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Abstract

This is a study on the aeroacoustic phenomena of unsteady flow fields. The main aim of this research

is to understand the relationship between the vorticity dynamics and the far-field acoustic response. The

scope of the problems presented in this project is restricted to flow fields that are periodic or semi-periodic

and two-dimensional while the Mach number of the sound field is small. By virtue of the low Mach number

assumption, the flow and acoustic fields are decoupled, i.e., the sound field (a linear response) is driven

by the flow field (a non-linear source). In this study, the acoustic prediction models of Lighthill’s acoustic

analogy (1952), and Powell’s vortex sound theory (1964) are used to predict the acoustic effects. The

numerical implementation of the acoustic analogies is often known as the two-step method because it

involves separate computations of the flow and acoustic fields.

In the first step of the aeroacoustic prediction method, the flow is predicted by solving the incom-

pressible Navier-Stokes equations numerically using a commercial CFD code (FLUENT). The spatial and

temporal discretisation schemes of the flow solver are both of second-order accuracy. The hydrodynamic

fields are then exported from the grid used in the flow calculations to a different grid that is used to

advance the acoustic solution. In the second step, the acoustic pressure is predicted by numerically solv-

ing the forced acoustic wave equation. The acoustic wave equation is essentially an inhomogeneous wave

equation where the forcing is calculated using either Lighthill’s acoustic analogy or Powell’s vortex sound

theory.

Many numerical issues involved in the calculation of an acoustic solution are not encountered in

typical aerodynamic computations. This is because the nature and characteristics of acoustic wave

propagation are different to those of incompressible fluid dynamics. A combination of a sixth-order

spatial discretisation scheme and a fourth-order Runge-Kutta temporal scheme is employed to solve the

acoustic wave equation. Such high-order methods are necessary to minimise the dispersion and dissipation

errors in the time-evolving acoustic field. Two preventive measures are taken to ensure that the predicted

acoustic solution is not contaminated by spurious noise. A start-up ramp is used to gradually introduce

the acoustic source into the wave equation computation. In addition, the rate of spatial stretching of

the acoustic grid is restricted to typically just a few percent. Both steps are necessary to limit the

impact of the artificial initial transients. In addition to the two steps, prior to evaluating the acoustic

source, the hydrodynamic velocity field is artificially decayed to zero away from the region of high velocity

gradients. This is to ensure that the acoustic source terms converge smoothly to zero far from the true

acoustic source region. As a result of all these steps, neither artificial dissipation nor explicit filtering

are required to successfully predict the acoustic response for all three flow situations considered in this

research program.

Three different problems of varying degrees of complexity in the flow dynamics were considered

as part of this research. Besides providing a greater insight into the aeroacoustic phenomena, the three
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cases also contribute to validating the computational approach used in this project. In the first two cases,

the flow field is compact, i.e., the characteristic lengthscale of the flow is much smaller than the acoustic

wavelength. The vortex dynamics is relatively simple and well-defined. In the first case, the acoustic waves

generated by the co-rotation motion of an isolated vortex pair is investigated. This test case is widely

recognised as a benchmark problem in aeroacoustics. The Reynolds number based on the circulation

of the vortex core is Re = 7500 while the Mach number based on the induced co-rotation velocity is

Ma = 0.06. Comparison of the numerical results are made with the solution calculated using the method

of matched asymptotic expansions, and numerical solutions computed using direct simulations. Prior to

the vortex merger, the amplitudes and waveforms of the acoustic signals are in excellent agreement with

the analytical predictions.

The second case considers the acoustic field generated by the motion of a pair of co-axial vortex rings

moving in the same direction along a common axis of symmetry. The Reynolds number of the flow based

on the circulation of each ring is Re = 7500, while the Mach number based on the translational velocity

of the vortex ring in isolation covers the range Ma = 0.0025, 0.005 and 0.01. The effect of the ratio of the

initial axial distance between the vortex rings zo, to the toroidal ring radius yo, on the sound radiation

is investigated. At low Mach numbers, the far-field directivity of the acoustic signals is similar to a

lateral axisymmetric quadrupole. In contrast to the first case where the amplitude and time variations of

the acoustic signals are in excellent agreement with the solution obtained using the method of matched

asymptotic expansions, here there are some obvious discrepancies between the numerical results and the

analytical predictions. This was attributed to the quasi-periodic distortion of the vortex cores during the

leapfrogging motion.

In both cases, the acoustic source is associated with the unsteady motion of the vortices. Because

the flow dynamics is simple, the acoustic analysis could be carried out without the added complication

of an extensive vorticity field. While the flow is viscous, the modification to the acoustic source owing

to the presence of physical viscosity is initially relatively negligible at the Reynolds numbers considered.

The vorticity in the fluid is assumed to be generated by a force which vanishes thereafter. Furthermore,

because there are no external forces acting, there is no further generation of vorticity in the fluid.

In the final case the acoustic radiation from laminar flow past a two-dimensional cylinder of rectan-

gular cross section is considered. Here, the motion of vorticity as well as the changes in the strength of

the vortices has to be included in the acoustic analysis. The flow instability controlled by a feedback loop

between the leading- and trailing-edge vortex shedding results in a dipolar sound field. The instability

mechanism synchronising the leading- and trailing-edge shedding is known as the Impinging Leading Edge

Vortex (ILEV) instability. The Reynolds number of the flow is based on the freestream velocity, U∞ and

the plate thickness, d. The Mach number is based on the freestream velocity, Ma = U∞/co. The effect

of Reynolds number on the sound radiation is considered by predicting the acoustic fields for Re = 300

and 400. It was envisaged that the presence of the leading- and trailing-edge region would result in
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distinct and separate source regions. For each Reynolds number, acoustic simulations are performed for

Ma = 0.05, 0.1 and 0.2. At Re = 300, the amplitudes and far-field directivity patterns of the acoustic

signals are in excellent agreement with the solution (numerical and experimental) obtained for laminar

flow past a circular cylinder at a similar Reynolds number. In contrast, at Re = 400 the time variation of

the acoustic signal becomes less sinusoidal. This is attributed to the phase difference between the sources

associated with vortices shedding from the trailing edge and that from leading-edge vortices passing the

trailing edge. In addition the vortex structures that shed into the wake are more compact which may

also contribute to the non-sinusoidal far-field signal. As the Mach number is increased, the propagation

angle starts to shift towards the upstream direction due to the Doppler effect. By isolating certain parts

of the plate, we found that the dominant sound source is associated with the region around the trailing

edge.

Several conclusions can be drawn from the simulations performed in this study. Firstly, our results

have shown that in compact vortical flows in free space, the sound field has a mainly quadrupole character.

However, when the flow is driven by natural shedding caused by the presence of a rigid body in a fluid

stream, the flow instability, described as a regular shedding of vortices into the wake, causes a dipolar

radiation field. There is a strong link between the vorticity field, aerodynamic forces and the directivity

of the sound field. This particular sound field is also known as an Aeolian tone.

Secondly, at low Mach numbers, Lighthill’s acoustic analogy, and Powell’s vortex sound theory

effectively produce identical far-field acoustic signals. This implies that the additional term ∇2(u2/2)

present only in Lighthill’s acoustic analogy is negligible compared to the other term ∇ · (ω × u) which is

found in both acoustic theories. As such, Powell’s vortex sound theory is highly recommended for future

work on aeroacoustic phenomena since the additional term in Lighthill’s formulation decays only slowly

which leads to many practical difficulties in numerical implementations.

Finally, the effect of the Mach number, which is synonymous with the effect of source compactness,

is considered through a harmonic expansion of the predicted acoustic solution. Such a decomposition

of the pressure field into a sum of harmonic modes is possible owing to the linearity of the acoustic

wave equation. This analysis shows that the far-field directivity is affected by Mach number. It must be

noted that in the analytical solution (which is valid only at the asymptotic limit), the far-field directivity

remains independent of Mach number.
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Nomenclature

A zeroth order wave mode,

Bm mth order cos wave mode,

Cm mth order sin wave mode,

c plate chord length,

cd drag coefficient based on plate thickness and free-stream velocity,

cl lift coefficient based on plate chord and free-stream velocity,

cp pressure coefficient based on plate thickness and free-stream velocity,

co wave propagation speed in the acoustic medium,

CAA computational aeroacoustics,

CFD computational fluid dynamics,

d plate thickness length,

eo radius of the vortex core,

ft start-up function for the initial condition for CAA,

fx, fy spatial filter functions for the Cartesian coordinate system,

fz, fy spatial filter functions for the polar coordinate system,

Hl the acoustic source terms in Lighthill’s acoustic analogy,

Hp the acoustic source terms in Powell’s vortex sound theory,

H2
(2) second kind Hankel function of order 2,

lfx, lfy lengths of the filter functions in the Cartesian coordinate system,

lfz, lfy lengths of the filter functions in the polar coordinate system,

k wave number,

K total kinetic energy in the flow,

m harmonic mode of the multipole expansion,

Ma Mach number based on the flow characteristic velocity and wave propagation speed,

n shedding mode of flow around rectangular plate,

p normalised acoustic pressure,

p kinematic pressure,

Q(t) second-order moments of vorticity,

Q
′′′

(t) quadrupole sound source,

rc radial distance from the core centroid,

Re Reynolds number based on circulation around the vortex,

St Strouhal number based on freestream velocity and plate thickness,
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Tij Lighthill’s stress tensor,

t non-dimensionalised simulation time,

tr period of the start-up function,

t∗ retarded non-dimensionalised simulation time,

∆t size of the time step,

uo translational velocity of the vortex ring in isolation,

Uo induced rotational velocity of the spinning vortex pair,

U∞ freestream velocity,

u velocity vector of the flow field,

∆x size of the grid spacing,

yo toroidal radius of the vortex ring,

zo initial axial distance separating the vortex rings,

Zo initial distance separating the spinning vortex pair,

u, v velocity in the Cartesian/polar coordinate system,

u
′

, v
′

velocity in the Cartesian/polar coordinate system after application of spatial filter,

(x, y) 2D Cartesian coordinate system,

(z, y) polar coordinate system,

Γo initial circulation of the fluid,

λ wavelength of the acoustic waves,

ω vorticity in the azimuthal direction,

µo mean kinematic viscosity of fluid,

ρ kinematic density,

ρo mean fluid density,
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Chapter 1

Introduction

The subject of sound generated aerodynamically is an aspect of fluid mechanics that is of fundamental

importance as it underpins a wide range of engineering issues such as acoustic-induced structural vibra-

tions, automobile aerodynamics, mixing of fluids and jet noise. In this thesis, the term aerodynamic sound

refers to acoustic fluctuations generated purely by an unsteady flow in an otherwise ambient medium at

rest. In other words, the vibrational effects of solid bodies if present are not considered to contribute to

aerodynamic sound.

Most textbooks on classical acoustics (e.g., Rayleigh’s Theory of Sound (1896)) have concentrated on

‘pleasant’ sound generated from vibrating musical instruments. Yet, in the current era of industrialisation,

engineers and scientists are more likely to be interested in noise generated by large volumes of air being

displaced by rotating machinery. This area is sometimes known as modern acoustics. The primary

objective of studying modern acoustics is to understand aeroacoustic phenomena and subsequently to

devise effective methods of noise and vibration control. This is relevant to many modern engineering

applications such as turbo-machinery, high speed trains and jet-engines. For example, in the civil aviation

industry more stringent noise regulations may mean that the new generation of high carrying capacity

aircraft may not be allowed to land at particular airports, or at least will need to obey stringent curfews

during the night. In the automobile industry, new cars are carefully designed to reduce transmission of

noise to the interior which would interfere with passenger comfort and the functionality of high-fidelity

sound systems.

This chapter aims to provide the reader with a basic knowledge of aerodynamic sound generation and

propagation. Firstly, a review of the classical acoustic analogies of Lighthill (1952), Powell (1964), and

Möhring (1978) is presented. This is followed by a brief description of the various solution approaches,

both theoretical and numerical, which were developed specifically for the field of aeroacoustics over

the past forty years or so. It has been pointed out by various aeroacoustic workers that the field of

1
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Figure 1.1: Sketch of the definitions of the localised flow region Y and a certain far field position vector

X in an ambient fluid (not to scale).

computational aeroacoustics (CAA) is different to that of computational fluid dynamics (CFD). As such,

the numerical requirements for an accurate aeroacoustic solution are unique to CAA.

Relevant results on aeroacoustic phenomena ranging from simple flow configurations (i.e., involving

line and ring vortices) to the classical Aeolian tone (sound radiated from self-sustained vortex shedding

in bluff body flows) are reported. Furthermore, an overview of the various numerical issues encountered

in implementing the acoustic analogies, and modelling the propagation of acoustic waves is included in

this chapter. This chapter concludes with a brief mention of the stated goals of this research program.

1.1 Far-field subsonic aerodynamic sound

As the term ‘far-field’ suggests, acoustic waves are generated by flow unsteadiness which is localised in an

ambient medium. The concept of the near-field (denoted by the symbol Y) and the far-field (represented

by the symbol X) regions is illustrated in Figure 1.1. The lengthscale of the near-field region is defined

by the size of the eddies, l, which are enclosed within some imaginary boundary, while the far-field

region is represented by the acoustic wavelength, λ. The acoustic waves generated from the near-field

region propagate radially towards infinity in an ambient fluid. In the far-field region, the condition that

only outwardly travelling waves exist was first formulated by Sommerfeld (also known as the Sommerfeld

radiation condition). Such wave propagation is linear and is governed by the homogeneous wave equation.

The ambient acoustic medium is defined with a uniform density ρo, pressure po, and speed of wave

propagation co, while the acoustic fluctuations in pressure p and density ρ are at least several orders of

magnitude smaller than the former. Typical far-field observation positions are in the range of multiple

wavelengths λ in the radial direction away from a fixed origin. With the propagation distance from the

2



Far field aerodynamic sound

SPM & MAE Acoustic analogies Compressible NS

Lighthill’s acoustic analogy

Powell’s vortex sound theory

Fedorchenko

¡
¡¡

@
@
@
@
@@

©©©©©©©©©©©

HHHHHHHHHHH

Figure 1.2: Diagram highlighting the different solution approaches used to predict aerodynamic sound

emission. For convenience of notation, the term ‘SPM’ refers to the singular perturbation method while

‘MAE’ denotes matched asymptotic expansions.

fixed origin to the observation position, the time taken for the waves to travel from the origin to the

position is known as the retarded-time, t∗ = t− λ/co where λ = |x− y|.

Analysis of the definition of the sound source by Dowling & Ffowcs Williams (1983) assumes that

there is an external known forcing functionQ. The functionQ is somewhat arbitrarily placed on the right-

hand side of the homogeneous wave equation and is limited to the near-field regionY. The inhomogeneous

wave equation is then formally solved to yield the solution as a function of the volume integral of Q.

The three main elementary sound sources are the monopole, dipole and quadrupole. Mathematically, the

sources are considered to emit sound waves from a fixed point.

Properties of a monopole source are that the sound field is omni-directional and has a (1/r) decay

rate, where r is the radial distance from the fixed origin. When the total source strength is zero, the

resulting sound field can only be made up of dipoles, quadrupoles and higher-order multipoles. Assuming

that Q is expressed as the divergence of a function f , i.e., Q = ∇ · f , the condition for a dipole sound

field to exist is that the volume integral of ∇ · f is zero. Similar to Q, the function f is also limited to

the near-region and as such vanishes in the far-field acoustic region. Conceptually, an acoustic dipole is

formed when two monopoles of opposite strengths are placed a close distance apart (relative to the far

field). Due to the effects of time retardation, phase cancellations will occur. As a consequence, near the

two monopoles, the acoustic pressure decays as 1/r. However, far from the monopoles, the sum of these

two sources leads to a pressure that decays as 1/r2. In addition, there is a cos θ directivity in the sound

field. The strength of the dipole source is related to the magnitude of the force. The quadrupole can

be imagined mathematically as the divergence of the dipole or double divergence of the monopole. The

efficiency of sound generation decreases in the ascending order of the multipoles.
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Figure 1.2 shows a tree-diagram featuring the various solution approaches to predicting the sound

generated by a slightly compressible flow. Though there are other methods, these listed approaches

represent the common ones adopted by most researchers in the aeroacoustic community. The com-

bined approach of SPM and MAE is an analytical technique and has been widely used in inviscid flows.

