these vibrations? 
 
In the present case, the oscillation frequency in this Mode III regime is not the same as the natural 

frequency, as shown in Figure 5.5.3, because of the much lower mass ratios investigated. In light of 

this, we expect the oscillation frequency of the sphere to be close to the vortex shedding frequency, 

since the Mode II results presented in the previous section showed that the oscillations modulate the 

vortex shedding frequency such that both frequencies remain “locked” within the regime. 
 
To investigate the dynamics of the tethered sphere in this Mode III regime, we choose the same 

geometric parameters of M* = 0.8 and L* = 10, and a reduced velocity of U* = 24, which lies close 

to the middle of the synchronization regime as depicted in Figure 5.5.3. As with the Mode II 
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response, we analyze the pressure fields and the vortex structures observed in the wake in order to 

develop a consistent mechanism of vibration. 
 
Note that at this reduced velocity, the oscillations (especially in the streamwise and lateral 

directions) are not entirely sinusoidal, and the transverse oscillations are not symmetric about the 

flow centreline. In other words, the transverse oscillations migrate away from the axis and then 

approach the axis again after a few hundred time units, and this process appears to continue 

indefinitely. Accordingly, for the purpose of presenting the results in a coherent manner, the entire 

flow field (including the pressure contours to be presented shortly) has been shifted so that the 

oscillations appear to be balanced about the flow centreline. 

 

5.9.1 Sphere displacement and forces 

 

The transverse displacement of the sphere and the forces acting on it are shown in Figure 5.9.1 over 

one cycle of sphere oscillation. It is immediately obvious from Figure 5.9.1 (a) that the transverse 

displacement and corresponding force are out of phase, in contrast to the Mode II response in which 

the displacement and forcing were in phase. In the Mode III regime, it is clear that the maximum 

(minimum) displacement of the sphere occurs when the fluid forcing is a minimum (maximum). 

Furthermore, the amplitudes of oscillation within this regime are smaller than those observed in the 

Mode II regime, and the amplitude of the total fluctuating fluid forcing in the transverse direction 

has decreased slightly from the end of the Mode II synchronization regime. 
 
The pressure and viscous components of the total transverse fluid force are depicted in Figure 5.9.1 

(b) for this reduced velocity of U* = 24. Comparisons with Figures 5.8.1 and 5.8.5 illustrate that the 

magnitude of the pressure has not changed much since the end of the Mode II regime, but the 

magnitudes of the viscous stresses have decreased almost 5 times. The pressure component of the 

total transverse fluid force thus dominates the viscous component and would be expected to 

contribute considerably more to the dynamics of the sphere. Evidence of this is seen in the almost 

zero phase difference between the total fluid force and the pressure component. In addition, the 

phase between the pressure and viscous forces has increased marginally to roughly φ = T/3. 

 

 

 

 

 

 

 

 177 



0

z/D C z

-0.2

-0.1

0

0.1

0.2

-0.04

-0.02

0

0.02

0.04

0.06

0

 

0

p z

-0.1

-0.05

0

0.05

0.1

0

Figure 5.9.1. A

displacement (solid 

 

 

 

 

 

 

 

 

(a)
T/4 T/2 3T/4 T
φ

-0.06
T/4 T/2 3T/4 T

 

ν z

-0.011

0

0.011

0.022

 
(b)
T/4 T/2 3T/4 T
φ

-0.022
T/4 T/2 3T/4 T

 
 

 typical oscillation cycle for M* = 0.8, L* = 10 at U* = 24: (a) transverse 

line) and force (dashed line); (b) pressure (solid line) and viscous (dashed line) 

components of the transverse force. 

 

178 



x/D

z/
D

2 3 4 5 6 7 8 9 10 11
-2

-1

0

1

2
0.492
0.414
0.335
0.257
0.178
0.100

-0.031
-0.109
-0.188
-0.266

  

φ = T/4 

x/D

z/
D

2 3 4 5 6 7 8 9 10 11
-2

-1

0

1

2
0.492
0.414
0.335
0.257
0.178
0.100

-0.031
-0.109
-0.188
-0.266

 

φ = T/2 

x/D

z/
D

2 3 4 5 6 7 8 9 10 11
-2

-1

0

1

2
0.492
0.414
0.335
0.257
0.178
0.100

-0.031
-0.109
-0.188
-0.266

 

φ = 3T/4 

x/D

z/
D

2 3 4 5 6 7 8 9 10 11
-2

-1

0

1

2
0.492
0.414
0.335
0.257
0.178
0.100

-0.031
-0.109
-0.188
-0.266

 

φ = T 

 
Figure 5.9.2. Pressure coefficient contours at U* = 24 for M* = 0.8, L* = 10. 
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5.9.2 Pressure fields 

 

The pressure contours for this cycle of sphere oscillation in the Mode III regime are shown in Figure 

5.9.2. At φ = T/4, the sphere has passed through its equilibrium position and is being displaced 

towards its minimum position, although the forcing is positive and increasing. The pressure field on 

the surface of the sphere is almost symmetric, owing to the close proximity of the sphere to its mean 

position at this time instant. Furthermore, in the lower half of the plane at approximately x/D = 5.5, 

there exists a strong local pressure minimum in the near wake. 
 
A quarter of a cycle later, at φ = T/2, the sphere has reached its minimum position and is slowly on 

its way upwards. Accordingly, the fluid forcing in the transverse direction has reached a maximum. 

At this point in the cycle, the pressure field on the surface of the sphere is no longer balanced, and 

the pressure on the entire upper surface is much lower than that on the lower surface. The result is a 

large pressure gradient that acts towards the positive z-axis, effectively providing a suction effect 

that pulls the sphere upwards. In contrast to the previous frame, the pressure minimum that existed 

in the lower half of the plane is no more and is replaced by an almost equally strong pressure 

minimum in the upper half of the plane, located at a streamwise distance of x/D = 5.6. There is also a 

local region of high pressure at the same transverse location as the local pressure minimum but 

outside the immediate near wake at a location of roughly x/D = 7. This high pressure region trails a 

localized oval region of low pressure fluid that is convecting downstream. 
 
More than halfway through the cycle, it is apparent that the sphere has passed its equilibrium 

position en route to its maximum displacement. The pressure field at this instant of φ = 3T/4 is 

clearly not symmetric with respect to the pressure contours half a cycle earlier, as shown in Figure 

5.9.2. This is indicative of an oscillation cycle that is not sinusoidal, similar to the Mode II response 

at U* = 5 discussed in the previous section. Here, there still exists a strong pressure minimum on the 

upper surface of the sphere that is larger in magnitude and surface area than the pressure minimum 

on the lower surface, although the difference is not as large as in the previous frame. Evidently, 

although the fluid forcing is decreasing in the transverse direction, it is still positive and pulls the 

sphere upwards. Furthermore, the local pressure minimum that existed at x/D = 5.6 has decreased in 

magnitude, and the disconnected oval region of low pressure that subsisted at x/D = 8 has now 

convected to x/D = 9.5. The high-pressure region that appeared to push the aforementioned pressure 

minimum downstream has now relocated to x/D = 7 in the lower half of the wake. 
 
In the final frame of the oscillation cycle, the sphere has reached its maximum displacement, despite 

the fact that the transverse forcing was decreasing on its way upward. Between φ = 3T/4 and φ = T, 

we see that the fluid forcing becomes negative and as it does the upward momentum of the sphere 

diminishes, eventually reaching zero at the top of the cycle when the fluid forcing is a minimum. 
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Beyond this time instant, the fluid forcing is a minimum and begins to increase again, thereby 

pulling the sphere downwards. This is clearly seen in the pressure plots in Figure 5.9.2, which shows 

a large region of low pressure enveloping the entire lower surface of the sphere. This pressure 

minimum is now much greater than that on the upper surface, causing a large pressure gradient that 

acts towards the negative z-axis and is responsible for driving the sphere downwards. A local 

pressure minimum exists in the near wake at x/D = 5.5, analogous to the pressure minimum that 

existed a half cycle earlier in the opposite half of the x-z plane. Furthermore, there exists a localized 

extension of low pressure in the wake that terminates at approximately x/D = 9.5. As we shall see 

shortly, this pressure minimum represents the head and legs of a shed hairpin vortex that is 

convecting downstream. 