Lighthill’s (1952) acoustic analogy was developed independently of the analytical methods of SPM and

MAE. Powell’s (1964) theory of vortex sound is considered by Howe (1975) to be similar to Lighthill’s

(1952) acoustic analogy in the limit of low Mach number. The acoustic analogies can be applied numer-

ically to predict the far-field sound and are used exclusively in the present study. The third method is

that the flow field and the sound field can be solved simultaneously on the same computational domain

through integrating the Navier-Stokes equations directly in time. This approach adopts the direct numer-

ical simulation (DNS) and large eddy simulation (LES) techniques. It makes no distinction between the

flow region and the acoustic region. Both the DNS and LES methods were developed initially to study

turbulent flows and shear layer flows. As such, the acoustic waves, which are many orders of magnitude

smaller than the hydrodynamic fluctuations, were often left unresolved. To accurately resolve the gener-

ation of the acoustic waves, high-order spatial and temporal schemes are used. If both the near-field and

far-field regions of the aeroacoustic phenomena are of interest to the researcher, then either the direct

method or Fedorchenko’s (2000) approach should be the answer.

Briefly, the acoustic analogy attempts to relate the generation of sound waves to a local function

varying in time and space. One of the foremost assumptions of the acoustic analogy is that the flow

characteristic velocity is assumed to be much smaller than the propagation speed of the sound wave. The

acoustic variable is a scalar quantity and the source function Q is a function of the vector velocity field.

To complete the whole picture, the source function has to be known in advance of the sound field. In

the next section, a review of the acoustic analogies developed separately by Lighthill (1952) and Powell

(1964) are presented.

1.1.1 Lighthill’s acoustic analogy

Lighthill’s acoustic analogy published in 1952 is one of, if not, the most important contribution towards

the general understanding of aerodynamic sound generation. The focus of that paper was on the small-

scale sound energy generated as a result of fluctuating flow. Lighthill’s (1952) hypothesis of aerodynamic

sound generation states that the sound is generated as a result of the transfer of momentum from the

fluctuating flow to the acoustic field. Because the energy of the acoustic field is estimated to be at least

several orders of magnitude smaller than that of the flow, feedback from the sound field to the flow

field is not considered; thus resonate situations cannot be modelled. The sound field, being the response

function, is driven by the flow which acts as an external forcing in an otherwise ambient acoustic medium.

In deriving the acoustic analogy, Lighthill first considered the continuity and Navier-Stokes momen-
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tum equations under zero external body force. Furthermore, solid boundaries (if present) were assumed

to be rigid, thereby excluding any possibility of changes in the mass flux and rate of change of mass flux

into the fluid. The fluid is assumed to be Newtonian (i.e., the viscous stresses are proportional to the

rate of deformation) and isotropic. Furthermore, thermal sound sources (i.e., kinetic heating or cooling)

are explicitly excluded from the analysis.

The continuity equation is as follows

∂ρ

∂t
+ ρ∇ · u = 0, (1.1)

and the Reynolds form of the momentum equation is

∂ρu

∂t
+∇uiuj +∇p = 0, (1.2)

while the approximate momentum equation for momentum density ρu in vector notation form is

∂ρui
∂t

+ c2o∇ρ = 0. (1.3)

Through manipulation of these three equations, the following inhomogeneous wave equation results

∂2ρ

∂t2
− c2o∇

2ρ =
∂2Tij
∂xi∂xj

, (1.4)

where the term Tij on the right-hand side of the equation is known as the Lighthill’s stress tensor and is

as follows

Tij = ρuiuj + pij + c2oρδij . (1.5)

Here, pij is the compressive stress tensor and ui is the velocity component in the xith direction. The

symbol δij refers to the Kronecker delta function.

The momentum density ρui in the acoustic medium is governed by the approximate momentum

equation in Equation 1.3. Solving the continuity and momentum equations 1.1 and 1.2 and eliminating

the terms ρui yields the inhomogeneous acoustic wave equation. Thus, equation 1.4 (also known as the

acoustic wave equation) has been derived from an exact rearrangement of the continuity and momentum

equations. Lighthill’s acoustic equation is a partial differential equation that contains five unknown flow

variables. At this point, there is no distinction between the near-field and far-field properties of the

terms in the acoustic wave equation. Two assumptions relating to Lighthill’s hypothesis are then invoked

in order to satisfy the following statement, ‘Thus outside the airflow the density satisfies the ordinary

equations of sound ...’ (Lighthill (1952) pp. 21) are as follows

1. The flow is assumed to be ‘compact’. The hydrodynamic field which enters through quadratic

terms in Tij is assumed to decay rapidly (of order 1/x3) outside the airflow. This implies that in the

far-field region, the velocity field assumes only the characteristics of the acoustic particle velocity

(which are much smaller in magnitude but larger in lengthscale compared to the flow velocity). In
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addition, the acoustic waves generated from the near field are expected to propagate freely towards

infinity. The effects of convection and refraction are implicitly included in the acoustic forcing.

2. No sound sources exist outside the airflow. Potential sound sources like viscous stresses and

heat conduction effects which might be present in the airflow are assumed to be non existent in

the acoustic far-field. For a low Mach number and high Reynolds number flow, the viscous terms

in the airflow are also assumed to be negligible (neglecting kinetic heating or cooling as potential

acoustic sources), leaving the quadrupole term Tij ≈ ρouiuj as the principal acoustic source.

1.1.2 Powell’s theory of vortex sound

In Powell’s (1964) theory of vortex sound, the region of non-vanishing vorticity vector corresponds to

the acoustic source region. Powell has hypothesised that generation of sound is related to the change

in vorticity, either spatially or temporally in an unsteady fluid flow. The vorticity is considered to

induce both the flow field and sound field. The theory of vortex sound relates the sound sources to (i)

changes in vortex strength and (ii) motion of vorticity. The change in vortex strength is thought to

cause a locally dipolar-like behaviour while unsteady motion of vortices lead to a quadrupole radiation

field. The procedure for the derivation of the acoustic equation is similar to Lighthill’s in that an exact

rearrangement of the continuity and momentum equations is required. Beginning with non-conservative

form of the Euler momentum equation in the absence of body forces

∂u

∂t
+ (ω × u) +∇

1

2
u2 +

1

ρ
∇p = 0. (1.6)

Using the adiabatic gas assumption, p = ρc2,

∂2ρ

∂t2
= −∇ ·

∂(ρu)

∂t
, (1.7)

∂2p

∂t2
− c2o∇

2p = −c2o∇ ·
∂(ρu)

∂t
− c2o∇ · ∇p. (1.8)

Using the momentum equations, the right-hand side of equation 1.8 representing the acoustic forcing is

rewritten as follows

∇ ·

[

∇ · ρ(ω × u) +∇
ρu2

2
− u

∂ρ

∂t
−

1

2
u2∇ρ

]

. (1.9)

At this point, Powell’s acoustic solution describes the acoustic pressure from four distinct source

terms. The first term represents the Coriolis acceleration term. The contribution of each term can be

deduced by comparing the relative magnitude of the each term scaled to both the Strouhal number St,

and Mach number Ma. The last two terms of equation 1.9 were subsequently discarded by assuming a low

speed flow (i.e., Ma¿ 1 and St×Ma¿ 1). Formal solution of the acoustic wave equation in terms of the

first two contribution then results in four distinct integrals. The acoustic field is made up of (i) dipoles

distributed in the volume with strength proportional to ω × u, (ii) a volume distribution of monopoles
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of strength (∂2/∂t2) 1
2ρu

2, (iii) a surface distribution of dipoles over the solid boundaries with strength

proportional to the Bernoulli pressure, and (iv) a monopole source over the surface boundary due to

its motion normal to itself. Powell further simplified the source term by disposing of the dipole source

associated with the ∇2ρu2/2 term. By considering a flow which varies slowly with Strouhal number, the

vorticity distribution on the surface is then assumed to be time-invariant. Furthermore, if the surface is

assumed to be fixed and rigid, there would be no motion normal to itself and hence there would be no

associated monopole source.

On the sound generated by flows in a free-space environment

In Powell’s (1964) analysis of aerodynamic sound generation, the sound source is limited to the rotational

part of the flow. Möhring’s (1978) noted the difficulty in implementing Powell’s vortex sound theory

because in vortex sheets, the velocity is singular at the centre of the vortex. To avoid the singularity,

the far-field pressure was shown to be an integral of the product of a vector Green’s function G and

Powell’s source term, ∇ × L. Using the Helmholtz equation for vorticity in an incompressible flow, the

term ∇× L was rewritten as ∂ω/∂t. Hence, the acoustic pressure is shown to be a function of the time-

dependent vorticity and does not include any velocity terms. For the vector Green’s function to exist,

two assumptions were made: (i) the flow was assumed to be compact and (ii) co ¿ ∂2G/∂t2, where G

represents an appropriate Green’s function for the wave equation. For the general aeroacoustic problem

of sound emission by flows in free space, Möhring approximated the Green’s function (to be known as Q)

as follows

Q(t) = −
1

12π

∫

V

yi(y × ω)jd
3y. (1.10)

The analytical expression for the far-field acoustic pressure is then rewritten as follows

p(x, t∗) =
ρoxixj
c3ox

3

∂3Q∗

∂t3
. (1.11)

The above equation expresses the acoustic pressure as being a linear function of the vorticity. Müller

& Obermeier (1978), Kambe & Minota (1981), and Kambe (1986) have subsequently applied singu-

lar perturbation methods and the method of matched asymptotic expansions to the general free-space

aeroacoustic problem and derived a far-field expression which was identical to Möhring’s equation. This

‘linear theory’ has been extensively applied to simple flow configurations (e.g., ring collisions, co-axial

vortex rings, co-rotating vortex pairs). It should be noted that this particular theory refers to the sound

generated in free-space, i.e., there are no external forces acting on the flow and, in addition, the total

kinetic energy of the flow is also conserved. Under such circumstances, the quadrupole term Q
′′′

(t) is the

leading-order sound source from unsteady flows in free-space.
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1.1.3 Common assumptions found in acoustic analogies

In deriving the acoustic theories, it is clear that several assumptions are frequently invoked. While these

assumptions would pose no difficulty when applied to simple flow configurations, deviations might arise

when applying the theories to complicated flows which may not obey the assumptions used to derive the

theories in the first place. Presented briefly in the following sections are the two most commonly used

assumptions being source compactness and flow compactness.

Source compactness

The acoustic analogies were developed to predict sound generated aerodynamically for flow situations at

low Mach number, Ma¿ 1. The implication of a slightly compressible flow is that while the time scales

of the eddies and the acoustic waves remain the same, the lengthscale of the eddies is much smaller than

the acoustic wavelength. In acoustic terminology, such a lengthscale disparity is known as the compact

source assumption. Actually, mathematical acoustic sources satisfy the source compactness criteria since

they are based on point singularities. The method of matched asymptotic expansions is one solution

method that invokes the compact source assumption. In numerical applications of the acoustic analogies,

the issue of source compactness can be investigated by performing the acoustic simulations on an identical

flow problem but at different Mach numbers and analysing the various modes present in the predicted

acoustic field.

Flow compactness

The assumption of flow compactness was used in Lighthill’s (1952) acoustic analogy to imply that the

fluctuating flow is finite only in the near field. This precludes the scenario of the acoustic waves encoun-

tering a vorticity field as they propagate radially away from the source region. Specifically, in Lighthill’s

(1952) acoustic analogy, both the refractive and convective effects present in the fluctuating flow are

included implicitly in the stress tensor Tij . When the flow is assumed to be compact, the lengthscale of

the fluctuating flow field is considered to be of the same order of magnitude as that of the characteristic

lengthscale of the flow. Note that the non-zero vorticity field may consist of one or more spatially-

distributed structures as in multiple vortex pairings. However, in general, viscous flows in the presence

of solid boundaries have an extensive wake (eg., shear layers and bluff body flows) and do not satisfy the

compact flow assumptions.

The singular perturbation method has been used to analyse both Lighthill’s (1952) and Ribner’s

(1962) acoustic analogies. Crow (1970) aimed to mathematically clarify the definition of the flow com-

pactness assumption adopted in Lighthill’s acoustic analogy. The acoustic domain was decomposed to an
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inner slightly compressible core and an outer acoustic field. Invoking the compact flow assumption, the

velocity field was further decomposed into a solenoidal component and an irrotational acoustic potential.

Crow further pointed out that if the flow is assumed to be compact, then the rate of convergence of

the hydrodynamic velocity to zero away from the source region is guaranteed. This is due to Kelvin’s

theorem of constant circulation which states that vorticity once generated locally by some force, will

stay confined within a finite region as long as the time-scale of the eddies is much less than that of the

associated acoustic wavelength. As a result, the integral of the vortex dipole moment converges and this

implies that the decay of the solenoidal velocity is of order 1/x3.

Crow introduced a spatial dimension L to investigate two hypothetical cases, namely, L ≈ l and

L À l. Crow argued that one of the requirements of successful implementation of Lighthill’s theory

requires some advance knowledge of the spatial extent of the source region, and hence Tij = ρouiuj .

Crow also identified Kelvin’s theorem for compressible flow as central to the aerodynamic sound problem.

Furthermore, in the limits of low Mach numbers, if the flow is assumed to be compact, then the source

compactness assumption is also well satisfied.

1.2 Previous studies

In the previous section, a brief review of the acoustic theories (also commonly known as the classical

acoustic analogies) of Lighthill (1952), Powell (1964), and Möhring (1978) was presented. Here, we

report on the results of various aeroacoustic studies; experimental, analytical and numerical. Firstly, the

different solution approaches used to predict the flow field and the acoustic field are described. Secondly,

past studies relevant to current aeroacoustic research are mentioned. The final part of this section

examines in greater detail, the results of flow situations that will be studied by the author. The specific

aeroacoustic problems are (i) the sound generated by a pair of co-rotating vortex cores, (ii) the acoustic

emissions from a pair of co-axial vortex rings moving along a common axis and (iii) sound radiation from

vortex shedding in bluff body flows.

The three main approaches used in solving computational aeroacoustics problems are (i) the clas-

sical acoustic analogies, (ii) acoustic/viscous splitting techniques and (iii) direct numerical simulations.

Predating these computational aeroacoustic techniques is the analytical method known as the matched

asymptotic expansions.

1.2.1 Matched asymptotic expansions

One of the commonly used approaches in the theoretical analysis of aeroacoustics problems is the method

of singular perturbation and matched asymptotic expansions (MAE). Müller & Obermeier (1967) has used
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the MAE method to derive an analytical expression for the far-field sound of a spinning point vortex pair.

Crow (1970) treated the aerodynamic sound problem using the singular perturbation method. Kambe

& Minota (1981) has extended Powell’s (1964) vortex sound theory and Möhring’s (1978) moment of

vorticity theory to derive an analytical solution for the sound generated from the leap-frogging of a pair

of like-signed co-axial vortex rings, and collision of a pair of co-axial opposite-signed vortex rings.

In the MAE approach, the complex potential function φ is used to represent the variables in the

flow field and acoustic field. In the limit of small Mach number, the rotational flow is confined within

the near-field while the acoustic perturbations lie in the far-field region. In the near-field, the flow

variable φ is governed by the continuity equation, the incompressible Euler equations and the adiabatic

gas equation, while in the far-field φ is governed by the homogeneous compressible wave equation. Next,

an intermediate domain is assumed whereby terms from the flow solution are matched with those from

the far-field solution with harmonic assumptions to provide a solution which is asymptotically valid as

Ma→ 0, everywhere in the domain from the near-field to the far-field. The solution in the intermediate

region is also known as the composite solution. The acoustic perturbations caused by the unsteadiness in

the hydrodynamic region is then obtained through the leading term in the matched asymptotic expansion

solution of the complex potential function.

1.2.2 Acoustic analogies

The classical acoustic analogies have been used to study sound generated by low Mach number vortical

flows which include bluff body flows. This approach is limited to situations where the size of the eddies is

compact relative to the acoustic wavelength. Numerical implementation of the acoustic analogy involves

separate computations of the flow field and the sound field. Hence, it has been described by some

researchers as the two-step approach. Typically, the flow field is assumed to be incompressible. The

source terms of the acoustic analogy are evaluated using the incompressible flow field quantities. In

Lighthill’s acoustic analogy and Powell’s vortex sound theory, the source function H(x, y, t) depends on

the spatial derivatives of the incompressible velocity field. The sound pressure field has to be calculated

through solving the inhomogeneous wave equation either analytically or numerically. Unfortunately, the

formal solution to Lighthill’s inhomogeneous acoustic wave equation suffers from a nominally divergent

area integral of Tij (Ffowcs Williams & Hawkings (1968), Crow (1970)) in compact flows with non-zero

circulation. Hence it is not possible to obtain a solution from the Lighthill’s acoustic analogy directly.

Mitchell et al. (1995) has avoided the divergent integral by decomposing the velocity field and only using

the component that decays faster than (1/r) in calculating Tij .

Curle’s acoustic analogy has been used by amongst others, Kato et al. (1995), Wang et al. (1996),

and Inoue & Hatakeyama (2002) to investigate sound generated by bluff body flows. In the study by

Wang et al., the sound was generated from uniform flow past a NACA 0014 aerofoil while Inoue &
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Hatakeyama predicted the sound caused by vortex shedding from flow past a circular cylinder. The first

step of the solution approach is to predict the flow field by numerically integrating the Navier-Stokes

(NS) equations. In Inoue & Hatakeyama, the quantities in the integrals of Curle’s acoustic analogy were

evaluated using the compressible flow quantities. Next, the pressure field is calculated as a postprocessing

step by numerical integration of the volume and surface integrals.

Möhring (1978) extended Powell’s (1964) theory of vortex sound to derive a far-field expression for

the acoustic pressure as a function of the moments of vorticity and position vector. Kambe & Minota

(1986) adopted Möhring’s moment of vorticity sound theory (1978) in their study of interactions of a

pair of vortex rings, namely the leapfrogging motion and head-on collision. Dyson’s (1893) equations

were used to calculate the trajectories of the vortex rings. Tang & Ko (1993, 1995, 1997) used Möhring’s

formula to predict the sound generated from a pair of rectilinear vortex cores, and a pair of co-axial vortex

rings. In both cases, the flow field was assumed to be inviscid. The method of contour dynamics was

used to predict the flow field. Mitchell et al. (1995) attempted to implement Lighthill’s acoustic analogy

and Powell’s theory of vortex sound to predict the far-field sound of a spinning, viscous vortex pair. DNS

was used to integrate the compressible NS equations in time. Once the flow map is obtained, the velocity

field is used to calculate the acoustic source terms in both formulations. Mitchell et al. (1999) predicted

the sound radiated from an axisymmetric jet using Lighthill’s acoustic analogy. Verzicco et al. (1997)

used the MAE equation derived by Kambe & Minota (1981) to quantify the behaviour of the quadrupole

and monopole source terms for vortex pair in a viscous fluid.

1.2.3 The acoustic/viscous splitting technique

The acoustic/viscous splitting technique (hereinafter AVS) for aeroacoustics was developed by Hardin

& Pope (1994). This approach is also known as the ’expansion about the incompressibility assumption’

method. In this approach, the compressible flow field is divided to an incompressible flow and an inviscid

acoustic perturbation field. The flow variables u, v, p are then decomposed to incompressible and per-

turbation components. However, the treatment of the density variable is different from the rest of the

flow variables. Hardin & Pope argues that in the incompressible flow, there are hydrodynamic density

fluctuations that are much greater than the acoustic fluctuations. Thus, the density variable was decom-

posed to an incompressible term ρo, a perturbation term ρ
′

, and finally, a term describing the differences

between the compressible flow and corrected incompressible flow. The density is shown as follows

ρ = ρo + ρ
′

+
p(y, t)− p̄(y)

c2o
, (1.12)

where p̄ refers to the time-averaged pressure and is defined as

p̄ =
1

T

∫ T

0

p(y, t)dt. (1.13)

Here the subscript o denotes incompressible terms. In the near-field, the perturbation quantities describe

the difference between the compressible and incompressible flow variables. In the far-field, the perturba-
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tion properties are acoustic. The acoustic quantities are obtained from inviscid equations describing the

differences from the incompressible flow. This method, similar to the acoustic analogies, involves separate

computations of the flow field and the sound field. It also does not allow for resonant situations.

Amongst others, the AVS method has been used by Ekaterinaris (1999), Lee & Koo (1995), Hardin

& Pope (1995), and Slimon et al. (1999) in studying sound generated from a spinning vortex pair. The

subject of sound generated from uniform flow past a two-dimensional cavity was studied using the AVS

approach by Hardin & Pope (1995). Slimon et al. (1999) used the AVS technique to model sound emission

from uniform flow past a fixed cylinder.

1.2.4 Direct numerical simulations

Direct numerical simulation (DNS) has been used by some researchers to study the acoustic emissions of

both bounded and unbounded flow situations. The compressible Navier-Stokes equations are integrated

numerically in time using high-order spatial and temporal schemes. The flow field and a significant part

of the sound field are modelled on a single computational domain simultaneously without decoupling.

Furthermore, the DNS method does not involve any assumptions of source and flow compactness com-

monly used in the acoustic analogy. As well as sound generated by low speed flows, DNS is equally

capable of predicting sound generated by flow situations at the other end of the spectrum i.e., screech

and shocks in high Mach number flows. In addition, resonant flow conditions can be investigated using

DNS directly. In the application of the DNS method to low Mach number problems, high order methods

(spatial and temporal) must be used since the typical energy levels associated with the acoustic field is

several orders of magnitude smaller than the fluctuating flow.

Mitchell et al. (1995) have used direct simulation methods to predict the sound generated by the

co-rotating motion of a pair of vortex cores. Inoue & Hatakeyama (2002) used DNS to model sound

generated from uniform flow past a fixed circular cylinder. In addition, Colonius et al. (1997) have used

the DNS technique to investigate the resonant instabilities of uniform flow past a two-dimensional cavity.

1.2.5 Comparison of solution approaches

In most of the publications listed above, a variety of different methods were used to solve the selected

aeroacoustic problems. This allows a quantitative assessment of the various solution approaches. For

example, Ekaterinaris (1999), and Lee & Koo (1995) compared the MAE solution with the AVS approach.

Mitchell et al. (1995) compared the DNS results with numerical results of Powell’s acoustic analogy

and Lighthill’s acoustic analogy. Inoue & Hatakeyama (2002) compared their DNS results with Curle’s

acoustic analogy.

12



The main reasons for using different prediction methods to the same aeroacoustic problem are to

allow the solution field to be assessed quantitatively, and also to reveal the limitations and advantages of

the each method. Another point, though less explicit, is that no solution approach has been developed

rigorously enough to dominate over the others. To a large extent, the choice of the solution approach

should depend on the type of aeroacoustic phenomena studied and the associated costs of running the

simulations in terms of computational time and storage.

In the first two solution approaches, namely, the acoustic analogies and the AVS technique, two

computations are performed separately on two different grids. As such, the choice of grid construction

and the numerical schemes can be tailored to the specific needs of that particular computation. However,

with DNS, both the flow field and sound field are modelled on the same grid. Apart from having to

resolve the viscous gradients, the grid stretching in the domain has to be relatively smooth to avoid

generating artificial spurious noise. This means that the governing equations (being the Navier-Stokes

equations) have to be solved in the entire domain with a fine mesh at a high cost. In a study of the

computational costs involved with implementing the solution approaches, the DNS method was found to

be the much more expensive when compared to the numerical prediction using Powell’s theory of vortex

sound (Mitchell et al. 1995). Also, although DNS is perhaps generally more well-known, it is still almost

necessary to return to the acoustic analogies to explore the details of the sources and relate the flow

dynamics to the acoustic behaviour.

1.2.6 On the sound generated by a pair of co-rotating vortices

Historically, the subject of the sound generated by the spinning motion of a pair of point vortices has been

one of the most widely studied aeroacoustic problems. Powell (1964) has used this flow configuration

to show that the sound pressure was proportional to the eighth power in the vortex velocity. Müller

& Obermeier (1967) have used the singular perturbation method to derive an analytical expression for

the far-field sound. Yates (1978) derived an acoustic solution in term of high-order multipoles and used

the spinning vortex pair to highlight the effect of non-compactness on the sound pressure levels. With

the development of the various models to predict aerodynamic sound numerically and the associated

issues like initial conditions and boundary conditions, the spinning co-rotating vortex pair has come

under renewed interest. This particular flow configuration has been used in the validation of the different

numerical schemes applied in CAA (Lee & Koo (1995), Ekaterinaris (1999). This is because under the

ideal conditions of infinitesimally thin cores and an inviscid fluid, the flow and acoustic solutions can

be obtained analytically for comparison. Furthermore, this flow configuration can also been used to

understand the physics of the sound generation mechanism, for instance, the effect of different vortex

core models on the sound radiation (Lee & Koo (1995)), and the effect of non-compactness (Mitchell et

al. (1995).
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Classical model

In the flow configuration considered by Müller & Obermeier, two point vortices of circulation Γo initially

separated apart by a distance 2Zo, spins about a fixed point in an inviscid fluid. Using the singular

perturbation method, the far-field acoustic expression is as follows

p(r, t) =
Γ4
o

64π3Z4
oc

4
o

H2
2 (kr). (1.14)

Several conclusions on the acoustic properties can be drawn from the above equation. The acoustic

field has a double spiral pattern. In addition, the frequency of the sound field is twice that of the co-

rotation frequency owing to the symmetry of the flow. Furthermore, the time variations of the acoustic

signals are sinusoidal.

Initial transients

One of the common features found in the numerical simulations by Lee & Koo (1995), Mitchell et al.

(1995), and Ekaterinaris (1999) is the presence of a large initial peak in the time varying acoustic signal.

The transient wave is a likely cause of a crude initial condition which results in large-scale grid-to-grid

oscillations as it propagates through numerical interfaces such as a stretched grid. To minimise the effects

of such spurious waves, Mitchell et al. applied a compact Padé filter scheme during the initial stages of the

compressible flow calculations to explicitly remove any associated high-frequency spurious waves. This

is in addition to a relatively small rate of stretching of 5%. Ekaterinaris also employed some form of

short-wavelength removal scheme in his computations prior to reporting the acoustic signals.

Effect of vortex core model

In most analytical aeroacoustic analyses, a point-vortex model is used to represent the line vortices.

However, in reality vortices are finite. Two different types of vortex core models were considered by Lee

& Koo (1995), namely the Scully model and the Rankine model. Their results showed that the time

variations of the acoustic signals from the Scully model was smoother than the Rankine model. This was

attributed to the smoother spatial variation of initial vorticity and velocity distributions in the Scully

model compared with the Rankine model (which has a discontinuity in the velocity gradient at the radius

of the vortex core). A vortex core with a Gaussian distribution in vorticity was used in Mitchell et al ’s.

(1995) simulations. No difficulties associated with those reported by Lee & Koo were observed. The

possible explanation is that in addition to the Gaussian vortex being similar to the Scully model (in

terms of the distributions of vorticity and tangential velocity), the presence of dissipation from a viscous

fluid acts to reduce the peak vorticity and therefore smoothens the velocity gradients.
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Effect of Mach number

Yates (1978) has argued that for the simple isolated co-rotating vortex pair structure, the assumption of

flow compactness is only valid if the co-rotation Mach number is smaller than 0.1. At an intermediate

range between Mach number of 0.1 and 0.3, the sound power was found to diminish by about 15dB.

The reduction in the sound power was attributed by Yates to the presence of higher-order poles. The

higher-order poles start to dominate as the non-compactness of the flow configuration increases.

Mitchell et al. (1995) considered the issue of flow compactness by conducting numerical simulations

at two different co-rotation Mach numbers, namely Ma = 0.06 and 0.18. At the former Mach number,

there was good agreement between the DNS results and the theoretical predictions of Möhring’s (1978)

and Powell’s (1964) numerical simulations. However, at Ma = 0.18, Möhring’s analytical solution over-

predicted the amplitude of the sound pressure when compared to the DNS results. Furthermore, the

over-prediction at 65% is consistent with the results of Yates (1978). This is because Möhring’s solution

was derived on the limiting assumption of Ma → 0. In contrast, Powell’s vortex sound theory which is

valid for low Mach numbers resulted in good agreements with the DNS simulations at both co-rotation

Mach numbers. Lee & Koo (1995) has found that the amplitudes of the pressure field were smaller

(calculated using the AVS approach) when compared with MAE theoretical predictions at the higher

co-rotation Mach number of 0.1273.

Effect of physical viscosity

Mitchell et al. (1995) have investigated the influence of physical viscosity on the acoustic fluctuations.

Aeroacoustic theories developed by Kambe (1981) have shown that physical viscosity behaves like an

acoustic monopole. Mitchell et al ’s. direct numerical simulation results were used to calculate the am-

plitudes of the monopole and quadrupole sound sources. The monopole was calculated from the area

integral of the entropy S. The amplitude of the monopole contribution, S
′′

(t) was found to be at least two

orders of magnitude smaller than that of the quadrupole, Q
′′′

(t), indicating that the acoustic influence

of monopole source from viscosity is minor.

1.2.7 On the sound emitted from the interactions of a pair of co-axial vortex

rings

The behaviour of a pair of identical and like-signed co-axial vortex rings has fascinated many fluid

dynamicists (e.g., Dyson (1893), Lamb (1932), Batchelor (1967), Oshima et al. (1975), Yamada & Matsui

(1979)) because gaining understanding of the coherent flow structures exiting from axisymmetric round

jets can provide further insight into the turbulence phenomena in jet flows. Amongst others, Yule (1978)
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has experimentally identified coherent structures present from axisymmetric round jets at moderate

Reynolds numbers. These flow structures have been described as multiple pairs of vortex rings. This

has led many to contend that the pairing of the co-axial vortex rings is the dominant sound source in

axisymmetric jets at moderate Reynolds number. While Bridges & Hussain (1992) have argued that

the vortex pairing of the co-axial vortex rings cannot be the main sound source for turbulent jets, DNS

results from Mitchell et al. (1999) have indicated that at a Reynolds number of Re = 2500 and a Mach

number of 0.4, the sound radiated from an axisymmetric round jet is similar to that generated from a

pair of co-axial vortex rings.

The study of the sound waves generated from the mutual interactions of a pair of vortex rings moving

along a common axis of symmetry in the same direction has been considered by many previous investi-

gators, for instance, Möhring (1978), Kambe & Minota (1981), Kambe (1984), Shariff et al. (1988), Tang

& Ko (1995), Verzicco et al. (1997). The flow is assumed to be axisymmetric with no swirl component.

Apart from the relevance of the problem because of the clear link to the aeroacoustics phenomena of ax-

isymmetric round jets, this study is also widely used in the validation of low Mach number aeroacoustic

problems because of two important factors. Firstly, by using the assumptions of an inviscid fluid and

an infinitesimally thin core, both flow and acoustic solutions can be obtained analytically. Secondly, the

characteristic lengthscale of the flow is much smaller than the acoustic wavelength, thereby resulting in

a compact acoustic source region.

Möhring (1978) has shown that the vortex pairing of two thin vortex rings close to each other

results in an axisymmetric lateral quadrupole pattern. Kambe & Minota (1981) have considered the

effect of the ratio of the initial axial separation of the vortex rings to the ring toroidal radius. The

assumptions of an inviscid fluid and an infinitesimally thin core were used so that the flow and acoustic

solutions could be obtained analytically. The far-field acoustic expression was then derived by using the

method of matched asymptotic expansions (MAE). The trajectories of the vortex rings were obtained

using Dyson’s (1893) classical model. In the classical model, the interactions of a pair of co-axial vortex

rings is described as either the mutual slip-through or leapfrogging motion. To describe the flow event,

the identical vortex rings are assumed to be placed along each other. The vortex ring initially behind

its counterpart accelerates and contracts as it slips underneath the other ring. While this is happening,

the other ring decelerates as it expands. The roles of the vortex rings reverses as soon as both rings

reach the slip-through instant. The slip-through instant is the point where both vortex rings are aligned

vertically, i.e., the radial distance between the two vortex rings is maximum. Because the vortex rings are

assumed to remain circular at all times with no straining effect imposed, the leapfrogging cycle repeats

itself indefinitely. The acoustic expression using the MAE technique in cylindrical coordinates (z, y) is as

follows

p(z, y, t∗) =
ρo

4c2o
√

(z2 + y2)

∂3Q∗

∂t3
(cos2 θ −

1

3
), (1.15)
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where the second-order moment of vorticity Q(t), is defined as

Q(t) =

∫

A

ωy2z dy dz. (1.16)

The above expression from Kambe & Minota (1981), similar to the one derived by Möhring (1978), relates

the acoustic pressure to a linear function of vorticity. The angle θ is measured from the axisymmetric axis.

The term (cos2 θ − 1/3) dictates two properties of the acoustic field. Firstly, the signals at θ = 0◦ and

θ = 90◦ are out-of-phase by π. Secondly, the acoustic field has distinct silent regions located at angles

of 55◦ and 125◦ (otherwise known as the polar extinction angles). Such a far-field directivity can be

described mathematically as an axisymmetric lateral quadrupole. Hence the acoustic source term Q(t)
′′′

is also known as a quadrupole sound source. While (cos2 θ − 1/3) dictated the spatial characteristics of

the acoustic field, the time variations of the acoustic pressure at any point is defined by the temporal

quantity of ∂3Q/∂t3. In contrast to the almost sinusoidal variations of the acoustic signals generated

by an isolated co-rotating vortex pair, the time variations of the acoustic signals in this case consists of

a series of peaks and troughs. The frequency of the acoustic signals was twice that of the leapfrogging

motion owing to the symmetry of the flow. The local peak of the acoustic signals was found to correspond

to the slip-through instant. Furthermore as the ratio of the initial axial separation to the toroidal radius

is increased, the time variation of the mean axial position of the vortex rings as well as the acoustic

signals become less sinusoidal. Another important point to note is that the vortex system in the acoustic

space is effectively radiating sound from a fixed position, i.e., the sound source is spatially-invariant even

though the motion of the vortex rings include a convective component. This is a particular feature of

the MAE technique. However, the validity of the far-field expression away from the asymptotic limit of

Ma→ 0 is very much questionable.