 

5.9.3 Visualization of vortex structures 

 

Visualizations of the vortex structures in this Mode III regime in the x-z and x-y planes are shown in 

Figure 5.9.3 (a) and (b) respectively. As in the previous sections, the vortex structures are visualized 

by plotting an isosurface of –λ2, which indicates a region of low pressure where the rate-of-rotation 

is more dominant than the rate-of-strain, as described in Chapter 2. Furthermore, we choose to plot 

isosurfaces of –λ2 as opposed to contours of streamwise vorticity because in the wake of a sphere, 

the vortex structures observed experimentally using dye visualization techniques are not highlighted 

very well by contours of streamwise vorticity, as shown in Chapter 3. 
 
Near the end of the Mode II regime, at U* = 10, it was shown that the vortex formation length 

increases compared to the start of the regime at U* = 5. Similar behaviour is observed at the present 

reduced velocity of U* = 24. Comparing Figures 5.9.3 and 5.8.8 reveals that the vortex formation 

length has increased substantially, despite the fact that the Reynolds number is the same for all of the 

simulations. Evidently, as expected the response of the sphere depends strongly on the Froude 

number (rather than the Reynolds number), although whether the flow is laminar or turbulent also 

affects the nature of the observed response modes. 
 
Returning to Figure 5.9.3, we see that at φ = T/4 there is a developing hairpin vortex emerging from 

the vortical region at the rear of the sphere as the sphere moves downwards. The legs of this vortex 

are clearly visible, although the head has not formed yet. Beyond this budding vortex is a fully 

developed hairpin vortex that extends roughly 6 diameters downstream from the rear of the sphere. 

The head and legs of this vortex are plainly discernible in the x-y view of these vortex structures, and 

the legs can even be seen extending well into the vortical region surrounding the sphere. 
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Visualization of vortex structures (plotted using an isosurface of –λ2) at U* = 24 for 

M* = 0.8, L* = 10: (a) x-z plane; (b) x-y plane. 
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Figure 5.9.3. Continued. 
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By φ = T/2, the sphere has reached its minimum position and is slowly on its way upwards. The 

vortex that previously extended approximately 6 diameters downstream has now shed into the wake, 

since its legs are no longer connected to the vortical region surrounding the sphere. Furthermore, the 

vortex that was developing in the near wake has now formed a head, and the legs that were 

previously separated are now connected via this head. Note that the legs of this hairpin vortex 

register as a pressure minimum in Figure 5.9.2. The high-pressure region situated between this 

hairpin vortex and the sphere pushes the vortex away from the sphere and into the wake. The strong 

local region of low pressure at x/D = 5.6 highlights the core of the vortical region out of which the 

hairpin vortices develop. In addition, the magnitude of the region of low pressure above the surface 

of the sphere and 1 diameter downstream, as well as the small low-pressure region on the lower-

front surface of the sphere, register strongly as a vortical region in Figure 5.9.3 (a). 
 
A quarter of a cycle later, at φ = 3T/4 the sphere has passed through its equilibrium position and is 

on its way to the top of its motion. The previously developing hairpin vortex has now fully formed, 

and its head and legs can clearly be seen in the x-y plane. Both the head and the legs of this vortex, 

which is located at about x/D = 10, still register as a pressure minimum in Figure 5.9.2, and the high-

pressure region that shed the vortex into the wake has moved to the opposite side of the flow 

centreline as the sphere moves upwards. The extended region of low pressure above and 

downstream of the sphere surface (and to some extent on the lower-front surface of the sphere) has 

decreased in magnitude, but still registers strongly as a vortical region. Furthermore, the legs of a 

hairpin vortex have emerged from the vortical region surrounding the sphere, but no head is yet 

apparent. The downstream extent of these legs terminate near the legs of the previously shed hairpin 

vortex. 
 
In the final frame of the oscillation cycle, at φ = T the sphere has reached its uppermost 

displacement. The vast region of low pressure that existed on the upper surface of the sphere has 

switched to the lower surface, and the corresponding smaller low-pressure region on the lower 

surface has switched to the upper surface. This is indicative of the sphere being displaced to its 

maximum position, and is on the journey downwards. This low-pressure region registers strongly as 

a vortical region that envelops the entire lower surface of the sphere and two-thirds of the upper 

surface, in accordance with the pressure contours shown in Figure 5.9.2. A well-developed hairpin 

vortex can be seen in Figure 5.9.3 (b) that extends roughly 5 diameters downstream of the rear of the 

sphere. This vortex has now formed a head from near the base of the legs of the previously shed 

vortex. Once again, both the legs and the head of this vortex reveal themselves as a pressure 

minimum. 
 
As with the response of the sphere in the Mode II regime, it is clear from visualization of the vortex 

structures in the Mode III regime that two vortices are shed for each cycle of oscillation. As 
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previously mentioned, it is also apparent that the vortex formation length has increased substantially. 

Since the Reynolds number is the same for all simulations, this amounts to a decrease in the vortex 

shedding frequency. 

 

5.9.4 Dynamics of the Mode III response 

 

We have seen that one of the major differences between the dynamics of the sphere in the Mode II 

regime and the Mode III regime is the switching of the phase between the fluid forcing and the body 

motion from being in-phase (in the Mode II regime) to out-of-phase (in the Mode III regime). 

Furthermore, Figure 5.4.5 shows that the frequency of oscillation in all three directions is the same 

for the Mode III response. For the Mode II response, the streamwise frequency of oscillation was 

twice the transverse frequency of oscillation. This is because in the Mode II regime, the oscillations 

mapped out a figure-of-eight shape in the x-z plane. 
 
In contrast, the oscillations in the Mode III regime do not map out a figure-of-eight shape. The 

layover angle has increased to the point that the streamwise frequency of oscillation is no longer 

twice that of the transverse oscillation frequency. As a result, the dynamics of the sphere adjust so 

that the oscillations are out of phase with the forcing, which is often the case in flow-induced 

vibration problems. 
 
Furthermore, we see from Figure 5.4.5 that the normalized oscillation frequency at a reduced 

velocity of U* = 24 is roughly f* = 2.7. This equates to an oscillation frequency of St = 0.11, 

although the vortex shedding frequency for a stationary sphere at the same Reynolds number of Re = 

500 is about St = 0.16. The magnitudes of the fluid forces acting on the sphere in this Mode III 

regime are also much smaller than those observed near the onset of the Mode II oscillations, and are 

closer to those observed near the end of the Mode II regime. This fact, together with the observation 

that the sphere does not oscillate close to the natural frequency within this regime, leads to the 

conclusion that the oscillation frequency (and the vortex shedding frequency) are not locked-in to 

the natural frequency of vibration, unlike the onset of the Mode II oscillations. 
 
However, like the response observed in the Mode II regime, the sphere oscillations modulate the 

vortex shedding frequency such that self-excited motion ensues. As previously discussed, the Mode 

III response discovered by Jauvtis et al. (2001) was observed for mass ratios of M* = 28 and above. 

The consequence of using these high mass ratios was that the oscillation frequency always coincided 

with the natural frequency, regardless of the response mode. The present results have shown that a 

Mode III response is observed, at least for laminar flow conditions, for low mass ratios (and hence 
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reduced velocities). Furthermore, these low-frequency Mode III oscillations are a result of the sphere 

oscillations modulating the vortex shedding from the sphere, as postulated by Jauvtis et al. (2001). 

 

5.10 Mode IV response 

 

Unlike the Mode II and Mode III responses, the dynamics of the tethered sphere in the Mode IV 

regime are a lot more difficult to analyse. The primary reason for this is the non-harmonic nature of 

the oscillations, and the existence of multiple frequencies in the wake. Jauvtis et al. (2001) 

discovered this mode, which is characterized (at least at high Reynolds numbers) by intermittent 

bursts of large-amplitude vibration. This mode was found when investigating a tethered sphere of 

mass ratio M* = 940. Because of this high mass ratio, the oscillation frequency coincided with the 

natural frequency throughout the entire regime. The reduced velocities investigated varied up to U* 

= 300, which corresponded to a natural frequency (and hence oscillation frequency) of about Sn = 

0.003. Within this range of Reynolds numbers, the frequency of vortex shedding from a stationary 

sphere is roughly St = 0.18. This is equivalent to the fact that the vortex shedding frequency is up to 

54 times greater than the oscillation frequency, assuming that the vortex shedding frequency is not 

modulated by the oscillations which happens to be the case for the previous response modes. 

Clearly, this vortex shedding frequency cannot be responsible for the large-amplitude vibrations. 
 
For the present simulations, a Mode IV response is observed for a mass ratio of M* = 0.8. Figure 

5.10.1 shows sample time histories of the transverse oscillations and the corresponding transverse 

forces at U* = 33 for this mass ratio. The oscillations are clearly not sinusoidal, but nevertheless 

large-amplitude vibrations are observed that have a very low frequency. At this reduced velocity, 

these amplitudes may reach a maximum value of A* = 0.46. On the other hand, the transverse force 

coefficient exhibits similar non-sinusoidal behaviour, again unlike the responses observed in the 

Mode II and Mode III regimes. However, in contrast to the oscillations, the transverse forcing 

displays a much higher dominant frequency. 
 
The dominant frequencies of the transverse oscillations and the transverse force are shown in Figure 

5.10.2. It is clear that there exist many frequencies, for both the oscillations and the force. The 

extremely low frequencies at St < 0.01 are due to the small sample space used to calculate the power 

spectral density plots. By disregarding these frequencies, we see that the dominant oscillation 

frequencies of the sphere lie in the range 0.02 < St < 0.04. A little further down the scale, there is a 

local peak at about St = 0.11. Beyond this frequency, there are no further significant higher 

frequencies of oscillation observed. 
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Figure 5.10.2. Dominant frequencies of (a) transverse oscillations, and (b) transverse fluid forces in 

the Mode IV regime, U* = 50. 

 

For both the experimental results of Jauvtis et al. (2001) at high Reynolds numbers and the present 

numerical results at low Reynolds numbers, the transverse oscillation frequency of the sphere 

appears to coincide with the natural frequency of vibration. However, for the present simulations, 

the range of U* investigated is finite (because the drag becomes a factor at large layover angles), and 

as a result the reduced velocity does not extend to values in the hundreds, corresponding to very low 

natural frequencies. Unlike the Mode III response, in which the computations showed the same 

dominant frequency for both the oscillations and the forcing, the fact that both the computations and 
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the experiments show that multiple vortices are shed for each cycle of sphere oscillation within this 

Mode IV regime is remarkable. 
 
The cause of these vibrations still remains a mystery. However, since the frequency ratio of the 

oscillations to the vortex shedding is less than unity, it is entirely possible that subharmonic 

excitation may occur that results in the large-amplitude vibrations shown in Figure 5.10.1. This is a 

well-known case of instability-induced excitation (IIE), as discussed by Naudascher & Rockwell 

(1994). For example, for a cylinder that experiences cross-flow vibrations, subharmonic resonance 

may occur when the frequency ratio of the oscillations to the vortex shedding is 1/3. As explained by 

Durgin et al. (1980), this is because compatibility between the vortex-induced and movement-

induced forces on the cylinder demands three vortex shedding events for each cycle of body 

vibration. Another explanation of the sphere response in this Mode IV regime was put forth by 

Jauvtis et al. (2001), who suggested that the vibrations might be a result of movement-induced 

excitation (MIE) (see Naudascher & Rockwell (1994)). In this case, the body dynamics may be 

explained in terms of quasi-steady analysis (such as flutter and galloping), although a direct link was 

not evident. Nevertheless, the present numerical simulations have shown the tendency of the sphere 

to vibrate at more or less its natural frequency in this regime, and is not a product of high mass ratios 

as were the spheres investigated by Jauvtis et al. (2001). 

 

5.11 Existence of a critical mass ratio 

 

From §5.5, recall that a Mode IV response exists for the highest mass ratio investigated numerically, 

ie. for M* = 0.8. As discussed in §5.4, this occurs when the mean layover angles exceed 45º. 

However, for the sphere with mass ratio M* = 0.082, these large-amplitude, almost chaotic 

vibrations do not occur, even though the mean layover angle is much greater than 45º at a reduced 

velocity of U* ≈ 20. The lack of a Mode IV response for the low mass ratio means that there exists a 

critical mass somewhere in the vicinity 0.082 < M* < 0.8. Govardhan & Williamson (2002b) report 

a critical mass of M* = 0.30 for a sphere free to vibrate in the transverse direction. This is also 

similar to the dynamics of a hydroelastically-mounted cylinder with no restoring force, which has a 

critical mass of M* = 0.54 (Govardhan & Williamson (2002a)). However, no value has yet been 

reported for a tethered sphere, and for the present laminar flow conditions, it appears that this critical 

mass marks the location below which a Mode III response dominates and above which a Mode IV 

response is observed. 
 
The limits of the flow speeds obtainable in the experimental facility of Govardhan & Williamson 

(1997) did not allow high reduced velocities to be investigated. In contrast, the experiments of 

Jauvtis et al. (2001) were performed at reduced velocities up to U* = 300. However, this was 
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achieved by investigating mass ratios ranging from M* = 80 to M* = 940. As a result of these 

exceptionally high mass ratios, the tethered sphere was found to oscillate at its natural frequency of 

vibration throughout the entire range of reduced velocities. In addition, the mean layover angles 

were not even close to 45º (Williamson, private communication (2003)), so that the dynamics of the 

sphere at high layover angles remains an experimental mystery. It is not too surprising, therefore, 

that the present numerical simulations, together with the fact that the flow is laminar and the layover 

angles are quite large, uncover sphere dynamics that are quite remarkable and straightforward to 

analyze in detail because of the relatively low reduced velocities. These low reduced velocities are 

equivalent to relatively high natural frequencies, in contrast to the results of Jauvtis et al. (2001) 

which were lacking in the sense that the dynamics of the sphere were purely a result of the sphere 

oscillating at its natural frequency of vibration. The ability to investigate high layover angles has 

thus resulted in the discovery of both the Mode III and IV responses at relatively low reduced 

velocities and mass ratios. 

 

5.12 Further work 

 

The dynamics of a tethered sphere when subjected to a uniform flow has been analyzed in detail. 

Further work may include looking at a shear (or even oscillatory) flow, as opposed to a uniform 

flow. This may be useful to ocean engineers when the submergence depth of the spheres is quite 

small. 
 
The numerical procedure outlined in Chapter 2 is very general and as a result may be extended to a 

wide variety of problems. For example, higher mass ratios may be easily investigated, even for the 

very high mass ratios of order M* = 1000 examined by Jauvtis et al. (2001). Couple this with an 

accurate turbulence model (or maybe a large-eddy simulation approach) and one has the ability to 

essentially investigate the full, as yet four-mode dynamics of a tethered sphere at high Reynolds 

numbers (ie. turbulent flow). This means that the behaviour observed experimentally by Jauvtis et 

al. (2001) may be duplicated computationally, and the flow physics giving rise to the dynamics may 

be analyzed without difficulty. Another alternative to adopting the full DNS procedure for this flow-

induced vibration scenario is to use reduced-order models, as described by Dowell & Hall (2001). 

For example, a simple modal approach such as proper orthogonal decomposition (POD) has been 

used quite successfully to model the flow-induced vibrations of cylinders (see, for example, 

Newman & Karniadakis (1997)). 
 
Also, the existence of a critical mass needs to be addressed at these lower Reynolds numbers. In 

addition, it would be useful to perform more experiments at these low Reynolds numbers in order to 
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obtain a wide range of reduced velocities and layover angles which will hopefully unearth the Mode 

III and IV responses experimentally. In either case, the possibilities of further work are limitless. 



 
 
Chapter 6 
 
Summary/Conclusion 
 
 
From the outset, the major aim of the present study was to investigate the dynamics of a tethered 

sphere, and in particular under what conditions large-amplitude vibrations are observed. The use of 

direct numerical simulations restricted the Reynolds number range to laminar flows, in which it was 

previously unknown whether the tethered sphere would oscillate at all. The present results have 

shown that the tethered sphere does indeed experience large-amplitude vibrations, over a range of 

reduced velocities, even at these laminar flow conditions. Furthermore, different modes of vibration 

have been identified and analyzed in detail where possible. These modes are similar to the 

oscillation modes observed by Jauvtis et al. (2001), which were studied under turbulent flow 

conditions. 