While Kambe & Minota (1981) have predicted the behaviour of the quadrupole sound source from

the motion of an infinitesimally thin vortex ring, in reality, vortex rings have finite cores. The effect

of a pair of co-axial vortex rings of finite thickness on the sound radiation was considered by Shariff et

al. (1988). The flow was predicted numerically by using the method of contour dynamics which allows

for the deformation of the vortex cores. The initial shape of the vortex core was based on Norbury

(1973). The acoustic analysis was based on Kambe & Minota’s MAE acoustic expression. Shariff et al.

have found that in addition to the fundamental acoustic component caused by the leapfrogging motion,

there was a secondary component. The frequency of the secondary component was much higher than the

fundamental component. This was attributed by Shariff et al. to the distortion of the vortex cores into

an ellipses caused by the straining imposed by each other.

The effect of different types of vortex pairing was considered by Tang & Ko (1995). Similar to

Shariff et al. (1988), the dynamics of the vortex rings are obtained numerically through the method of

contour dynamics. By varying the ratio of core size to the axial separation, four different types of vortex

pairing were predicted. These were the mutual slip-through, partial slip-through, partial coalescence, and

full coalescence. In an inviscid fluid, the four types of ring interactions occur without mutual contact.
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Kambe & Minota’s analysis has considered the quadrupole sound source in terms of time variations of the

impulses and spatial positions of the two vortex rings. To better understand the generation mechanism,

the quadrupole source term of Kambe & Minota was expanded to relate the quadrupole source term

to the time variations of the impulses of the vortex rings, and the positions, axial velocities and axial

accelerations of the vortex rings. In the event of the mutual slip-through, Tang & Ko have observed wavy

oscillations consistent with Shariff et al., which the former had argued were related to the rate of change

of the axial acceleration of the vortex rings.

Verzicco et al. (1997) analysed the sound generated by a pair of viscous co-axial vortex rings with

consideration of the effect of Reynolds number, initial vorticity distribution, and initial core thickness

respectively. With a Gaussian vortex and a core-to-ring ratio of 0.3, the magnitudes of the quadrupole

and viscous sound sources were analysed for three different Reynolds numbers Re = 1500, 2500 and 4000.

At the selected Reynolds number, the second passage of the leapfrogging motion was accompanied with

large core deformations. Subsequently, viscosity causes the two vortex rings merge into a single vortex

ring with a weak tail. The dynamics of the viscous interactions are quite different compared with the

inviscid case as there is no mutual contact in the latter, i.e., the inviscid vortex rings pair but do not come

into contact with each other. Verzicco et al. found that the quadrupole term was only slightly affected

by the change in the Reynolds number which implies that the leapfrogging motion is a largely inviscid

phenomenon. In contrast, there was a significant increase in the monopole as the Reynolds number

is increased, as the monopole amplitude is proportional to the rate of dissipation of the kinetic energy.

However, in general the quadrupole term dominates over the monopole sound source at all three Reynolds

numbers. Another interesting finding from Verzicco et al. was that the frequency of the secondary acoustic

component depended on the vortex core nutation, i.e., by manipulating the initial thickness of the vortex

core, the time-scale of the secondary component could either be smaller or larger than the fundamental

period.

Summary

The study of the mutual interactions of a pair of co-axial vortex rings moving along a common axis of

symmetry in the same direction presents a slightly more advanced aeroacoustic problem compared to

the isolated co-rotating vortex pair structure. This is because the acoustic analysis has to consider the

effects of the acceleration and deceleration of the vortex rings on the sound radiation. This study is also

widely used in the validation of aeroacoustic theories and numerical schemes developed for the field of

aeroacoustics because of two important factors. Firstly, both the hydrodynamic and acoustic solution can

be obtained analytically if the assumptions of an inviscid fluid and an infinitesimally thin core are made.

Secondly, the characteristic lengthscale of the flow is very small compared to the acoustic wavelength

thereby ensuring that the flow is compact.
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In the studies reviewed here, the acoustic analyses by Kambe & Minota (1981), Shariff et al. (1988),

Tang & Ko (1995), and Verzicco et al. (1997) have focused on the time variations of the quadrupole and

monopole sound sources. However, the validity of the analytical solution away from the asymptotic limit

of Ma → 0 is very much open to question. In addition, the effect of non-compactness of the acoustic

source (which has been shown by Yates (1978) to have a significant influence on the sound pressure levels)

cannot be considered at all when the analytical approach is used.

In terms of the dynamics of the motion, the sound radiation is related to the mean axial position of

the vortex system. The role of the relative motions of the vortex rings, and the velocities and accelerations

of the core centroids was also examined. In particular, the rate of change of the axial acceleration was

found to be the main contributor to the acoustic amplitude.

1.2.8 Aeolian tone

In the previous sections, we devoted our attention to the subject of acoustic radiation from the unsteady

motion of an isolated co-rotating vortex pair structure, and a pair of co-axial vortex rings moving along

a common axis of symmetry. In either flow situation, the vorticity in the initially irrotational fluid was

assumed to be generated by a force which vanishes thereafter. Thus, the total impulse and total kinetic

energy of the flow were assumed to be conserved due to the fact that there were no external forces acting

on the system. Furthermore, there were no solid boundaries present in these flows. As a result, the

emphasis was placed on the sound waves generated solely as a result of the motion of vorticity in a free

flow.

In this section, our focus is shifted towards the sound generated aerodynamically from self-sustaining

flow instabilities. Hence the sound is generated by the motion of vorticity as well as by the changes in the

vortex strength. The flow instability might be caused by the shedding of shear layers in an open cavity

resulting in a vortex roll-up which is then ejected into the wake (Hardin & Pope (1995)). Another type

of flow instability is that caused by the placement of a bluff body in a fluid stream which triggers the

well-known von-Karman vortex shedding downstream of the body. This study is mainly concerned with

the latter because it is one of the most intensely studied topics both in the fields of fluid dynamics and

aeroacoustics. To be able to study the acoustic radiation associated solely with the fluctuating flow, the

bluff body is assumed to be fixed and rigid, i.e., the body is not allowed to vibrate. This study is limited

to flow situations where the acoustic wavelength is much larger than the characteristic lengthscale of the

rigid body (i.e., Ma << 1). Under such circumstances, Powell (1964) has pointed out that the shape of

the body is largely irrelevant. In addition, flow instabilities resulting in resonant conditions are excluded.

This is because the classical acoustic analogies do not allow for feedback of sound energy to the flow.

The flow around a cylinder of circular cross-section is one the most widely studied problem in fluid

19



mechanics (the interested reader is advised to refer to a recent review by Williamson (1996)). Associated

with the flow phenomena is one of aeroacoustic phenomena of flow instabilities that has also been coming

under increasing attention. This particular subject is associated with the Aeolian tone. Physically, the

Aeolian tone is used to describe the sound phenomenon of wind blowing past a telephone wire/string.

Strouhal (1878) has experimentally measured the frequency of sound generated by the translating motion

of a circular cylinder in a fluid stream and found that it was identical to the vortex shedding frequency.

Roshko (1954) found that the shedding frequency was approximately proportional to the freestream

velocity, U∞, and inversely proportional to the characteristic lengthscale, d, in the Reynolds number

range of 300 < Re < 104. This results in a Strouhal number range of St = fd/U∞ of 0.2 to 0.22.

The acoustic fluctuations were initially thought to be caused by the vibration of the circular cylinder.

However, this incorrect view was later addressed by Rayleigh (1896) who concluded that the sound was

actually generated by the fluid rather than by the motion of the body itself. Rayleigh further found that

the sound field was related to the eddy pattern in the wake also commonly known as the von-Karman

vortex sheet. Subsequent experiments by amongst others, Gerrard (1955), Phillips (1956), and Etkin et

al. (1957) have confirmed Rayleigh’s findings. In addition to establishing the directional directivities of

the sound field, another conclusion drawn from the experiments was that the fundamental tone is most

intense at right angles to the fluid stream while the first harmonic is weaker and radiates in the direction

of the fluid stream.

Curle (1955) has argued that in bluff body flows, the general solution to Lighthill’s acoustic analogy

consists of a volume integral over the entire fluid, and a surface integral over the solid boundaries. The

surface integral is related to the force experienced by the fluid owing to the interaction between the

hydrodynamic flow and the solid boundaries. He predicted that the force exerted by the body on the

fluid would give rise to the presence of acoustic dipoles while the turbulent wake results in a distribution

of quadrupoles. Furthermore, by using dimensional analysis, Curle showed that when the Mach number

is small, the dipoles are expected to dominate over the quadrupoles since the former is a more efficient

sound source. Drawing on Gerrard’s (1955) experimental findings that the sound radiation is a dipole

field normal to the fluid stream, Curle went on to suggest that the dipole generated by the lift force would

have a frequency equal to the shedding frequency while the dipole due to the drag force would have a

frequency twice that of the shedding frequency.

The association between the acoustic dipoles and the aerodynamic forces acting on the circular

cylinder was first made by Yudin (1947) who postulated that the direction of the Aeolian tone coincides

with that of the fluctuating aerodynamic forces acting on the circular cylinder. Even though the body

is sustaining the aerodynamic forces, it could not possibly be the source of sound. This is because the

body is not allowed to vibrate. To solve this dilemma, Etkin et al. (1957) replaced the rigid body under

the influence of the aerodynamic forces with a volume of fluid under a body force so that the volume of

fluid remains stationary. In other words, the body force experienced by the volume of fluid is equal in
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magnitude but opposite in direction to the aerodynamic forces acting on the body. The forces distributed

over the surface of the cylinder were reduced to concentrated lift and drag forces. Using the assumption

of a sinusoidally varying lift and drag forces, Etkin et al. showed that near the plane of symmetry that

the sound pressure is proportional to the amplitude of the fluctuating force and has the same oscillation

frequency. Furthermore, the variation of the aerodynamic forces over the length of the cylinder can be

ignored if the Reynolds number is low enough. Thus, Etkin et al. have related the mathematical acoustic

dipoles to the aerodynamic forces concentrated at a point in the cylinder.

While the theoretical analyses (Curle (1955), and Etkin et al. (1957)) and experimental findings have

resulted in the Aeolian tones interpreted as being related to the aerodynamic forces and therefore, are

dipolar in nature, they offered very little insight into the actual physical generation mechanism of the

sound waves. This is because the acoustic waves must originate from the vortical part of the flow instead

of the aerodynamic forces (Powell 1964) experienced by the body. Further understanding in the char-

acteristics of Aeolian tones was gained through numerical simulations using various solution approaches

(i.e., classical acoustic analogies, acoustic/viscous splitting, and direct simulations) by amongst other,

Brentner et al. (1996), Cox et al. (1998), Hardin & Pope (1984), Inoue & Hatakeyama (2002), Shen &

Sorenson (1999), and Slimon et al. (1999).

In Cox et al. (1998), the Reynolds number of the flow ranged from 100 to 5 × 106 while the Mach

number of the sound field was Ma = 0.2. In Shen & Sorensen (1999), the Reynolds number of the

flow was Re = 200 while the Mach number of the acoustic field was Ma = 0.2. In order to compare

with experimental data, Slimon et al. predicted the flow field at a Reynolds number of Re = 5 × 104

while the Mach number of the acoustic field was Ma = 0.2. One of the most recent numerical studies

of the Aeolian tone was conducted by Inoue & Hatakeyama (2002). The compressible Navier-Stokes

equations were solved numerically using high-order spatial and temporal methods in order to predict

both the flow field and acoustic field simultaneously on the same computational domain. The Mach

number ranged from Ma = 0.05 to 0.2 while the Reynolds number of the flow was kept at Re = 150.

The results of the numerical simulations of sound radiated from flow past a circular cylinder showed

qualitative agreement with the experimental studies of Gerrard (1955), Phillips (1956), and Etkin et

al. (1957). In addition, the numerical simulations also provided a further insight into the aeroacoustic

phenomena of Aeolian tones by clarifying the relationship between the vorticity dynamics of the flow, and

the generation and propagation characteristics of the sound waves. This is possible through correlating

the time-dependent vorticity dynamics and acoustic quantities. These issues will now be addressed in

the following subsections.
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Properties of the lift and drag dipoles

Numerical results by Wang et al. (1996) on airfoil-induced sound, and Cox et al. (1998) on the present

subject have already showed that at low Mach numbers, the quadrupoles are much weaker than the

dipoles. Shen & Sorenson et al. (1999) have shown that the acoustic waves propagate away from the

cylinder normal to the fluid stream. In the results of Inoue & Hatakeyama (2002), the time histories of

the acoustic pressure fluctuations due to the fluctuating lift force (lift dipole) placed directly above the

cylinder showed a sinusoidal waveform. From the results of Inoue & Hatakeyama, it is clear that the

time development of the acoustic pressure field showed only the presence of the lift dipole (see figure 6 in

Inoue & Hatakeyama). The appearance of the dipole due to the fluctuating drag force (drag dipole) was

masked by that of the lift dipole. This was linked to the fact that the fluctuations in the lift forces was

much more significant than the fluctuations in the drag force. Subsequent decomposition of the pressure

field into a multipole expansion revealed that the amplitude of the drag dipole was approximately one

order of magnitude smaller than that of the lift dipole.

On the location of the source region of the acoustic dipoles

Hardin & Pope (1984) has suggested that the location of the source region is close to the formation of the

vortices near the cylinder. This is because in their simulations, the computational domain only captured

up to approximately five diameters of the wake flow. Hardin & Pope’s hypothesis was vindicated by Inoue

& Hatakeyama (2002) who through analysing the time-development of the near-field acoustic pressure

fluctuations and the shedding of the vortices argued that the pulsing of the acoustic waves occurred from

where the vortices are shed from the cylinder into the wake. These findings are consistent with Howe’s

(1975) interpretation of the acoustic source generation mechanism. While the vortices shed into the wake,

they traverse the hypothetical acoustic field lines at angle of 90◦. Hence, the vortices can inject significant

energy into the acoustic field.

On the relationship between the aerodynamic forces, vortex shedding and acoustic quanti-

ties

To correlate the fluctuating aerodynamic forces with the time development of the vorticity field around

the circular cylinder, Inoue & Hatakeyama showed that the positive peaks in fluctuating lift forces, cl,

correspond to the shedding of a vortex from the upper side of the cylinder into the wake. Conversely, the

negative peaks correspond to the shedding of a vortex from the bottom side of the cylinder. The pulsing

of the acoustic waves is in phase with the shedding of the vortices from the upper and lower edges of the

cylinder into the wake.
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The positive peaks in the lift fluctuations correspond to negative pressure pulses while the negative

peaks correspond to the positive pressure pulses. As such, the development of the acoustic signals has

been defined as the pulsing generated from the upper and lower sides of the cylinder. To generate a

dipole field, the pulses on each side is equal in strength but opposite in phase.

Decomposition of the sound pressure

The theoretical argument presented by Etkin et al. (1957) suggested that with the lift and drag forces

oscillating in a sinusoidal fashion being replaced by concentrated point forces, the acoustic field would

consist solely of two dipolar fields orthogonal to each other. In other words, the theoretical analysis

precludes the possible presence any other modes in the acoustic field. In experiments, the positions of

the microphones are limited mostly to the planes of symmetry making it very difficult to carry out a

spectral analysis of the sound field. However, in numerical simulations, Inoue & Hatakeyama (2002)

generalised the predicted pressure field into a multipole expansion. This is possible because the acoustic

waves are linear. In sharp contrast to Etkin’s argument, Inoue & Hatakeyama found the presence of a

monopole and quadrupoles. The presence of a monopole in the acoustic field is due to a non-constant

force coefficient. It is still unclear if the presence of the quadrupole mode is due to the wake pattern or

the phase variations in the oscillating aerodynamic forces.

On the effect of finite Mach numbers on sound propagation

Based on the fact that the fluctuations in the lift and drag forces were approximately constant across

the Mach number range, Inoue & Hatakeyama argued that the sound generation mechanism is effectively

independent of Mach number variations. While the source field is unaffected, the propagation character-

istics of the sound waves in the acoustic medium change as the medium is now no longer at rest. Inoue &

Hatakeyama have observed that the acoustic pressure field directivity shifts towards the upstream direc-

tion as the Mach number is increased from Ma = 0.05 to Ma = 0.2. This shift in the propagation angle

(from ≈ 90◦ at Ma = 0.05 to ≈ 78.5◦ at Ma = 0.2) is caused by the Doppler effect which is retarding the

wave propagation speed upstream of the cylinder.