 

6.1 Computational procedure and methodology 

 

The computational procedure outlined in Chapter 2 is well suited to the problem of the flow-induced 

vibrations of tethered bodies. Furthermore, since tethered spheres are the main focus of this study, 

existing numerical codes that have been used extensively for axisymmetric geometries can be 

adapted to solve the combined fluid-structure system of equations that govern the response of the 

tethered sphere subject to a uniform flow. For the fluid, these equations are the viscous, 

incompressible Navier-Stokes and continuity equations. The (nonlinear) equations of motion for the 

tethered sphere were obtained from Newton’s 2nd Law and by assuming that the tether is 

inextensible. The dimensionless parameters governing the sphere response were the mass ratio M*, 
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the tether length L* and the Froude number Fr. In addition, the need for a deforming mesh was 

eliminated by using a coordinate transformation that served as a bridge connecting the inertial 

(accelerating) reference frame to the non-inertial reference frame attached to the sphere. 

 

6.1.1 Discretization and solution procedure 

 

As previously mentioned, the governing equations of the sphere were nonlinear and coupled and 

therefore most efficiently solved using predictor-corrector techniques. The fluid equations were 

discretized in time using a three-step time-splitting procedure developed by Karniadakis et al. (1991) 

that has become the preferred method for higher-order schemes over the last decade. This scheme 

reduces the coupled system of fluid equations into a set of separately solvable equations for the 

pressure and velocity, a crucial requirement for accurate high-resolution simulations of complex 

flows. The equations of motion for the sphere were advanced in time by using the initial 

displacement of the sphere and predicting the displacement and velocity at the end of timestep. This 

was achieved via Adams-Bashforth predictors and Adams-Moulton correctors, and the fluid 

equations were then solved to compute the fluid forces giving rise to the motion of the sphere. 

Finally, the velocity and displacement of the sphere was corrected, utilizing underrelaxation 

techniques to improve the convergence characteristics of the solver. Convergence was monitored by 

three criteria: the normalized change in the velocity of the sphere, the normalized maximum change 

in the velocity field, and the normalized change in the force of the body. 
 
Spatial discretization was performed using spectral elements in the z-r plane and Fourier expansions 

in the azimuth. Similar techniques have been used recently by Tomboulides (1992), Ghidersa & 

Dusek (2000) and Blackburn & Lopez (2002). A change of variables was used to decouple the 

equations and, following time-discretization as discussed in the previous paragraph, resulted in a set 

of Helmholtz-like equations for the velocity and pressure modes. The spatial discretization of these 

Helmholtz equations was obtained using two-dimensional spectral elements, as described in detail in 

Maday & Patera (1989). 

 

6.1.2 DNS and experimental differences 

 

The experiments of Williamson & Govardhan (1997), Govardhan & Williamson (1997) and Jauvtis 

et al. (2001) were all performed in water channel facilities and wind tunnels. As a result, increases in 

reduced velocity were obtained by increasing the experimental flow velocity, which increases the 

Froude number but also has the side effect of increasing the Reynolds number. However, the present 
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simulations were executed by keeping the Reynolds number fixed at Re = 500 and altering the 

Froude number by effectively changing the gravitational term in Fr, as described in §2.4. 

Furthermore, the experiments were performed at Reynolds numbers in the range 750 < Re < 14000. 

The flow was thus highly turbulent in the range that most of the experiments were performed in, 

whereas the numerical simulations were carried out at laminar (albeit unsteady and asymmetric) 

flow conditions. Nevertheless, despite the differences in the way the numerical results and the 

experimental results were obtained, many features of the sphere response were observed and were 

similar in both cases. These features are summarized in §6.4. 

 

6.1.3 Numerical flow visualization techniques 

 

There have been a number of flow visualization techniques that have been used by numericists to 

visualize vortex structures in complex flows. In the present study, the vortex structures are 

visualized by plotting an isosurface of –λ2, which is the second eigenvalue of the S2 + Ω2 tensor. 

Here, S is the rate-of-strain tensor and Ω is the rate-of-rotation tensor. This definition is equivalent 

to the fact that the S2 + Ω2 tensor determines the existence of a local pressure minimum due to 

vortical motion, and disregards the effects of unsteady irrotational straining and viscous diffusion 

that would otherwise inhibit an effective indication for the existence of a vortex. Jeong & Hussain 

(1995) provide many examples of the use of this method when the vortex geometry is intuitively 

clear. This technique has also been used successfully for visualizing vortex structures in the wake of 

a stationary sphere by Johnson & Patel (1999). 

 

6.1.4 Mesh independence 

 

A detailed grid independence study was performed for a stationary sphere in §2.6. Flow quantities 

such as drag and lift coefficients, vortex shedding Strouhal numbers and measurements of the 

streamwise fluctuating velocity component were obtained and compared to previously published and 

accepted results. For all of these flow parameters, the most cost-effective value of p was found to be 

p = 8. For the tethered sphere simulations, accurate resolution of the boundary layer was 

demonstrated for p ≥ 5, up to a Reynolds number of Re = 1000. Furthermore, increasing the 

azimuthal resolution from k = 24 to k = 32 planes resulted in negligible differences in the measured 

flow quantities. However, in order to accurately capture the evolution of the vortical structures in the 

wake, all tethered sphere simulations were thus performed with the parameters p = 8 and k = 32, 

unless otherwise noted. 

 

 194 



6.1.5 Relaxation parameter and convergence criteria 

 

A final study was performed to verify that the results for the tethered sphere simulations were 

independent of the relaxation parameter and convergence criteria. This was achieved by increasing 

the relaxation parameter from ε = 0.2 up to ε = 0.8 for two separate reduced velocities that 

represented harmonic and non-harmonic oscillation behaviour respectively. For both of these 

oscillation states, the differences resulting from the changes in ε were found to be negligible. This 

was to be expected since theoretically, the results should be independent of ε if the solution is 

converged. A more appropriate check was to ensure that the results were independent of the 

convergence criteria, which was performed by decreasing the tolerances an order of magnitude from 

utol = 0.0001 and Ftol = 0.01 to utol = 0.00001 and Ftol = 0.001. With these modifications, the 

corresponding changes in the observed response were also found to be negligible. 

 

6.2 Stationary sphere 

 

The flow past a stationary sphere was investigated for Reynolds numbers of Re = 100, 250, 300, 400 

and 500. This range incorporated various flow and wake characteristics such as the presence of 

axisymmetry, the transitions to asymmetry and unsteadiness, and the loss of planar symmetry. 

Detailed analyses of the pressure and vorticity fields were undertaken with the aim of understanding 

the different wake states and the processes involved with the vortex shedding and the near wake 

vortex dynamics. 

 

6.2.1 Steady, axisymmetric flow 

 

For Reynolds numbers less than Re = 24, the flow past a sphere is known to be axisymmetric and 

attached (Taneda (1956)). However, for Re > 24 but less than Re = 212, the numerical simulations 

found that the flow was laminar, steady and axisymmetric, with a toroidal vortex in the immediate 

near wake of the sphere. The separation angle, length, and drag coefficient, as well as the location of 

the centre of the vortex, was found to agree extremely well with the results of Taneda (1956), 

Shirayama (1992) and Magnaudet et al. (1995), to name but a few. Computed streamlines showed 

that the flow was indeed axisymmetric, and contours of the pressure coefficient revealed a ring of 

low pressure located very close to the centre of rotation of the toroidal vortex. Within this regime, 

the centrifugal force of the vortex’s rotation was balanced by viscous forces as opposed to a radial 

pressure gradient, as mentioned by Johnson & Patel (1999). 
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lizations of the vortex structures in the wake of a sphere (plotted using an 

urface of –λ2) at (a) Re = 250; (b) Re = 300; (c) Re = 500. 
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6.2.2 Steady, planar-symmetric flow 

 

Direct numerical simulations in §3.2 were performed at incremental Reynolds numbers of unity in 

the range 209 < Re < 213. These simulations found a breakdown of axial symmetry when a 

Reynolds number of Re1 = 212 was reached. This value compares very well to the value of Re1 = 

210 obtained by Natarajan & Acrivos (1993), which was computed using a linear stability analysis. 