It is worth mentioning that in the acoustic analogies of Lighthill (1952) and Powell (1964), the

acoustic medium is assumed to be at rest. As such, there is no Doppler shift of the predicted acoustic

field. When the acoustic analogies are used to predict sound fields, the far-field directivity remains the

same at different Mach numbers. However, having said that, the implementation of a Doppler shift as

a postprocessing step in the numerical solution of the acoustic analogies is not a complicated task. It

involves a spatial transformation of the acoustic solution to include the dependence of both the freestream

velocity and wave propagation speed. This will be discussed in greater detail in Chapter 5 of this thesis.
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On the assumption of a concentrated point force

In the analysis by Hardin & Pope (1984), the drag coefficient was found to contain a fourth-order harmonic

in addition to the second harmonic. Furthermore, the results indicated that the fourth-order harmonic

has a greater amplitude than the second-order harmonic. This is in sharp contrast to the theoretical

argument of a point force representation suggested by Etkin et al. (1957). This was attributed to the

phase variations in the force distributed over the entire surface of the cylinder.

1.2.9 Rectangular plate

One of the main goals of this research is to determine the feasibility of Lighthill’s acoustic analogy and

Powell’s theory of vortex sound in a variety of flow situations. The isolated co-rotating vortex pair

structure, and the co-axial vortex rings are compact vortical structures and as such, the acoustic source

region of both cases at low Mach numbers is limited. However, bluff body flows are characterised by an

extensive wake region implying that the flow is not as compact. Thus, the study of the acoustic waves

generated by bluff body flows represents a more rigorous test of the two-step aeroacoustic prediction

method because it tests the capability of the numerical method used in predicting the sound field from

non-compact acoustic sources.

Because the geometry of a two-dimensional circular cylinder has been investigated quite thoroughly

by previous investigators, a slightly more complicated geometry is selected for the present acoustic study.

Hence, the acoustic effects of the laminar flow past a two-dimensional cylinder of rectangular cross-section

is considered in this investigation. This study can be considered as an extension to the circular cylinder.

The plate has square leading and trailing edges and is immersed in a fluid of uniform freestream velocity.

This particular plate geometry will be referred to as the rectangular plate for the remainder of this

thesis. The dynamics of the laminar flow past a rectangular plate is expected to be more complex than

the circular cylinder because of the shedding that occurs at the leading and trailing edges of the plate.

To provide the reader with some understanding of the flow instabilities from flow past a plate of

rectangular cross-section, a brief review of natural shedding from rectangular plate is presented in this

section. It must be noted that the aim of this project is not to study these flow instabilities in detail.

Flows past elongated bluff bodies has been widely studied by fluid dynamicists, for instance Parker

& Welsh (1983), Stokes & Welsh (1986), Nakamura et al. (1991), Hourigan et al. (1993), Naudascher &

Wang (1993), Mills et al. (1995), and Tan (2000). This is because it underpins a wide range of engineering

applications such as aerodynamic loading of structures, flow-induced structural and acoustic vibrations,

mixing of fluids, and automobile aerodynamics. The chord of the plate, c is placed in parallel to the fluid

stream. The plate thickness is represented by d.
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Stokes & Welsh (1986) have found that there were four distinct natural shedding regimes when the

plate aspect ratio c/d was varied over a wide range. The properties of the four regimes are summarised

below.

1. At plate aspect ratio of c/d < 3.2, the separation from the leading edge does not reattach. The

separation interacts with the shear layers to form a regular vortex street.

2. When the slightly longer plate aspect ratio c/d is between 3.2 and 7.6, the separation from leading

edge reattaches in a periodic manner. In addition, the trailing edge is enveloped by the separation

bubble along the plate chord. A regular vortex street is also formed.

3. At plate aspect ratio 7.6 < c/d < 16, the separation from the leading edge always reattaches

upstream from the trailing edge. The shedding is irregular as the vortices from the leading edge

are generated in random and interact with the trailing edge vortices. The vortex street is irregular.

4. When the plate aspect ratio c/d > 16, similar to 3. the separation from the leading edge always

reattaches. However, the random vortices generated from the leading edge diffuse prior to reaching

the trailing edge.

In experiments of the vortex shedding from a rectangular plate conducted at a Reynolds number of

1000, Nakayama et al. (1993) have shown that the Strouhal number based on the plate chord showed a

stepwise increase equal to integral multiple of 0.6n, where n is an integer defining the shedding mode.

Furthermore, phase measurements along the plate chord indicate that n corresponds to the number of

vortices distributed along the upper or lower plate chord. A sketch of the shedding modes is presented

in figure 1.3. For the first regime, with shedding mode of n = 1, the shear layers from the leading edge

interacts directly with the trailing edge. The feedback loop which is started from a pressure pulse emitted

from the trailing edge controls the leading-edge shear layers, thereby locking the shedding of the leading

and trailing edges of the plate. As the plate aspect ratio is increased, the leading edge reattaches to

form discrete vortices along the plate chord. The interaction of the trailing edge now switches from the

leading edge shear layers to the second (for n = 2) or third (for n = 3) or fourth (for n = 4) vortex

shed from the leading edge. A mechanism that encompasses all four shedding modes has been described

by Naudascher & Wang (1993) as the Impinging Leading Edge Vortex (ILEV) instability. The reader is

advised to refer to Naudascher & Rockwell (1994), and Mills et al. (1995) for further details on the ILEV

instability mechanism.

1.3 Computational aeroacoustics considerations

In this section, an overview of the numerical issues relevant to the implementation of the acoustic analogies

of Lighthill (1952) and Powell (1964), and accurate modelling of acoustic waves propagation are discussed.
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Figure 1.3: Sketch of the four different natural shedding regimes from laminar flow past a rectangular

plate. Note that the illustrations are not to scale.

For a more comprehensive review of the numerical issues surrounding the development of CAA, the

reader is advised to refer to Powell (1990), Crighton (1993), Tam (1995), and Wells & Renaut (1997).

Of particular concern in aeroacoustic simulations are spurious waves and artificial dissipation. Spurious

waves in general, have high frequencies and are primarily caused by errors in the initial conditions,

boundary conditions and under-resolution of the source terms. The effects of the spurious waves are

further exacerbated by grid stretching in the domain. In general, a high-quality acoustic solution should

be free from any artificially-generated spurious noise. Besides, the presence of spurious noise is certain

to indicate under-resolution in the simulation, spatially and/or temporally.

1.3.1 Grid considerations

The grid used in the aeroacoustic computations must be able to resolve the generation and propagation of

the acoustic waves. Due to the nature of low Mach number flows, the acoustic wavelength is significantly

greater than that of the eddies generating the sound field. To accurately predict the various acoustic

properties such as the far-field directivity and spatial decay of the pressure signals, it is a requirement

that the grid be able to capture at least several acoustic wavelengths. As a result, the physical size of

the CAA domain will typically be much larger than that of the CFD domain. The CAA domain can

be thought of as being made up of two regions, the near-field and the far-field. In the near-field, the

local pressure is a function of both the acoustic and incompressible flow quantities. Stretching is used
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to extend the grid from the near-region to the far-region as it would be too expensive and inefficient to

adopt a uniform grid over the entire CAA domain. The grid spacing has to be smoothly varied from the

near-field to the far-field. This is to allow the initial wave transient and subsequent acoustic waves to

pass freely without generating significant reflections.

1.3.2 Numerical discretisation

In order to be able to model the propagation of linear acoustic waves accurately, the numerical scheme has

to be non-dispersive and non-dissipative. Both explicit and compact finite difference methods have been

used in the discretisation of the acoustic waves. To minimise the dispersion errors, high-order methods

are used since Fourier analysis of the differencing shows that the approximate wave numbers match the

exact wave number over a wider range as the scheme increases in order of accuracy. Most investigators

have used a sixth-order spatial scheme as a compromise between performance and computational costs.

The implementation of a high-order method may present some difficulties for implementation of the

far-field boundary conditions and wall boundary conditions, or when more complicated flow geometries

are considered. As an alternative to a truncated Taylor’s series expansion, Tam (1994) has proposed

a dispersion-relation preserving (DRP) scheme when determining the coefficients of the finite-difference

stencil. The optimisation of the stencil is carried out so that the approximate wavenumber is closer to

its exact counterpart.

In the temporal discretisation of the acoustic waves, in general, explicit methods are used because

they better approximate the physics of the wave propagation. Similar to the spatial schemes, a high-order

temporal scheme is used to minimise dispersion errors. In addition, numerical dissipation errors caused

by the time-differencing is also reduced through a high-order method. Tam & Webb (1993) proposed a

four-stage multi-step scheme using Adams-Bashforth type time-stepping. The fourth-order Runge-Kutta

scheme is one of the more commonly used temporal advancement methods due to its excellent dispersion

properties, high-order accuracy and relatively high CFL limit.

1.3.3 Initial conditions

A homogeneous wave equation is classified as a hyperbolic partial differential equation. To obtain a

solution to the hyperbolic partial differential equation, two initial conditions have to be specified. If we

define the variable in the homogeneous wave equation as p, then the requirement is satisfied by defining

p(x, y, t = 0) and p
′

(x, y, t = 0).

In the case of an acoustic analogy, there is effectively an extra initial condition. This is because there

is a source function, H(x, y, t = 0) placed on the right-hand side of the wave equation. It is important
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to select an appropriate initial condition for the source function. The initial condition represents a

temporal discontinuity and as a result, generates what are classified as wave transients. Even though

such waves are transient and can be ignored in typical aerodynamic simulations, the same cannot be

said for aeroacoustic simulations. Wave transients have been known to generate artificial noise which

can contaminate the entire acoustic field (Mitchell et al. (1995)). The aim then is to produce a wave

transient which is at the very least comparable in both the amplitude and frequency of the acoustic

waves. Provided that the acoustic wavelength is well-resolved by the grid, a wave transient similar in

characteristics to the acoustic waves is less likely to create artificial spurious noise compared to a sharp,

short-frequency discontinuity.

1.3.4 Far-field boundary condition

The Sommerfeld radiation boundary condition is designed to resolve outgoing planar waves. The first-

order radiation boundary condition constructed by Bayliss & Turkel (1980) is widely used in linearised

Euler equations. These planar waves consists of the initial wave transient and the subsequent acoustic

waves. The planar wave condition requires the outgoing waves to be only a function of radial distance

from the source. At a grid distance of two or more acoustic wavelengths, this condition is well satisfied.

The situation is more complicated if the flow field and sound field are to be solved directly. The boundary

condition would have to be reformulated so as to allow the acoustic, entropy and vorticity waves to exit

the domain.

1.3.5 Spatial filtering of the acoustic analogies

One of the main difficulties of applying the acoustic analogies to complex flows relates to the large spatial

extent of the source terms. In simple flow configurations, both velocity and vorticity fields decays rapidly

to ensure that the source terms are zero outside the generation region. However, in practical flows, the

hydrodynamic region is extensive and the spatial decay in the downstream direction is slow with respect

to distance from the generation region. This has been observed by Mankbadi (1990), Colonius et al.

(1997), and Mitchell et al. (1999) in axisymmetric vortex pairings from jets and mixing layers. The

difficulty arises because sudden termination of the source terms (away from the generation region) is

bound to create large spurious noise sources. To reduce the impact of the truncation, a sponge region

was used by Colonius et al. to slowly remove the source terms in an exit region. Mitchell et al. have used

a mathematical model to describe the region away from the generation region.

28



1.3.6 Short wave components

In an ideal case, to resolve the acoustic wavelength spatially, a minimum of 20 grid points placed across

the acoustic wavelength is deemed to be sufficient and thus, presents no computational difficulties. How-

ever, since aeroacoustic problems usually involve a range of frequencies, propagation of the short wave

components through grid stretching poses a problem in any numerical aeroacoustic simulation. This

difficulty is not found in steady-state aerodynamic simulations where viscosity, physical or numerical,

stabilises the solution. However, in aeroacoustic simulations, the presence of artificial viscosity is gener-

ally frowned upon as it may damp both short and long wavelength components leading to an inaccurate

solution. The application of artificial damping has to be treated with caution. In view of this, artificial

selective damping was introduced by Tam et al. (1993) to filter out the short wave components. Mitchell

et al. (1995) used a compact high-order Padé filter to remove the short wave components associated with

the transient waves moving through the stretched grid.

1.4 Goal of this research

The main goal of this project is to investigate the capability of Lighthill’s acoustic analogy and Pow-

ell’s vortex sound theory to predict aerodynamic sound from unsteady flows in a variety of situations.

To achieve this goal, a two-step aeroacoustic prediction method is used where the flow and acoustic

solutions are computed separately. Whilst there are other theories developed by various researchers on

aerodynamic sound generation, in the author’s opinion, the two most important acoustic theories are the

Lighthill’s acoustic analogy and Powell’s theory of vortex sound. Both theories have been proven to be

mathematically sound and provide a simple and yet insightful argument into the source of sound. In

addition, there are still many issues that need to be addressed.

For example, even though the acoustic theories of Lighthill (1952) and Powell (1964) have been

widely used in one form or another in the analytical analysis of aerodynamic sound generation, numerical

application of the acoustic theories has been quite limited to flow situations where the flow is compact (e.g.,

a simple co-rotating vortex pair, collision of vortex rings, vortices moving past forward/backward facing

steps). The acoustic solutions of such idealised flow fields predicted using Powell’s vortex sound theory at

low Mach number have been validated by numerous investigations. However, in more complicated flows

such as shear layers and bluff body flows, the application of Powell’s vortex sound theory has been thus

far, very limited. This maybe due to the difficulties in obtaining a convergent acoustic simulation from

numerically solving the acoustic wave equation. The difficulty of numerically applying Lighthill’s acoustic

analogy to obtain a convergent solution even on the relatively simple case of the co-rotating vortex pair

was noted by Mitchell et al. (1995).

29



The FLAIR group based in Monash University (Clayton campus) has had extensive experience with

the commercial flow solver software, FLUENT. Thus, it was used to model the unsteady flow fields. The

associated computational aeroacoustic code was specifically developed by the author. The code is written

in the Fortran-90 programming language and is compiled on a Linux platform.

Three case studies have been selected based on the criteria of complexity and availability of previous

data for comparison and benchmarking purposes. The widely-studied case of an isolated co-rotating

vortex pair structure forms the first test of this investigation. A logical progression from the spinning

vortex pair would be to apply the numerical techniques of the two-step method to predict the sound

generated from a pair of co-axial vortex rings moving along a common axis of symmetry in the same

direction. The final case of the sound generated by laminar flow past a two-dimensional plate of rect-

angular cross-section represents a complete and rigorous test of both the flow and acoustic solvers. The

results of the co-rotating vortex pair and co-axial vortex rings are validated through comparison of the

results with the published works of various researchers (both analytical and numerical). The simulations

of the sound radiation from flow past a rectangular plate is compared with those for the circular cylinder.

This is because to the knowledge of the author, there have not been any published scientific studies of

acoustic radiation from laminar flow past a two-dimensional rectangular plate.
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Chapter 2

Numerical Techniques

2.1 Summary

Extensive studies into aeroacoustic phenomena have been undertaken since the pioneering paper on

aerodynamic sound generation was presented by Lighthill in 1952. Since that time most problems have

been tackled analytically, often examining either simplified or idealised cases. In the research presented

in this thesis, our aim is to simulate numerically some flow problems tackled previously analytically but

to extend these to include the effects of viscosity on the flow dynamics, and therefore on the sound

generation. In addition, we examine a more complex problem of flow past a long rectangular plate, which

does not appear to have been treated in full previously except by very much simplified treatments.

In both Lighthill’s (1952) acoustic analogy and Powell’s (1964) theory of vortex sound, the aeroa-

coustics is made tractable by decoupling the fields into hydrodynamic and acoustic components. As a

consequence, to predict the sound field, two separate sets of computations have to be performed in a

sequential (or a coupled) manner. The incompressible flow field is first calculated which allows acoustic

sources to be evaluated so that the far-field acoustic field can be predicted. Hence, numerical implemen-

tation of acoustic analogies is commonly referred to as the ‘two-step’ approach.

Three flow problems of varying complexity have been investigated. The first problem primarily

forms a validation study of this two-step approach. It is the widely-studied problem of sound generation

from an isolated co-rotating vortex pair in an otherwise stationary fluid. The second study examines the

induced acoustic field associated with the leapfrogging motion of a pair of co-axial vortex rings advecting

along a common axis of symmetry. These two cases have been studied in the past, both analytically and

numerically. Hence, the results can be compared with published works by other aeroacoustic researchers.