Furthermore, this bifurcation was found to be a regular (supercritical) one in the sense that there are 

no observed hysteresis effects (Tobak & Peake (1982)). 
 
The drag and lift coefficients in this regime were found to compare very well with those of previous 

research. Furthermore, the plane of symmetry was most obvious when plotting the streamlines, 

which happen to correspond to actual particle paths since the flow was steady. The pressure field 

revealed that the previously axisymmetric ring of low pressure in the near wake was now tilted, 

resulting in the conversion of azimuthal vorticity to streamwise vorticity. This streamwise vorticity 

was then convected downstream via two tails, known as the “double-thread” or “two-tailed” wake, 

which is clearly observed experimentally (see, for example, Ormieres & Provansal (1999)), and is 

shown in Figure 6.2.1 (a). 

 

6.2.3 Unsteady, planar-symmetric flow 

 

When the Reynolds number exceeds Re2 ≈ 375, the flow past a sphere becomes unsteady with the 

appearance of periodic vortex shedding. Like the transition to asymmetry, this transition occurs with 

m = 1 being the most unstable mode. However, unlike the previous transition, this transition occurs 

via a Hopf bifurcation. The drag and lift coefficients, as well as the vortex shedding Strouhal number 

at a Reynolds number of Re = 300, were found to agree very well with previous numerical and 

experimental results. The vortices were composed of shed hairpin vortices and induced hairpin 

vortices. Note that experimental dye visualization only elucidates the shed hairpin vortices, since the 

induced vortices result from the near wake vortex dynamics and not from the boundary layer 

separation off the surface of the sphere. 
 
The pressure and vorticity fields were analyzed in detail in §3.3 and helped in understanding the 

vortex shedding process, which is summarized as follows. Initially, there was an azimuthal pressure 

gradient that generated azimuthal flow from the centre of the upper focus to the lower. The upper 

focus then increased in strength, and changed from a stable focus to an unstable focus, resulting in a 

reverse flow that impinged on the upper separating shear layer and disconnected (ie. shed) the vortex 

into the wake. The remaining shear layer then rolled up to produce the new upper focus, thereby 
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restarting the process. As with the steady flow results, visualizations of the hairpin vortices were 

obtained by plotting an isosurface of –λ2. This yielded clear and unmistakable vortex structures that 

compared well with the experimental visualizations of Sakamoto & Haniu (1995) and Ormieres & 

Provansal (1999), as shown in Figure 6.2.1 (b). 

 

6.2.4 Unsteady, asymmetric flow 

 

Planar symmetry is known to be lost in the range 350 < Re < 375 (Mittal (1999b)). The experiments 

of Sakamoto & Haniu (1990) reported a loss of planar symmetry when a Reynolds number of Re = 

420 was exceeded. Numerical simulations were performed in this unsteady asymmetric regime at 

Reynolds numbers of Re = 400 and Re = 500. For both cases, the flow was found to be highly 

unsteady and did not exhibit a plane of symmetry. Spectral analysis of the fluctuating azimuthal 

velocity component of the m = 1 mode revealed dominant peaks corresponding to the frequency of 

vortex shedding. These values compared favourably to those of previous research. 
 
Analysis of the fluid forces revealed that the net lift coefficient appeared to have a preferred 

orientation for a Reynolds number of Re = 400. When the Reynolds number was increased to Re = 

500, a preferred orientation of the wake was not discernible. This result was in agreement with that 

of Mittal et al. (2002) who found that the preference for any particular wake orientation diminished 

with increasing Reynolds number. Visualizations of the vortex structures revealed that the hairpin 

vortices and vortex loops rotate and deform as they convect downstream, which is a consequence of 

the irregular angle of vortex formation off the surface of the sphere, as depicted in Figure 6.2.1 (c). 

 

6.3 Rotating sphere 

 

Direct numerical simulations of the flow past a rotating sphere were performed for Reynolds 

numbers in the range 10 < Re < 500. The dimensionless rotation rates investigated ranged from Ω = 

0.05 to Ω = 0.25 in increments of 0.05. This particular range of Reynolds numbers was chosen 

because the major transitions that the sphere experiences are well documented for stationary spheres 

within this regime. Furthermore, the relatively low rotation rates were chosen to enable comparisons 

with previous research and to take full advantage of the available computational resources.  
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6.3.1 Non-streamwise sphere rotations 

 

Non-streamwise rotations were performed about both the y and z axes (see Figure 4.1.1). Numerical 

results of the y-axis rotations were identical to the z-axis rotations, and as a result only the results 

concerning the z-axis rotations were presented. The most notable difference between the non-

streamwise rotating sphere and the stationary sphere was the lack of axisymmetry over the entire 

range of Reynolds numbers investigated. Nonetheless, the drag coefficient for these non-streamwise 

rotation rates was found to increase with increasing Ω. Furthermore, the lift coefficient initially 

increased at the lowest Reynolds numbers investigated and subsequently decreased, eventually 

reaching an asymptotic value of approximately Cl = 0.065 + Ω. 
 
When the sphere was rotating about the z-axis, streamline plots showed that a plane of symmetry 

was observed that coincided exactly with the x-y plane. For a stationary sphere, the plane of 

symmetry arose naturally and in general did not coincide with the x-y plane. This loss of axial 

symmetry at the lowest Reynolds numbers investigated was due to the out-of-plane velocity 

component. Furthermore, pressure and vorticity contours were similar to those of a stationary sphere 

in the appropriate flow regime, with some distinctions as discussed in §4.2.2. 
 
Vortex shedding frequencies in the form of Strouhal numbers were measured and found to increase 

with increasing Reynolds number. In addition, at any given Reynolds number, an increase in Ω 

resulted in an increase in St. This was probably due to the fact that the intensity of the reversed flow 

generated by the vortex increases with increasing rotation rate and interferes with the separating 

shear layer, thereby effectively cutting off the vortex from the wake prematurely and increasing the 

shedding frequency of the wake. 
 
Visualizations of the vortex structures in the wake were similar to that of a stationary sphere. 

However, the major difference was that for both the steady and unsteady planar-symmetric regimes, 

the vortex structures were clearly symmetric about a plane that was dictated by the direction of 

rotation of the spinning sphere. 

6.3.2 Streamwise sphere rotations 

 

Rotation rates similar to those investigated in the previous section were also used to perform 

simulations for a streamwise rotating sphere. Unlike the non-streamwise rotations, the flow was 

found to be axisymmetric for the lower half of the Reynolds numbers examined. Drag coefficients 

were computed as a function of Reynolds number and rotation rate and were found to increase as Ω 

increases, as with the non-streamwise sphere rotations. However, the difference in Cd at any given 

Reynolds number was much smaller for the streamwise rotating sphere, typically an order of 
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magnitude smaller especially at the higher Reynolds numbers. This was due to the fact that if the 

rotation rate was low enough, the tendency of the wake to remain axisymmetric was increased. 
 
The vortex structures observed were much more dependent on the sphere rotation rate than the 

corresponding non-streamwise rotation simulations. For example, at low enough rotation rates, the 

two-tailed wake was no longer planar symmetric as one tail was “weaker” and skewed with respect 

to the streamwise axis. For higher rotation rates, one tail disappeared completely, as discussed in the 

next subsection. Simulations at higher Reynolds numbers (when the flow was unsteady) revealed 

that the vortex structures were much more distorted, especially in the far wake region, because of the 

influence of the streamwise rotation. 

 

6.3.3 The “frozen” vortex structure 

 

As previously mentioned, for the two-tailed wake at higher rotation rates one tail disappeared 

completely. Under these steady flow conditions, the drag coefficient remained constant whereas the 

lateral and side force coefficients were sinusoidal with a very low frequency of Stf that was different 

to that of the vortex shedding. Although the lateral and side force coefficients were sinusoidal, the 

net lift coefficient was steady, so that the vortex rotated about the wake centreline without temporal 

variation in its shape or strength. This “frozen” vortex structure was first recently reported by Kim & 

Choi (2002), although Wang et al. (2001) appear to have discovered it without going into any detail 

about the dynamics of it. 
 
In general, the rate of rotation of the frozen vortex was different to that of the sphere. This was 

observed by recording the time history of the lift angle β, the slope of which indicates the rotating 

velocity of the vortex structure. Furthermore, it was found that increasing the rate of rotation serves 

to increase the rotation rate of the frozen vortical structures, in an almost one-to-one correspondence. 

In other words, doubling the rotation rate of the sphere will double the rotation rate of the frozen 

vortical structures as well, assuming that the flow is still frozen at these higher angular velocities. 

 

6.3.4 Critical Reynolds numbers 

 

The present study reports for the first time the influence of sphere rotation on the wake transitions to 

planar-symmetry and unsteadiness. For non-streamwise sphere rotations, it was found that the 

transition to asymmetry occurred at Re1 < 10. This was because the out-of-plane component of 

velocity breaks the axisymmetry even at the lowest Reynolds numbers investigated. However, for 

the streamwise sphere rotations, the transition to asymmetry occurred at 200 < Re1 < 220 for rotation 
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rates of Ω ≥ 0.2, and at 220 < Re1 < 240 for lower rotation rates. Note that for a stationary sphere, 

this transition occurs at a Reynolds number of approximately Re1 = 212, so that lower streamwise 

rotation rates serve to delay the transition at which asymmetry occurs. 
 
For the non-streamwise rotating sphere, the transition to unsteadiness was much easier to measure. 

This transition occurred at Re2 = 250 ± 10 for rotation rates of Ω = 0.05 and 0.10. For higher rotation 

rates of Ω = 0.15 and 0.20, this transition occurred at a Reynolds number of Re2 = 230 ± 10. 

However, for the case of Ω = 0.25, the transition occurred at a critical Reynolds number in the range 

of that observed for the lower rotation rates. For the streamwise rotating sphere, for rotation rates of 

Ω = 0.10 and 0.15, unsteadiness first appeared at a Reynolds number in the range 280 < Re2 < 300, 

whereas for the other rotation rates, it occurred in the range 260 < Re2 < 280. For a stationary sphere, 

this transition is observed at a Reynolds number of approximately Re2 = 272. It appears then that a 

non-streamwise rotation rate causes the transition to unsteadiness to occur at lower Reynolds 

numbers, whereas a streamwise rotation rate appears to delay the transition, especially at the 

intermediate rates of rotation investigated in this study. 

 

6.4 Tethered sphere 

 

This study has focused on tethered spheres that involve applications such as tethered sea mines, 

weather balloons and bathyscaphes, to name a few. All of these applications represent structures 

whose mass is less than that of the fluid that is displaced, ie. M* < 1. The experimental results of 

Williamson & Govardhan (1997) and Govardhan & Williamson (1997) involved similar mass ratios, 

and found only two modes of vibration, mainly because small layover angles were investigated. The 

ability of the present computational procedure to investigate layover angles approaching 90º have 

resulted in the appearance of additional oscillation modes, similar to the extremely high mass ratio 

results of Jauvtis et al. (2001). In addition, the numerical procedure has the potential to efficiently 

investigate the dynamics of any tethered structure, since the formulation developed in Chapter 2 is 

independent of the body geometry. In light of this, the dynamics of a two-dimensional circular 

cylinder have been investigated by Pregnalato et al. (2002b) and Ryan et al. (2003), and have 

produced a rich variety of oscillation dynamics. 

 

6.4.1 Experimental results at low Reynolds numbers 

 

For the first time, experiments for a tethered sphere were performed in the present study entirely in 

laminar flow conditions. A polypropylene sphere of mass ratio M* = 0.91 and tether length L* = 
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10.24 was used at Reynolds numbers ranging from Re = 503 to Re = 780. This corresponded to 

reduced velocities approximately in the range 8.9 < U* < 13.8. At the lowest Reynolds number 

investigated (Re = 503), time traces of the sphere response clearly revealed significant oscillations, 

even at this relatively low Reynolds number. The magnitudes of the streamwise oscillations were 

typically 16 times smaller than the transverse oscillations. The high Reynolds number results of 

Williamson & Govardhan (1997) depicted a streamwise oscillation amplitude that was about twice 

as small as the transverse oscillation amplitude. Evidently, the difference in flow states between the 

present experiments and those of Williamson & Govardhan (1997) results in a large difference in the 

oscillation response, especially in the streamwise direction. 
 
For the range of reduced velocities (and Reynolds numbers) investigated, the frequency of 

oscillation in the streamwise direction was twice the frequency of oscillation in the transverse 

direction, similar to the observations of Govardhan & Williamson (1997). Furthermore, the 

normalized frequency of oscillation increased with increasing U*, in an almost linear trend. For a 

stationary sphere within this range of Reynolds numbers, Sakamoto & Haniu (1995) showed that the 

vortex shedding frequency varies considerably. As a result, one would imagine that the sphere 

oscillations are not a result of the vortex shedding frequency locking on to the oscillation frequency. 

However, the sphere was oscillating within the Mode II regime at these Reynolds numbers, as will 

be discussed shortly, and hence the oscillations modulated the vortex shedding frequency such that 

self-excited motion ensued. 
 
In order to compare these experiments directly to the numerical simulations, a single simulation was 

performed with matching mass ratio, tether length and Froude number. Also, the numerical 

Reynolds number was kept at Re = 500, whereas the experimental Reynolds number was slightly 

higher at Re = 503. The experimentally observed streamwise oscillation amplitude was within the 

experimental error, and was thus likely to overestimate the actual response. However, the difference 

in the transverse amplitude response between the experiments and the numerical simulation was 

about 2%. Similarly, the differences in the normalized frequency response in both the streamwise 

and transverse directions were approximately 4%. These discrepancies are quite small and provide 

evidence of the accuracy of the present computational procedure. 

 

6.4.2 Mean layover angles 

 

An analytical estimate of the mean layover angle for a tethered sphere was made by referring to 

Figure 2.1.1. This estimate is given by the expression 
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where Cd is the drag coefficient for a stationary sphere and is equivalent to Cd = 0.537 (see Chapter 

3). In Figure 6.4.1, we plot the mean layover angles for mass ratios of M* = 0.082 (a) and M* = 0.8 

(b). The analytical estimate given by Equation (6.4.1) is also shown as the dashed line in both plots. 

For the low mass ratio, Equation (6.4.1) underestimates the predicted mean layover angle for 

reduced velocities in the range 4 < U* < 11. This is equivalent to the drag coefficient being greater 

than that for a stationary sphere, as we shall see shortly. 
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For the higher mass ratio, Equation (6.4.1) underestimates the predicted mean layover angle for 

reduced velocities in the range 4.25 < U* < 11.2. Any further increases in U* have little effect on the 

calculated mean layover angle. The fact that the mean layover angles exhibit such a pronounced 

jump at incremental reduced velocities leads to the conclusion that at least two modes of oscillation 

are present for these mass ratios. These modes will be discussed in §§6.4.7 – 6.4.10. 

 

6.4.3 Oscillation amplitudes 

 

The amplitude response of the sphere was found to be strongly dependent on the mass ratio. This is 

shown in Figure 6.4.2, which puts together the results from the numerical simulations and the 

present experiments at low Reynolds numbers. For the sphere with mass ratio M* = 0.8, increasing 

the tether length from L* = 5 to L* = 10 resulted in practically no change in the normalized 

amplitude response. Furthermore, increasing the mass ratio from M* = 0.082 to L* = 0.91 decreased 

the amplitudes of oscillation. 
 
For all of the mass ratios investigated, a Mode II response was observed at reduced velocities 

roughly in the range 5 < U* < 10. This mode was discernible as a large-amplitude vibrational 

response whose amplitude was highest at the lower mass ratios. The experimental results, 

unfortunately, were limited to reduced velocities at the end of the Mode II regime, but nevertheless 

still exhibited a decreasing trend with increasing reduced velocity that was common to all of the 

mass ratios investigated. The nature of the oscillations in this Mode II regime (especially towards the 

end of the regime) was highly harmonic and very sinusoidal. The results of Jauvtis et al. (2001) 

display similar behaviour: the “periodicity” of their Mode II response was close to unity, meaning 

that the oscillations were exceptionally sinusoidal. 
 