For the second case, the effects of viscosity on vortex merging generally has been neglected in the past,
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and this can be important for some parameter ranges. The third and final case is the sound generation

associated with natural shedding from flow past a rectangular plate with square leading and trailing

edges.

In this chapter, we will describe in detail the implementation procedure of the two-step approach.

This chapter is divided into two sections. In the first section, the numerical techniques used to generate

an accurate hydrodynamic field are presented. The commercial CFD software package FLUENT is used

to predict the unsteady flow fields. The flow domain is discretised using a structured mesh. Numerical

issues relevant to modelling an unbounded flow on a finite domain such as grid generation and resolution,

spatial and temporal discretisation schemes, imposition of the appropriate boundary conditions, and

judging the flow convergence for each case are considered. In the second section, the computational

aeroacoustics (CAA) techniques used to accurately predict the acoustic behaviour of the three flow fields

are described. The aim is to predict the acoustic field without any ad-hoc filtering or artificial dissipation

being added to the numerical scheme. As Colonius (1995) has pointed out, if a stable numerical solution

requires any form of damping or filtering, this serves to indicate under-resolution. While filtering or

artificial dissipation can sometimes be tolerated in hydrodynamic simulations, the same cannot be said

for aeroacoustic simulations.

According to the classical acoustic analogies, the governing equation for the acoustic field is an

inhomogeneous wave equation whereby the right-hand side term is the acoustic forcing. Due to the

relatively simple geometry of the flows studied here, a high-order finite-difference scheme can be used to

approximate the spatial derivatives without any significant difficulties or penalties. The classical four-

stage Runge-Kutta scheme is used to advance the acoustic simulation temporally. In general, a high-order

method is preferred in aeroacoustic computations since both dispersion errors and dissipation errors can

be minimised. In addition, the implementation of high-order methods if done correctly does not increase

the computational memory required substantially.

The grid used in the acoustic simulation is stretched gradually. Truncation of the hydrodynamic

fields in the acoustic domain is performed by employing spatial filtering. This is to ensure that artificial

acoustic forcing is not introduced. A start-up function is used to temporally ramp the acoustic forcing

from zero to its actual value during the initial stage of the acoustic computation. The treatment of the

asymmetric stencil near the far-field boundaries is also presented. The procedure for spatial interpolation

of the velocity fields from the grid used in flow simulations to the grid used in the acoustic simulations is

described. Temporally, the instantaneous source field is interpolated using a high-order spline.
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2.2 Overview of the two-step approach

In using acoustic analogies to predict the far-field sound numerically, computation of the acoustic solution

is divided into two steps. In the first step, the time-dependent viscous incompressible velocity field is

obtained through numerically solving the incompressible flow equations. These time-dependent velocities

are then used in calculating the acoustic forcing term of either Lighthill’s (1952) acoustic analogy or

Powell’s (1964) vortex sound theory. The accuracy of the acoustic forcing term depends on the accuracy

of the hydrodynamic simulation. In the second step, the acoustic solution is obtained from numerically

solving the inhomogeneous wave equation. The right-hand side term of the inhomogeneous wave equation

represents the acoustic forcing.

The two-step approach enables each of the solvers to be optimised for the coupled solution procedure

for the flow and acoustic fields, which are governed by different length and velocity scales. As a result,

the computational costs of the two-step approach can be significantly less than the direct simulation of

the compressible flow fields.

2.3 Numerical modeling of the flow field

The fluid studied in this investigation is assumed to be incompressible and Newtonian. The equation of

mass conservation, (also known as the incompressibility constraint), and the Navier Stokes (NS) momen-

tum equations are shown as follows

∇ · u = 0, (2.1)

∂u

∂t
= −(u · ∇)u−∇p+

1

Re
∇2u. (2.2)

A commercial CFD solver, FLUENT (version 5.5), is used to numerically solve the time-dependent,

incompressible NS equations. The solver uses the finite-volume technique to model the flow. The com-

putations were performed using the double-precision version of the FLUENT solver for greater numerical

accuracy.

In the finite-volume approach, the incompressibility constraint and momentum equations are inte-

grated over all the control volumes of the flow solution domain. The integrals are converted to a system

of algebraic equations involving non-linear equations between flow variables at neighbouring grid points.

The discretized equations are then linearised and the resulting system of equations is solved in an iterative

manner to yield the updated solution. For more information on the finite-volume approach, the reader

is referred to, amongst other authors, Fletcher (1991), and Versteeg & Malalakesera (1995). In addition,

FLUENT provides details of the numerical implementation in their software manuals.

FLUENT provides two different formulations for linearising the discretized equations and then solving

33



the system of linearised equations. These are the segregated and coupled solvers. Both formulations

can be used, but by default FLUENT uses the segregated formulation for incompressible and slightly

incompressible flows. A difference between the segregated solver and the coupled solver is that the

former is less memory intensive (about two times less) at the expense of increased computational time

and perhaps slightly less convergence stability. In this study, all flow simulations were performed using

the segregated solver. No convergence problems were experienced. In the segregated solver formulation,

the continuity and momentum equations for each component are uncoupled and are solved sequentially.

The procedure, as described in the FLUENT help manual, is presented here for completeness.

1. Update the fluid properties u, v, p based on the current solution at time level t.

2. Obtain a guessed velocity field from solving the momentum equations by using the current values

of pressure and mass fluxes.

3. Since the guessed velocity field does not satisfy continuity, a Poisson equation for the pressure

correction is solved. This is used to derive corrections to the velocity field to drive the flow field

towards mass conservation.

4. Iterate the previous 2 steps until convergence is obtained.

5. Update flow quantities at time level t+∆t.

For the case of co-axial vortex rings, equations (2.1) and (2.2) are solved using an axisymmetric

formulation with zero swirl component. For axisymmetric geometries, there are two restrictions imposed

on the coordinate system. Firstly, the axis of rotation must be the x axis. Secondly, the entire grid must

lie either on or above the axis of rotation.

2.3.1 Grid generation

The important preprocessor stage to solving for the flow involves defining the geometry of the problem

and constructing a mesh for it. The auxiliary software program, GAMBIT, which is part of the FLUENT

package, was used to generate the mesh. Structured meshes with quadrilateral cells were used for all

three case studies. Selection of quadrilateral cells ensures that most of the grid cells are aligned with

the direction of the flow, especially at boundaries. This is favourable because numerical grid diffusion

is minimised. For practical reasons discussed in more detail in the discussion on the treatment of the

acoustics, a mesh with non-uniform grid-spacing is used. A linear stretching function as provided by

Gambit, is used to implement this, and is defined as follows

n
∑

i=1

Ri−1 =
L

l1
, (2.3)
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where L is the edge length, n is the total number of intervals along the edge, R is the interval length

ratio and l1 is the length of smallest interval. In general, structured meshes are generally preferred for

flow problems with simple geometries, such as we have here, because of better convergence rates and the

smoothness of mesh point density variation.

2.3.2 Spatial discretisation and temporal marching

Convective variables are discretised by using the Quadratic Upstream Interpolation for Convective Ki-

netics (QUICK) scheme developed by Leonard (1979). It uses a three-point upstream-weighted quadratic

interpolation scheme to minimise artificial diffusion errors.

In FLUENT, all flow quantities are stored at the cell centres. However, the finite-volume scheme

computes the pressure gradient at the faces of the cell. Therefore, a second-order upwind scheme is used

to interpolate the values of the pressure at the cell centres to the faces of the cells.

Pressure-velocity coupling is performed by using the semi-implicit method for the pressure-linked

equation (SIMPLE) algorithm which was developed by Patankar & Spalding (1972). Basically, the

SIMPLE method is an iterative scheme used for calculating pressure on a staggered grid arrangement. A

relatively small value was used for the under-relaxation factor for pressure (≈ 0.3) during the initial phase

of the computations. This guarantees solution stability and convergence at the expense of computational

time. Once the flow has developed to a periodic state, the under-relaxation factor for pressure was

gradually increased to 0.7. Even though the under-relaxation factor for pressure can be dependent on

the type of flow studied, nevertheless, we found that the computations were stable and convergent for all

the flow situations considered in this research without excessive dependence on the choice of relaxation

coefficient.

To perform the integration in time, a second-order accurate, implicit time-stepping scheme was used.

The temporal derivatives were evaluated using backward differencing. An implicit scheme has the added

advantage of being unconditionally stable.

2.3.3 Monitoring flow convergence

In this investigation, the asymptotic or periodic state of the flow field is of interest. For the first two flow

situations, the vortex system is ‘imposed’ on the flow domain prior to initiation of the flow solver, i.e., the

simulation is started with the velocity field equal to the sum of the isolated vortex velocities. During the

timestepping, to determine if the simulation is converged sufficiently, the field quantities at the centroids

of the vortex cores are used for monitoring, (in addition to the standard convergence criteria described

below). During the initial phases of the computations, (typically first and second flow periods), both

35



vorticity and pressure at the two nominated positions are monitored at every time-step. Convergence is

assumed if the absolute changes in the magnitudes of all the flow measurements are within nominated

tolerance levels.

For the aeroacoustic problem of periodic shedding from a long rectangular plate in uniform flow, the

simulation is started with the fluid having a freestream velocity U∞ everywhere in the domain. As with

the previous case studies, we are primarily concerned with the asymptotic periodic state. For the cases

studied, the flow eventually reaches a purely periodic state for shedding from both the leading and the

trailing edge of the plate. Typically, the simulations take approximately 30–40 shedding periods to reach

an asymptotic state. There are approximately 500 time-steps per shedding cycle.

With FLUENT various different criteria can be used to ensure the solution has converged from

timestep to timestep. The convergence criteria used were based on the change in the magnitude of the

residuals of the continuity and momentum equations at each time step. Typically, the residuals for the

segregated formulation are scaled using the velocity and length scales characteristic to the problem. Each

residual is obtained by summation over the entire solution flow field domain. The unscaled residuals were

used for the flow problems of an isolated vortex pair, and a pair of co-axial vortex rings. In the final

study of flow past a plate, normalised residuals were used. For the continuity equation, normalisation

is performed through division by the maximum residual value after a fixed number of iterations. For

the three flow situations considered in this thesis, the nominated tolerance criteria were set so that the

spanwise vorticity and pressure were converged to four significant figures over the entire field before

moving to the next timestep.

2.3.4 Computational domain and boundary conditions

The ideal situation for modelling an unsteady flow in free space is that the domain is unbounded and

extends to infinity. However, this is not possible in a computational model. As such, an artificial

truncation of the domain needs to be made. To minimise blockage effects, the computational domain size

has to be sufficiently large not to unduly affect the flow solution in the region of interest. This is difficult

to determine a priori, although various books on computational fluid dynamics provide guidelines. In any

case, domain-size independence studies were carried out for each case study to determine an appropriate

size of the computational domain.

Boundary conditions for the co-rotating vortex pair and co-axial vortex ring systems

For these flow situations, the vortex systems are relatively compact and isolated, i.e., the vortices do

not exit the computational boundaries. As such, the approximate velocity can be specified at the outer

boundaries.
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For the co-axial ring, an axisymmetric boundary condition was imposed at the internal radial bound-

ary.

Boundary conditions for flow past a rectangular plate

With the direction of the freestream velocity from left to right, a freestream condition with unit velocity

in the horizontal direction is imposed on the inlet, top and bottom boundaries. The pressure condition

(which enforces a zero-normal gradient for all velocity components) is imposed on the outflow boundary.

On the surfaces of the plate, a no-slip condition is applied so that the velocity on the plate is zero.

2.3.5 Spatial and temporal resolution

Naturally, both flow and acoustic simulations are sensitive to temporal and spatial resolution, and hence,

it is important to undertake validation studies as a mandatory component of each study. Independent

resolution studies were conducted for both the CFD and CAA components of each study. The results of

these tests are described in the chapters that follow.

2.3.6 Aerodynamic forces

In the study of bluff body flows, the lift and drag forces acting on the body are relevant parameters asso-

ciated with the wake behaviour and sound generation. In various experiments and numerical simulations

discussed in the previous chapter, there was a direct correlation between the magnitude of the fluctuating

aerodynamic forces and the acoustic dipoles (commonly known as the Aeolian tones).

The total force acting on the plate has two components. These are surface forces due to viscous

shear and hydrodynamic pressure. These components are combined to form a total vector force, with

a horizontal component, i.e., the drag, and a vertical component, i.e., the lift. As usual, the non-

dimensionalised coefficients of the respective force components are obtained by dividing the forces by the

term 0.5ρoU
2
∞A. Here, U∞ is the freestream velocity and A is the frontal area of the plate.

2.3.7 Exporting the hydrodynamic field to the acoustic domain

Within FLUENT, the hydrodynamic field is exported through a user-defined function (UDF) for use

within the aeroacoustic solver. The exporting is carried out at pre-defined time intervals. The velocity

components are located at the centre of the cells.
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2.4 Numerical aspects of CAA

A primary objective of computational aeroacoustics (CAA) is to accurately model the generation and

propagation of sound waves generated aerodynamically from the hydrodynamic field. To achieve this,

the physical behaviour of acoustic wave propagation over a long time integration in a large domain has

to be preserved. In particular, the numerical scheme used to discretise the acoustic equations should

introduce very little numerical dispersion or dissipation. To illustrate the issues relevant to CAA, we

consider acoustic radiation from flow interactions at a low Mach number. For CAA issues pertinent to

supersonic jet noise, the reader is advised to refer to Tam (1995).

In this section, we present the techniques adopted in the acoustic simulation. We also discuss

parameter selection and other choices appropriate for accurate modelling. Many of these choices have

been discovered, or at least optimised, through a considerable amount of testing and validation. In

addition to a discussion of the high-order discretisation scheme and implementation of grid stretching,

two important issues relevant to this investigation are spatial truncation of the acoustic domain and

starting up acoustic simulations without introducing slowly-decaying, spurious acoustic noise into the

acoustic field. The combined approach described here has been successfully implemented in all three

different aeroacoustic problems with only minor adjustment between scenarios, indicating the robustness

of the techniques. One of the main advantages of the current approach is that the acoustic radiation for

each flow situation was obtained without any added filtering or artificial dissipation often used to prevent

the build-up of artificial noise.

2.4.1 The acoustic wave equation

The governing equation for the far-field acoustics consists of the linear wave equation with a non-linear

forcing term, H(x, y, t), on the right-hand side

∂2p

∂t2
− c2o∇

2p = H, (2.4)

where the acoustic pressure p has been non-dimensionalised by ρoc
2
o. For convenience, hereinafter, equa-

tion (2.4) will be referred as the acoustic wave equation. Two different forms of the acoustic source term

are used for simulations described in this thesis. These are Hl(x, y, t), corresponding to the source term

developed by Lighthill (1952), and Hp(x, y, t) referring to the source term developed from Lighthill’s form

by Powell (1964). These are given by

Hl(x, y, t) =
∂2uiuj
∂xi∂xj

, (2.5)

Hl(x, y, t) = ∇ · (ω × u) +∇2u
2

2
, (2.6)

Hp(x, y, t) = ∇ · (ω × u). (2.7)
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The acoustic source term in equation (2.5) is as derived by Lighthill while Powell showed that Lighthill’s

acoustic source could be represented alternately by the form given in equation (2.6), and subsequently

identified the acoustic source with the first term.

It is convenient from a numerical implementation point-of-view, to recast the acoustic wave equation

as a set of first-order partial differential equations (PDEs). This facilitates the application of a multi-

stage scheme for temporal advancement of the acoustic field. The first-order equations in a Cartesian

coordinate system can be expressed as follows

∂q

∂t
+
∂E

∂x
+
∂F

∂y
= H(x, y, t), (2.8)

where the vector fields in equation (2.8) are defined as

H =

H

0

0

,

q =

∂p
∂t

∂p
∂x

∂p
∂y

,

E =

∂p
∂x

∂p
∂t

0

,

F =

∂p
∂y

0

∂p
∂t

.

2.4.2 Spatial discretisation

Discretisation of the spatial terms in the acoustic wave equation was performed using the finite-difference

method. As discussed in Chapter 1, high-order spatial and temporal schemes are required to resolve

the propagation of acoustic waves over long time periods in a large spatial domain. These are required

to capture the compact source region together with the much larger acoustic region. Using the finite-

difference approach, the spatial derivatives can be discretised in the general form given by,

∂f(x)

∂x
≈

1

∆x

N
∑

j=−M

ajf(x+ j∆x). (2.9)

Here, M +N + 1 is the number of grid points required for the particular stencil. The right-hand side of

equation (2.8) is expanded using a Taylor series expansion. Equating terms with the common derivatives
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results in M +N equations for the coefficients aj . It is obvious that for a central-difference stencil, the

odd-order derivatives cancel out. A three-point stencil yields a second-order accurate scheme while a

five-point stencil results in a fourth-order scheme, and a seven-point stencil yields a sixth-order scheme.

In all three cases, the central coefficient a0 is zero. For this investigation, the sixth-order central-difference

scheme is used and the coefficients aj are as follows

a0 = 0, (2.10)

a1 = −a−1 = −
1

60
,

a2 = −a−2 =
9

60
,

a3 = −a−3 = −
45

60
.

A further complication is the requirement of deriving the difference schemes for stretched grids. The

conservative form of the Laplacian is as follows, provided the grid is only stretched independently in the

two major directions,

∇2f =
1

xζ

∂

∂ζ
(
fζ
xζ

) +
1

yη

∂

∂η
(
fη
yη

), (2.11)

where the metrics of the grid stretching in the x and y direction are represented by xζ and yη, respectively.

The are defined explicitly when the acoustic mesh is constructed (see equation (2.12) below). Hence the

stencil defined by equation (2.10) can be used on the computational mesh (ζ, η) where the spacing is

uniform.

2.4.3 Temporal marching

An explicit method is used to discretise the acoustic wave equation in time since it provides a better

approximation of acoustic wave propagation according to Wells & Renaut (1997). Temporal marching of

the aeroacoustic simulation is conducted using the classical four-stage Runge-Kutta (RK4) method. With

a high-order temporal scheme, the time-step used to advance the flow can be increased while maintaining

stability. Since low-order time differencing can implicitly introduce both dispersion and dissipation errors,

a high-order scheme is warranted. The time-step used in the acoustic simulation corresponds to the limit

of stability of the RK4 scheme.

2.4.4 Grid considerations

The grid used in the acoustic calculations is structured and is divided into (Nx)a × (Ny)a points where

(Nx)a and (Ny)a represent the number of grid points in the x and y directions. In the near-field, a small

grid-spacing, ∆xn, is used to adequately resolve the acoustic source term. The far-field region, typically

one or two wavelengths away from the source requires a less fine grid spacing, ∆xf , to resolve the acoustic
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waves. The lower the Mach number, the greater the disparity between ∆xn and ∆xf . Between the near-

field and the far-field parts of the domain lies a transition region, where the mesh is stretched. In typical

aerodynamic flow simulations, the region of interest lies where the viscous gradients are large (i.e., around

the surface/s of an external body). As a result, there is generally less emphasis on smoothly stretching the

mesh away from where the flow gradients are large towards the domain boundary. In sharp contrast, for

aeroacoustic simulations, the entire domain requires acceptable resolution since acoustic waves propagate

radially away from the source position and need to be adequately resolved throughout the domain. It

is well known that spurious waves are generated if acoustic waves propagate through a region of rapid

stretching (Mitchell et al. (1995)). This problem is often especially acute during the initial stages of the

computation, since the initiation of the acoustic calculation may introduce large temporal gradients into

the solution field.

For the current implementation, a one-dimensional stretching function is used for each coordinate

direction. Grid stretching is implemented using the following algorithm

xi+1 = xi + r(xi − xi−1), (2.12)

r = r +∆r.

where xi is the spatial coordinate at the i
th node. The control parameter of the grid stretching algorithm

is ∆r. By changing the value of ∆r, the local rate of the stretching can be increased or decreased. Since

the acoustic domain is in general made up of a square, the same rate of stretching is applied in both x

and y directions.

2.4.5 Far-field boundary conditions

In the physical model of the hyperbolic equation governing wave propagation, the waves radiate outward

to infinity and obey the Sommerfeld radiation condition at infinity. However, in numerical computations,

the domain is finite and as such, it is truncated with an artificial boundary. The objective of acoustic

modelling is to apply a boundary condition that approximates the Sommerfeld radiation condition at

the domain boundary, i.e., it should allow acoustic waves to exit the domain freely without generating

any substantial reflections. Bayliss & Turkel (1980) derived both first- and second-order local boundary

conditions by using the asymptotic expansions for the hyperbolic equations. The solutions are valid at

large distances away from the source region. Bayliss & Turkel showed that the domain of integration can

be very constricted with the second-order boundary condition. Since the sizes of the domains used in

these investigations are relatively large (typically about two or three wavelengths from the source which

is assumed to be fixed in space), the implementation of the first-order boundary condition is assumed to

be adequate.
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The first-order boundary condition as defined by Bayliss & Turkel is as follows

∂p

∂t
+
∂p

∂r
+
p

r
= 0. (2.13)

Here, r denotes the radial distance from the source to the boundaries. The source is assumed to be

spatially fixed. The accuracy of the boundary condition is of order of O(r−2).

One of the added costs of a high-order interior spatial stencil is that the stencil has to be adjusted for

many points near the boundary. This is necessary to maintain the same spatial accuracy throughout the

entire domain since errors at boundaries can propagate into the rest of the domain through reflections.

Application of the seven-point stencil in the interior region at grid points close to a boundary results in

reference to up to three points beyond the boundary. The stencils for the last three grid points as the

interior boundary is approached are one-sided and are adjusted to use interior points as well as the ghost

points.

At the third node away from the interior, the following asymmetric stencil in the backward direction is

used

a0 = −2.45, (2.14)

a1 = 6.0,

a2 = −7.5,

a3 = (20/3),

a4 = −3.75,

a5 = 1.2,

a6 = −(5/30).

At the second node away from the interior, the seven-point stencil also pointing in the backward direction,

is defined by the following coefficients

a−1 = −5/3, (2.15)

a0 = −385/300,

a1 = 2.5,

a2 = −5/30,

a3 = 25/30,

a4 = −0.25,

a5 = (1/30).
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Finally, at the first node away from the interior, the seven-point stencil consists the coefficients

a−2 = 1/30, (2.16)

a−1 = −0.4,

a0 = −175/300,

a1 = 4/3,

a2 = −0.5,

a3 = 4/30,

a4 = −5/300.

2.4.6 Boundary conditions for solid surfaces for the acoustic field calculation

A no-slip boundary condition is imposed on any solid surfaces present in the flow. In the acoustic

simulation, stationary solid surfaces do not radiate sound but reflect sound waves that impinge on them.

This is implemented through the following equation for the pressure

∂p

∂n
= 0. (2.17)

where n is the normal vector at the surface.

A further complication arises with a high-order governing equation as an extended set of wall bound-

ary conditions has to be created (e.g., see Tam (1995)). Following Tam et al. (1993), since there are three

boundary points for a sixth-order spatial scheme, as such, three ghost points are needed so that the

central-difference stencil can be applied at the surface. The values of the acoustic variable at the ghost

points is obtained by reflecting the interior nodes about the surface. The implementation of the above

procedure is quite straight forward since the flow geometry is relatively simple (i.e., the walls are aligned

with the coordinate axes). The issue of the singularity at the square edges of the plate is addressed in

the relevant chapter.

For the case of the co-axial vortex rings, the acoustic wave equation is solved using a (y, z) polar

coordinate system. It is clear from the governing equations that there is a coordinate singularity at the

centreline y = 0. To treat the singularity, the acoustic variable along the centreline is updated by using

the interior nodes. Since the coefficient of the node of the symmetric stencil is zero, it cannot be used

to evaluate the acoustic variable. As a result, a one-sided seven point stencil was used maintaining the

overall accuracy of the discretisation.
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Figure 2.1: Illustration of the spatial interpolation routine. The circle denotes the acoustic node which

may be randomly placed within the CFD mesh. The nine neighbouring nodes (squares) are used for

interpolation.

2.4.7 Interpolating the hydrodynamic velocities from the CFD domain to

the CAA domain

As has been discussed in Section 2.3.4, the number and distribution of the grid points of the CFD domain

is different to the CAA domain. Hence, the hydrodynamic terms appearing in the acoustic wave equation

have to be interpolated in space from the grid used in the flow simulation onto the acoustic grid. The

acoustic source term H(x, y, t) is then evaluated using the ‘interpolated’ hydrodynamic terms. This is set

up as a two-step procedure. The first step is a pre-processing step in which the interpolation coefficients

are evaluated. Subsequently, during the time integration of the CAA problem, these coefficients are

used to interpolate the current hydrodynamic field to the acoustic grid so that the source terms can be

evaluated.

To interpolate the (u, v) variables across the grids, a second-order polynomial was used instead of the

standard bilinear method. This is done so that the interpolation maintains the same order of accuracy

as that of the flow solver. The velocity components, (ua, va) which are located on the cell corners in the

acoustic domain are defined as follows

ua(xa, ya) =
2
∑

i=0,j=0

cijx
i
ay

j
a, (2.18)

va(xa, ya) =
2
∑

i=0,j=0

dijx
i
ay

j
a. (2.19)

Here, (xa, ya) refers to the spatial coordinates of the acoustic grid. The arrays cij and dij are the
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coefficients of the respective polynomials. For second-order accuracy, there is a total of 9 unknowns in

each interpolating polynomial. Hence, each acoustic node is surrounded by nine flow nodes (as seen in

Figure (2.1)).

The details of the interpolation procedure are as follows. Firstly, matrix inversion is carried out to

determine the coefficients, cij and dij . This is done by finding the spatial locations of the 9 flow nodes

and their respective velocity magnitudes. Secondly, the values of the velocity components on the acoustic

grid, (ua, va), are easily found through multiplication of the coefficients with the spatial location of the

respective acoustic node. To facilitate this transfer process, a map file which contains the coefficients cij

and dij is created once the two grids have been generated.

2.4.8 Spatial filtering of the hydrodynamic velocities in the CAA domain

In Lighthill’s acoustic analogy, the acoustic source term Hl is assumed to decay to zero outside the

region of the fluctuating flow. Powell’s acoustic source term Hp is explicitly zero outside regions of non-

zero vorticity. In the idealised acoustic model, the flow velocity components approach a constant value

away from source regions resulting in the magnitude of the acoustic source converging to zero (since the

source depends on velocity gradients). However, in practical flows of interest, the spatial decay of the

hydrodynamic field can be gradual. This is especially true for flow situations like shear layers, multiple

vortex pairings exiting a jet, and periodic shedding from uniform flow past a compact body. This can lead

to problems since, unless the CFD domain is large enough so that the velocity components effectively

converge to constant values, interpolating from the CFD domain to the CAA domain will result in a

discontinuity where the numerical interface of the artificial boundary of the CFD domain is located.

Therein lies the problem of defining the ‘size’ of the hydrodynamic region in the acoustic domain.

Both Mankbadi (1990) and Colonius et al. (1997) have recognised that any sudden termination of the

hydrodynamic terms in the acoustic domain will result in spurious errors being introduced to the acoustic

solution.

To be able to numerically implement the acoustic analogies, an approximation of the acoustic source

term has to be made so that it smoothly converges to zero outside the region of potential acoustic sources.

In this investigation, the mechanism to achieve this is through a spatial filter zone. The concept of a

spatial filter zone is similar to the sponge region used in the direct simulations of compressible flows by

Colonius et al. (1997) and Inoue & Hatakeyama (2002)).

For the first two case studies, the vortex system is confined in an otherwise irrotational fluid. The

application of a spatial buffer is relatively straight forward and unambiguous. This is because vorticity

does not actually come into contact with the buffer region boundaries. In the isolated co-rotating vortex

pair structure, the centre of the vortex system is stationary, thus implying a stationary source. In the
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second case study of a pair of co-axial vortex rings moving in the same direction, the vortex system is

self-convecting and thus the source is also convecting. As a result, prior to application of the spatial

filters, the translational component of the hydrodynamic term is first removed.

At a defined radial distance away from the centre of the vortex system, the hydrodynamic terms

in the acoustic domain have to be artificially truncated to zero. This results in the computed acoustic

source field converging smoothly to zero. The size of the spatial filter region is varied appropriately so

that the magnitude of any resulting fluctuations is at least several orders of magnitude smaller than the

acoustic fluctuations. The spatial truncation of the hydrodynamic velocities is performed as follows

u
′

a = uafxfy, (2.20)

v
′

a = vafxfy.

where fx and fy are the filter functions applied in the directions of the respective axes. The filter functions

have a value of unity in the region of the potential source and decay gradually to zero as a function of

distance from the centre of the vortex system.

In contrast to the first two case studies, the final case study of uniform flow past a rectangular plate

is characterised by a very slowly decaying vortex street downstream of the plate. The wake vorticity

is made up of a series of convecting vortices, resulting in a non-compact acoustic source region. This

forms a severe test of the ability of the spatial filter to successfully truncate the hydrodynamic field.

Through extensive testing, we found that the truncation of the wake vorticity if performed carefully

had negligible impact on the predicted sound field. This is expected since according to various acoustic

theories (e.g., Howe (1975)), the wake vortices do not contribute to any net energy transfer between the

flow and acoustic fields when they convect away from the plate at a relatively constant speed. This point

is addressed in greater detail in the chapter dealing with the final case study. For this third case, there

is a slight modification to the horizontal velocity component as follows

u
′

a = uafxfy + U∞(1− fxfy). (2.21)

where U∞ represent the freestream velocity.

The exact location and size of the spatial filters is dependent on the case study in question and is

detailed in the corresponding chapters of this thesis.

2.4.9 Evaluating the instantaneous acoustic source term, H(t)

One of the benefits of the two-step aeroacoustic prediction approach is that the flow solver and the

acoustic solver can be optimised individually. For instance, the flow simulation is advanced in time using

the maximum permissible time step while satisfying the criteria for flow convergence. In the acoustic
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simulation, the Mach number is very small. As such, the time step used to advance the acoustic solution

temporally is significantly smaller than the hydrodynamic time step. As Slimon et al. (1999) has pointed

out, the time step used to advance the acoustic simulation in an explicit formulation should be adjusted

such that the CFL condition approaches unity (to minimise dissipation and dispersion errors).

At first glance, it would seem that the instantaneous acoustic source term, H(x, y, t) has to be

interpolated in time between successive hydrodynamic time steps. This is certainly feasible though

rather costly in terms of computational time and data storage. The approach adopted here is to use a

reasonably high-order smooth interpolation procedure with fewer points per cycle. Tests indicate that

for the three cases considered in this thesis, approximately 16-32 frames per acoustic period is more than

adequate to resolve the temporal evolution of the acoustic source term.

As a consequence, instead of using successive hydrodynamic time steps for interpolation to the

acoustic problem, the flow field is saved at a number of equi-spaced time intervals. A note to the

reader is that since all three flow situations examined are time-periodic or near periodic, the number of

intervals/frames can be fixed throughout the evolution of the acoustic events. Presumably, if the flow

period was to vary significantly, this would imply that the acoustic behaviour would also change and as

such, the number and temporal spacing of the intervals may have to be adjusted accordingly.

The hydrodynamic field from the flow solver is exported at pre-defined time intervals. The source

distribution for each acoustic time step can then be constructed from the saved velocity field frames.

There are various ways of fitting a curve through such a data series. A high-order polynomial is not

considered as it may lead to wiggles. An initial attempt was to use a Fourier series; however, because

the source distribution can vary rapidly in time, this can cause problems with a global method. Two

options considered which preserve smoothness properties and do not suffer from contamination properties

of global methods were cubic and quintic splines. While the cubic-spline was acceptable in the co-rotating

vortex-pair problem, it led to wiggles in the far-field time traces for the co-axial vortex rings irrespective

of the sampling interval. This is believed due to the discontinuity in the second-order derivative. As such,

a quintic spline is used to fit a curve through the frames. For uniformity, all three case studies employed

quintic spline interpolation. At the end-points of the spline, we impose the condition that both slope and

curvature of the spline be smooth and continuous. The quintic spline is defined as follows

H(t) = α0H0 + β0H1 + α1H
′

0 + β1H
′

1 + α2H
′′

0 + β2H
′′

1 , (2.22)

where t0 and t1 represent the end points of the interval, H0 and H1 represent the source evaluated at the

stored hydrodynamic time steps. The primes denote differentiation in time of the acoustic source terms.

Here, the coefficients α0..2 and β0..2 are defined as follows

α0 =
t1 − t

t1 − t0
,

β0 =
t− t0
t1 − t0

,
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α1 =
1

6
(α3

0 − α0),

β1 =
1

6
(β3

0 − β0),

α2 =
1

360
(3α5

0 − 10α3
0 + 7α0),

β2 =
1

360
(3β5

0 − 10β3
0 + 7β0).

2.4.10 Initial condition to CAA

A common source of spurious waves in an aeroacoustic simulation is through generation via an artificial

initial condition. For example, if the acoustic forcing field is suddenly turned on at the initial time,

artificial transient acoustic waves with very sharp gradients result. This can be a serious problem when

these waves advect through a mesh with non-uniform spacing and can lead to large-scale, non-physical

reflections. Apart from contaminating the ‘real’ acoustic field, such spurious waves may also cause the

solution to diverge.

Through considerable testing, a more suitable initial condition for the CAA calculation was found.