For the higher reduced velocities, greater than those that incorporate the Mode II regime, a Mode III 

response was observed. The oscillations within this regime were also highly sinusoidal, which 

represent a “periodicity” of close to unity, similar to the Mode II response. However, the dynamics 

of the sphere in this regime have some differences, which will be covered in §6.4.9. 
 
For the low mass ratio sphere, the maximum reduced velocity investigated was equivalent to the 

sphere being displaced with a mean layover angle of almost 60º. However, only a Mode III response 

was observed for this low mass ratio case. For the high mass ratio sphere, at the highest reduced 

velocities investigated, the mean layover angle of the sphere was about 65º. At these high layover 

angles (ie. θ > 45º), a Mode IV response was observed. The lack of a Mode IV response for the low 

mass ratio case investigated leads to the existence of a critical mass, which will be discussed in 

§6.4.11. 
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Figure 6.4.3. Change in the drag coefficient as a function of reduced velocity. Symbols as in Figure 

6.4.2. 

 

6.4.4 Drag coefficients 

 

The drag coefficients for the different mass ratios as a function of reduced velocity are shown in 

Figure 6.4.3. Once again, for the M* = 0.8 sphere, increasing the tether length from L* = 5 to L* = 
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10 resulted in negligible difference in the drag coefficient, as expected, since the change in the 

oscillation amplitude was also minimal. Furthermore, because of the larger-amplitude oscillations 

that were observed for the lower mass ratios, decreasing the mass ratio resulted in an increase in the 

drag coefficient. However, as the reduced velocity was increased, the drag coefficient gradually 

decreased to values slightly above that of a stationary sphere. This trend was independent of the 

mass ratio. 
 
We have seen that the nature of the oscillations is reflected in the changes in the drag coefficient. 

This is especially true when the oscillations are harmonic. For example, the amplitudes of oscillation 

within the Mode II regime were quite large and the oscillations were quite harmonic. This 

combination resulted in a large increase in the drag coefficient, as shown in Figure 6.4.3. However, 

even larger-amplitude oscillations were observed in the Mode IV regime, but the drag coefficient 

remained close to that of a stationary sphere. As described in Chapter 5, this is because the 

oscillations in the Mode IV regime were not harmonic, but were instead quite erratic. 

 

6.4.5 Frequency response 

 

In contrast to the mean layover angle, oscillation amplitude and drag coefficient, the normalized 

frequency response of the sphere was found to be relatively independent of the mass ratio. This 

result is depicted in Figure 6.4.4, as a function of reduced velocity. At the lower end of the scale, the 

sphere was desynchronized and significant oscillations were not observed, regardless of the mass 

ratio. On the other hand, the sphere oscillations became synchronized within the Mode II regime as 

the oscillations became harmonic. The agreement in the normalized frequency response for all of the 

mass ratios investigated is remarkable. With increasing reduced velocity, the normalized frequency 

of oscillation was observed to jump from the “lower” branch to the “upper” branch. This change in 

f* signifies a change in sphere dynamics from the Mode II response to the Mode III response. The 

collapse of data within this Mode III regime is also quite remarkable, for both the high and low mass 

ratios investigated. 
 
It is also clear from Figure 6.4.4 that the sphere with mass ratio M* = 0.082 experienced oscillations 

within the Mode III regime at the highest reduced velocities. In contrast, the high mass ratio sphere 

exhibited oscillations that were close to the natural frequency of the system at the highest reduced 

velocities. This behaviour is indicative of a Mode IV response, which is highlighted by the presence 

of extremely low-frequency vibrations, although the vortex shedding frequency (at least for a 

stationary sphere) is much higher. The dynamics of this Mode IV response will be summarised in 

§6.4.10. 
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Figure 6.4.4. Frequency response as a function of reduced velocity. Symbols as in Figure 6.4.2. 

 

6.4.6 Neutrally buoyant tethered sphere 

 

The dynamics of a tethered sphere have been investigated in this study for mass ratios of M* < 1. 

Furthermore, higher mass ratios of M* >> 1 have been experimentally investigated by Jauvtis et al. 

(2001). However, a particularly significant case is the neutrally buoyant sphere, with M* = 1. This 

case has received virtually no experimental or numerical attention apart from the preliminary 

investigation by Provansal (2003, private communication). With this in mind, numerical simulations 

were performed at Reynolds numbers of Re = 300, 350, 400, 450 and 500. 
 
Because each simulation was initialized with a small random perturbation, any preferred orientation 

of the wake depended only on these initial conditions. At a Reynolds number of Re = 300, the 

response of the sphere was not particularly harmonic, despite the fact that the flow past a stationary 

sphere maintains planar symmetry at this Reynolds number. On the other hand, the sphere response 

at the higher Reynolds numbers was found to be very harmonic. 
 
As the Reynolds number was increased from Re = 300, the oscillations in the streamwise and 

transverse directions remained relatively small. However, the oscillations in the lateral direction 

increased to about A* = 0.1. Note that for the present neutrally buoyant case, the large-amplitude 

vibrations were observed in the lateral direction, whereas for the other mass ratios the transverse 

direction displayed the large-amplitude oscillations. However, this was probably due to the fact that 

the sphere did not have a preferred spatial orientation. For Re < 500, the transverse oscillations were 
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insignificant, but for Re = 500, the oscillations in the transverse direction increased in magnitude by 

almost 130 times over those observed at the previous Reynolds number. 
 
For all of the Reynolds numbers investigated, the drag for the neutrally buoyant sphere decreased 

monotonically, similar to that of a stationary sphere. However, at the lowest Reynolds number of Re 

= 300, the difference in drag between the tethered sphere and the stationary sphere was about 4.3%. 

When the Reynolds number was increased to Re = 500, the difference in Cd increased to 9.9%.  This 

occurred because as the Reynolds number increased and developed on its way to turbulence, the 

oscillations of the neutrally buoyant sphere increased in magnitude and the drag adjusted 

accordingly. This was especially true for the harmonic oscillations that were observed for Re > 300, 

which were shown to result in a drag coefficient that departed significantly from that of a stationary 

sphere. This increase in Cd for harmonic oscillations is a well-observed phenomenon in flow-

induced vibration problems. 
 
For Re > 300, the normalized oscillation frequency of the neutrally buoyant sphere in all three 

directions did not correspond to either the natural frequency of the system or the vortex shedding 

frequency of a stationary sphere at the equivalent Reynolds number. For Re = 300, the oscillation 

frequencies in the streamwise and lateral directions were the same and twice that of the transverse 

oscillations. Furthermore, for Re ≥ 400, the frequency of oscillation in the streamwise direction was 

much greater than both fn and fvo, but the oscillation frequencies in the lateral and transverse 

directions were greater than fn and less than fvo. 
 
The work of Mougin & Magnaudet (2002) for a rising bubble has shown that both zigzag and spiral 

sphere trajectories may occur depending on the controlling parameters. Moreover, Provansal (2003, 

private communications) has shown that the displacement pattern of a neutrally buoyant sphere may 

vary from a zigzag motion to a circular trajectory. For the present results, for Reynolds numbers in 

the range 350 ≤ Re ≤ 450, the displacement pattern produced a limit cycle behaviour in which the 

sphere oscillated on more or less a straight line. Furthermore, as the Reynolds number was increased 

to Re = 500, the displacement pattern turned into an irregular figure-of-eight shape. However, for all 

of these simulations, more time was needed numerically for the oscillations to possibly transition to 

the circular trajectories that may be observed experimentally. 

 

6.4.7 Mode I response 

 

The results of Williamson & Govardhan (1997) and Govardhan & Williamson (1997) showed a 

local peak in the amplitude response of the tethered sphere at a reduced velocity of approximately 

U* = 5. This value of U* is equivalent to a natural frequency of vibration of Sn = 0.2. For the range 
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of Reynolds numbers used in their experiments, the vortex shedding frequency of a stationary sphere 

was about St = 0.2. Because the natural frequency was almost equal to the vortex shedding 

frequency, harmonic oscillations were observed, a condition that yields a resonance in the classical 

studies of the vortex-induced vibrations of cylinders. This local peak in the amplitude response of 

the tethered sphere was named a “Mode I” response. 
 
For a Mode I response to exist for the present simulations and experiments at low Reynolds 

numbers, one would expect to observe a local peak in the amplitude response (and to some extent, 

the frequency response) at a reduced velocity of U* = 6. This is because at the present Reynolds 

number of Re = 500, the vortex shedding frequency of a stationary sphere is about St = 0.16, so that 

the natural frequency of vibration should also be about Sn = 0.16. However, Figures 6.4.2 and 6.4.4 

do not show any local peaks or irregular behaviour at U* = 6. It is apparent then, that for laminar 

flow conditions, a Mode I response would not be expected to occur for a tethered sphere, and it 

appears that this response exists at higher Reynolds numbers because of the difference in the wake 

states at laminar and turbulent flow conditions. 

 

6.4.8 Mode II response 

 

Although a Mode I response was not observed in the present study, a Mode II response did occur as 

shown in Figures 6.4.2 – 6.4.4. The dynamics of the Mode II response are unlike those of the Mode I 

response, which is a result of the vortex shedding frequency locking on to the natural frequency of 

the system. For a tethered sphere, Govardhan & Williamson (1997) showed that in the Mode II 

regime, the oscillation frequency did not correspond to either the natural frequency or the vortex 

shedding frequency of a stationary sphere. 
 
The dynamics of the tethered sphere in this Mode II regime were analyzed in detail in Chapter 5. In 

addition, to investigate how the sphere responded by increasing the reduced velocity, two particular 

values of the reduced velocity were chosen: U* = 5 and U* = 10. These values lied near the start of 

the synchronization regime and near the end respectively. The pressure fields and visualizations of 

the vortex structures were examined and a mechanism describing the dynamics of the sphere was 

described. In addition, the fluid forcing was found to be in-phase with the body motion. 
 
It was found that the Mode II response was kicked off by the large transverse fluid forcing that 

caused the sphere to oscillate vigorously with large amplitudes. As U* increased within this regime, 

however, the fluid forcing was found to decrease substantially, and could not evidently sustain the 

large-amplitude vibrations. However, visualizations of the vortex structures over a typical cycle of 

sphere oscillation showed that two vortices were shed for each cycle of sphere motion, throughout 
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the entire synchronization regime, as shown in Figure 6.4.5 for M* = 0.8, L* = 10 at U* = 10. Note 

that the vortices resemble more closely those of a stationary sphere when the wake is planar-

symmetric rather than unsteady asymmetric, which is the case at Re = 500. Although the oscillation 

frequency increased as U* increased, the number of shed vortices per cycle stayed the same, so that 

the (normalized) vortex shedding frequency also increased. It is apparent that the large-amplitude 

oscillations in the Mode II regime modulated the vortex shedding from the sphere such that the 

vortex shedding frequency remained the same as the oscillation frequency. This modulation between 

f and fvo guaranteed that self-excited motion ensued until the end of the synchronization regime. 

 

6.4.9 Mode III response 

 

At higher reduced velocities, beyond the Mode II regime, the tethered sphere displayed oscillations 

that were indicative of another response mode, namely the Mode III response. This vibration mode 

was discovered by Jauvtis et al. (2001) who investigated very high mass ratios, typically M* ≥ 28. 

Because of these high mass ratios, the sphere was always found to vibrate at its natural frequency, 

regardless of the reduced velocity. The present results, on the other hand, show that a Mode III 

response occurs not only for high mass ratios, but for the lowest mass ratio investigated of M* = 

0.082. Also, this Mode III response was found to occur roughly in the reduced velocity range 15 < 

U* < 27. 
 
A major difference between the sphere response in the Mode II regime and the Mode III regime was 

that the fluid forcing in the Mode III regime was out-of-phase with the body motion. Also, the 

streamwise frequency of oscillation in the Mode II regime was twice that of the transverse 

frequency, whereas the frequencies of oscillation in all directions was the same for the Mode III 

response. Nevertheless, as with the Mode II response, the pressure fields and visualizations of the 

vortex structures in the Mode III regime shed light on the mechanism of vibration. 
 
For a typical reduced velocity of U* = 24 in the Mode III regime, Figure 6.4.4 shows that the 

normalized frequency of oscillation is f* = 2.7. This amounts to an oscillation frequency of St = 

0.11, although the vortex shedding frequency for a stationary sphere at the same Reynolds number 

of Re = 500 is about St = 0.16. Clearly, the oscillation frequency does not coincide with either the 

natural frequency or the vortex shedding frequency of a stationary sphere. 
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Figure 6.4.

 

(a)
5. 
φ = T/4
φ = T
φ = T/2
φ = 3T/4
 
 

Visualization of vortex structures (plotted using an isosurface of –λ2) at U* = 10 for 

M* = 0.8, L* = 10: (a) x-z plane; (b) x-y plane. 
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(b)
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φ = T/2
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Figure 6.4.5. Continued. 
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However, as with the Mode II response, visualizations of the vortex structures in Chapter 5 showed 

that in the Mode III regime, two vortices were shed for each cycle of sphere motion, despite the fact 

that the oscillation frequency was much lower than the shedding frequency of a stationary sphere. It 

is evident then that the sphere oscillations modulate the vortex shedding frequency within this Mode 

III regime, leading to self-excited oscillations, as with the Mode II response. 

 

6.4.10 Mode IV response 

 

Finally, at still higher reduced velocities, it was found that a Mode IV response occurs when the 

mean layover angle exceeds 45º, although only for the sphere with mass ratio M* = 0.8. The 

oscillations in this regime were not sinusoidal, and also not very harmonic, although large-amplitude 

vibrations occurred, as shown in Figure 6.4.2. Furthermore, it is evident that a Mode IV response 

does not occur for the low mass ratio of M* = 0.082. 
 
Jauvtis et al. (2001) discovered this Mode IV response by using spheres of mass ratio M* ≥ 80. Like 

the Mode III response, the spheres were found to vibrate at the natural frequency, presumably 

because of the extremely large mass ratios. The corresponding oscillation frequencies were thus 

determined to be much lower than the principal vortex shedding frequency, since large-amplitude 

oscillations were observed at exceptionally high reduced velocities. However, the present results 

show that the sphere does indeed vibrate close to its natural frequency within this Mode IV regime, 

depicted in Figure 6.4.4, despite the relatively low mass ratios (and reduced velocities) investigated 

in this study. 
 
For example, at a reduced velocity of U* = 33, the dominant oscillation frequency was about St = 

0.03 for the sphere with mass ratio M* = 0.8. On the other hand, the transverse fluid force displayed 

a dominant frequency of St = 0.11. In other words, the dominant vortex shedding frequency was 

approximately was roughly 3 – 4 times greater than the oscillation frequency, meaning that multiple 

vortices were shed for each cycle of sphere motion. Unfortunately, the erratic nature of the 

oscillations and the limited computational resources available meant that a detailed analysis into the 

dynamics of this response mode was unfeasible. However, possible mechanisms of vibration for the 

Mode IV response were put forth in Chapter 5, and include possible movement-induced excitation 

(such as flutter and galloping), or instability-induced excitation (such as subharmonic resonance). 

These mechanisms are described in more detail in Naudascher & Rockwell (1994). 
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6.4.11 Existence of a critical mass ratio 

 

We have seen from Figure 6.4.2 and Figure 6.4.4 that a Mode IV response is observed for a mass 

ratio of M* = 0.8, but not for a mass ratio of M* = 0.082, despite the fact that the mean layover angle 

is greater than 45º in both cases. The lack of a Mode IV response for the low mass ratio sphere 

means that there exists a critical mass in the vicinity 0.082 < M* < 0.8. For a sphere free to vibrate 

in the transverse direction, Govardhan & Williamson (2002b) report a critical mass of M* = 0.30. 

On the related topic of the vortex-induced vibrations of hydroelastically-mounted cylinders, the 

critical mass takes the value M* = 0.54. Although it has been postulated that the existence of a 

critical mass is a generic phenomenon in vortex-induced vibration (Govardhan & Williamson 

(2002a)), no value for the critical mass of a tethered sphere has yet been reported. 
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