A simple solution is for the acoustic source term, H(x, y, t), to be ramped up gradually. This prevents the

large gradients that are not well resolved on the grid and prevents divergence of the acoustic computation.

This is implemented by multiplying the acoustic source by a ramping function f(t) over the time interval

tr. The ramping function is zero at the initialisation of the acoustic computation and increases smoothly

and gradually to unity (see the description below). The time interval is adjusted depending on the

stretching of the acoustic grid so that the initial transient does not generate fluctuations that exceed

the amplitude of the physically generated acoustic waves. Note that this is sufficient to produce stable

solutions which become accurate once the transient has passed out of the computational domain. After

that time, the acoustic solution field reflects the physical situation which we are trying to model.

2.4.11 The spatial filtering functions, fx, fy, and the temporal ramping func-

tion, ft

The spatial filter functions, fx, fy share the same requirements and characteristics as that of the ramping

function ft. Hence, they are all represented by a polynomial function as follows

ft =
n
∑

i=0

bi

(

t− ti
tf − ti

)i

. (2.23)

The end conditions for the function ensure smoothness. These are f(ti) = f
′

(ti) = f
′′

(ti) = f
′′′

(ti) = 0

and f(tf ) = 1, f
′

(tf ) = f
′′

(tf ) = f
′′′

(tf ) = 0. (In the event of the spatial filter, the variables t are

replaced with the spatial variables). The end conditions guarantees that the curves are smooth and

continuous up to the third derivative. It must be mentioned that prior to selection of this particular
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polynomial function, a number of ‘natural’ functions were tested, i.e., second-order exponential, tanh,

sine, and cosine functions. The results of these functions were not satisfactory as the functions and/or

its derivatives were either not continuous at the ends, or the rate of change of the function was too severe

for the purpose of wave propagation modelling.

By using the above-stated end boundary conditions, the coefficients of the spatial filter and temporal

ramping functions were evaluated numerically and found to be as follows

b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 70, (2.24)

b6 = −315, b7 = 540, b8 = −420, b9 = 126.

2.5 Concluding remarks

In this chapter, we have described the procedures employed to carry out the two-step approach. The

commercial flow solver, FLUENT, is used to predict the hydrodynamic flow fields. To predict the acoustic

radiation associated with the low Mach number flows, a computational aeroacoustic program was devel-

oped by the author. The acoustic solver reads in the hydrodynamic velocity components, interpolates to

the acoustic nodes and evaluates the source using finite-differencing to calculate the derivatives involved.

A combination of a sixth-order spatial scheme and a fourth-order temporal scheme is used to com-

pute the time evolution of the acoustic field. This ensures that the solution preserves the dispersion

properties of the acoustic waves and has minimal dissipation. We have also discussed the spatial filtering

and temporal ramping of the acoustic forcing. These two steps enabled us to solve the acoustic wave

equation without any filtering and/or artificial smoothing being added. Importantly, the temporal ramp-

ing managed to reduce the amplitude and increase the time-scale of the initial transient stabilising future

evolution.

It is a fact that the requirements of an accurate acoustic simulation are different to that of a flow

simulation. This is because the nature of acoustic problems is quite different to that of flow problems.

Issues of significant relevance in acoustic simulations such as spurious noise, excessive dissipation, wave

reflection do not pose any major problems in aerodynamic simulations if they occur at all. On the other

hand, resolution of viscous boundary layers and shear layers demand a relatively fine grid which is not

as important for the acoustic calculation. In addition, the acoustic field is of interest over the entire

computational domain. Again, this is in contrast to aerodynamic situations where only regions with

high velocity gradients and/or where aerodynamic forces are present (as in bluff body flows) are relevant.

Because the goals and requirements of the flow and acoustic subproblems are so different, the field of

computational aeroacoustics is unique and should not be described as a branch of computational fluid

dynamics.
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Chapter 3

On the sound generated by a

co-rotating vortex pair

3.1 Summary

This chapter describes a numerical investigation into the far-field sound generated by a pair of spinning

vortices in a viscous fluid. This study forms the first part of the three cases used to validate the two-step

aeroacoustic prediction method. In the present study, specifications of the flow configuration are identical

to those used in Mitchell et al ’s. (1995) study. Results from the flow simulations showed that there were

a total of five and a half co-rotation cycles prior to the merging of the two vortex cores into a single

entity. From the second part of the computation, it was found that the acoustic signals calculated by

using Lighthill’s acoustic analogy, and Powell’s vortex sound theory, were effectively identical at the Mach

number simulated. The time variations of the acoustic signals were nearly sinusoidal and the acoustic

peak was maximum at the instant of vortex merger. The numerical results were compared with the DNS

results of Mitchell et al., and analytical predictions obtained using the method of matched asymptotic

expansions. There was good agreement in both comparisons. This study has also clearly demonstrated

that the steps used to obtain an accurate acoustic solution (as described in the previous chapter) have

been successfully implemented.

3.2 Introduction

One of the most widely studied aeroacoustic problems is that of acoustic waves generated by a pair of

co-rotating vortices. Powell (1964) has used the spinning vortex pair to demonstrate that the sound
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power from such a flow varies to the eighth power of the vortex velocity. Using the method of matched

asymptotic expansions, Müller & Obermeier (1967) have derived the far-field expression of the flow

problem and showed that the acoustic far-field has a double-spiral pattern.

With the development of new and existing acoustic theories, this particular flow configuration has

become one of the most common benchmark problems in the field of aeroacoustics. There are two main

reasons as to why this is so. Firstly, both the hydrodynamic and acoustic solutions can be obtained

analytically. Secondly, the flow field is compact and is spatially—fixed as the vortices spins about a

common centre of rotation. Hence, the acoustic source can be modelled without the complications of an

advection component and an extensive wake region. Thus, it satisfies the assumptions of flow compactness

and source compactness invoked in various acoustic theories of sound generation for low Mach number

vortical flows.

The objectives of this study are two-fold. Firstly, we aim to demonstrate the implementation pro-

cedure and the selection criteria of the parameters in the steps used to predict the acoustic radiation

numerically. As described in the previous chapter, these measures are significant in the efforts to nu-

merically solve the acoustic wave equation without needing any artificial dissipation or explicit filtering

schemes. The associated issue of the spatial extent of the source terms in Lighthill’s acoustic analogy,

and Powell’s vortex sound theory is also examined. Secondly, this study provides us with further insight

into the basic acoustic generation mechanism of simple, unsteady flow fields. Such understanding into the

physics of sound generation is vital as the complexity of the flow fields was increased as this research pro-

gressed from simple, compact, vortical flows to the natural shedding from laminar flow past an elongated

bluff body.

3.3 Analytical prediction

In the classical version of the flow configuration that is being considered in this chapter, the vortex cores

are assumed to be infinitesimally thin and the fluid is inviscid. As a result, the spinning point vortices

rotate about the fixed centre of rotation with an angular velocity of Ωo = Γo/(4πZ
2
o ), where Zo is the

radial distance from the centre of rotation to the core centroid. The periodic motion of the spinning

vortices results in the generation of sound waves. Furthermore, owing to the symmetry of the flow, the

acoustic frequency is twice that of the co-rotation frequency. Using the method of matched asymptotic

expansions, Müller & Obermeier (1967) have derived an analytical far-field acoustic expression as follows

p(x, y) =
ρoΓo

64π3Z4
oc

4
o

H2(kr). (3.1)

A typical plot of the far-field pressure calculated using the MAE method is shown in figure 3.1. The

pressure contours clearly show a quadrupole rotating in the same direction as that of the spinning vortex
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Figure 3.1: Instantaneous plot of the typical analytical acoustic pressure field generated from a pair of

spinning point vortices.

pair.

3.4 Numerical issues

In the present study, the flow is assumed to be incompressible and viscous. As such, it is governed by

the incompressible Navier-Stokes equation. In the first step of the aeroacoustic prediction method, the

incompressible flow equations are solved numerically by using the commercial finite-volume CFD software,

FLUENT. The CFD techniques used to generate an accurate flow solution have been previously described

in chapter 2 and thus, are omitted here. The hydrodynamic fields over the entire flow domain are exported

for the acoustic computation at a sampling rate of 16 frames per co-rotation period. These snapshots

are sufficient to faithfully reconstruct the time-dependent velocity field. In the second step, the acoustic

source term is evaluated from the ‘interpolated’ hydrodynamic terms and subsequently, the acoustic wave

equation is solved numerically.

3.4.1 Initial conditions

The schematic of the flow configuration is shown in figure 3.2. The two vortex cores, which are like-signed

with initial circulation Γo, are separated from the centre of the rotation by a distance Zo. The Reynolds

number, which is based on the circulation of the vortex core Γo, is defined as Re = ρoΓo/µo = 7500. The

Mach number is defined as Ma = ΩoZo/co = 0.06, where (ΩoZo) is the induced co-rotation velocity. The

vorticity distribution of the core in the azimuthal direction, ω(rc), is Gaussian and is defined as follows

ω(rc) =
1.2495Γo
πe2o

e−1.25( rc

eo
)2 (3.2)
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Figure 3.2: Illustration of the flow configuration. Circles denote vortex cores. Note that the sketch is not

to scale.
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Figure 3.3: Distributions of the azimuthal vorticity and tangential velocity of the Gaussian vortex core

model. Note that ωo is the peak vorticity at the centre while Uo = Γo/(4πZo).

and the tangential velocity distribution Vt, is as follows

Vt(rc) =
0.5Γo
πrc

(1− e−1.25( rc

eo
)2), (3.3)

where rc is the radial distance from the centre of the core. The ratio of the core radius, eo, to the

separation distance, Zo, is 0.15. It should be mentioned that the selection of the Reynolds number, Mach

number and initial flow configuration is identical to that used by Mitchell et al. (1995). It should also be

noted that the Gaussian vortex profile is favoured by many researchers when numerically defining vortex

core structures because it is smooth and continuous in both vorticity and tangential velocity distributions

(as shown in figure 3.3).
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Figure 3.4: Typical mesh used in the flow simulations.

3.4.2 Computational aerodynamics issues

The flow solution is modelled on a square domain which extends to 20Zo in both directions. The CFD

domain is discretised into a structured mesh with Nx ×Ny grid points. A typical mesh used in the flow

simulations is shown in figure 3.4.

The grid is uniformly spaced in the region surrounding the vortex core (approximately 2Zo radially

from the centre of the vortex system). A linear stretching function with a maximum rate of 6% is then

used to extend the grid to the external computational boundaries. A pressure outlet boundary condition

was imposed on all four external boundaries. Prior to the execution of the flow solver, the solution field

is initialised with the sum of the velocity components of the two vortex cores.
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In order to ensure that the physics of the flow is well captured, preliminary simulations were per-

formed whereby spatial- and-temporal resolutions studies were carried out. Three different minimum near-

field grid spacings of ∆x/eo = 0.225, 0.45 and 0.9 were used in the spatial resolution study, while the time-

step used to temporally march the incompressible flow equations was tested at ∆tUo/Zo = 8.84× 10−4,

1.768×10−3 and 3.536×10−3. The total kinetic energy was used to monitor the flow convergence. Based

on the results of these preliminary simulations, the minimum grid spacing ∆x/eo = 0.45, which amounted

to approximately 20 points across the vortex core was found to be adequate in capturing the flow dynam-

ics. Temporal-wise, there was little difference in results between a time-step of ∆tUo/Zo = 1.768× 10−3

and 8.84× 10−4 and as such, the former time-step was adopted for further flow simulations.

3.4.3 Computational aeroacoustic issues

Similar to the CFD domain, the acoustic solution is modelled on a square domain. The CAA domain

extends to two acoustic wavelengths away. As discussed by Mitchell et al. (1995), this is ideal for capturing

the propagation and spatial decay of the acoustic waves. In the near-field, a grid spacing identical to that

used to resolve the velocity gradients in the flow simulations is used. In the far-field, the grid is spaced

such that there are approximately 20 points across the acoustic wavelength. As a uniform mesh is both

impractical and too costly, the disparities of the near- and far-field grid spacings are reconciled through

the use of a structured non-uniform mesh. The typical mesh used in the acoustic simulations is shown in

figure 3.5.

A maximum local rate of stretching of 3% was used in both directions. The time-step used to advance

the acoustic wave equation is chosen to be approximately at the stability limit of the RK4 scheme. At

the external boundaries, the radiation condition based on Bayliss & Turkel (1980) is implemented.

Mitchell et al. (1995) have used a maximum local rate of grid stretching of 5% in their computational

mesh to ensure that the wave propagation is not influenced by the grid. However, in spite of a moderately

stretched grid, a filter function was used during the initial stages of the direct simulations because of the

presence of large grid-to-grid oscillations caused by the initial transient. It will be shown in the following

section that a moderate local rate of grid stretching must be coupled with a suitable initial condition

to avoid such spurious noise which might otherwise occur from the sudden introduction of an acoustic

source into the acoustic computation.

Another issue of major concern is the spatial extent of the source field in both aeroacoustic theories.

Mitchell et al. (1995) have shown that if the slow decay rate of the source terms are not treated carefully,

this will lead to a divergent acoustic solution. This issue along with the start-up function is discussed in

further detail in the following subsections.
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Figure 3.5: Typical mesh used in the acoustic simulations.

On the effect of the spatial filter

One of the main difficulties in recovering a convergent acoustic solution from the numerical implemen-

tation of the acoustic analogies relates to the spatial extent of the acoustic source terms. While the

hydrodynamic flows in ideal cases are assumed to decay rapidly and thus ensure that the source terms

converge to zero, in reality (as demonstrated in the present study), real flows do not particularly obey

this ideal scenario. The problem arises because the CFD domain is much smaller than the CAA domain.

As such, even if the velocity located in the entire CFD domain is interpolated in space back to the CAA

domain, there remains a discontinuity because the bounds of the CFD domain still lies in the interior

region of the CAA domain. In any case, it is impractical to use the velocity field of the entire CFD domain

as the active acoustic region is confined to the highly rotational part of the flow field. This difficulty has

been highlighted by Mitchell et al. (1995) who were unsuccessful in their attempt to obtain a meaningful

far-field acoustic solution when the acoustic wave equation with Lighthill acoustic source as the forcing

term was numerically solved. This was attributed to the slow algebraic decay of the the source terms in

Lighthill’s acoustic analogy.

To consider the effect of the sudden termination of the hydrodynamic field in the acoustic domain,

two identical preliminary simulations but with different limits to the size of the hydrodynamic region

were performed. In these tests, the flow velocity located outside the region is zero, thus resulting in
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a spatial discontinuity in the source. In the first simulation, the Lighthill acoustic source is evaluated

within a square of dimensions 4Zo × 4Zo. In the second simulation, the region where the source is

evaluated is extended slightly to 6Zo × 6Zo. In both preliminary simulations, the sources were gradually

ramped from zero to their true values over a ramping time of trUo/Zo = 2.652. The results of the two

preliminary simulations are shown through the instantaneous contours of the pressure field in figure 3.6a-

b. The pressure contours were taken at the simulation time of t∗Uo/Zo = 7.07. It is clear that while the

double spiral pattern is still visible in the near-field, its propagation to the far-field has, however, been

severely distorted. Furthermore, the amount of distortion decreases as the size of the square was increased.

Hence, the contamination of the acoustic solution is argued to be caused by the sudden termination of the

hydrodynamic velocities outside the designated region. It was initially thought that by further enlarging

the non-zero hydrodynamic region, the effect of the sudden termination as artificial noise sources might

eventually disappear. As such, in a third simulation, the size of the region was increased to 10Zo× 10Zo.

While the presence of spurious noise sources as seen in contour plots had indeed largely disappeared, the

time histories of the acoustic signals located at (r, θ) = (0.5λ, 0◦) and (0.5λ, 90◦), shown in figure 3.7,

clearly indicate that the acoustic solution is diverging. Hence, the results from these three preliminary

simulations have shown the difficulties of numerically solving Lighthill’s acoustic wave equation. It is

clear to us that the velocity field away from the region of the active sound source must be filtered to zero

gradually so that the source term converges to zero smoothly.

To show that the acoustic source term in Powell’s vortex sound theory is not as severely affected as

for Lighthill’s acoustic analogy, a fourth preliminary simulation was conducted using the hydrodynamic

region of 10Zo × 10Zo but this time, the acoustic source from Powell is used instead of that of Lighthill.

Typical acoustic pressure contours for this simulation at the simulation time of t∗Uo/Zo = 7.07 are shown

in figure 3.8. In contrast to the three previous simulations, the double-spiral pattern did not contain

any spurious noise in the near-field and the far-field. Furthermore, the acoustic solution did not show

any signs of divergence. Thus, in the application of Powell’s vortex sound theory to the present flow

field, sudden termination of the velocity field does not affect the acoustic solution provided that the

discontinuity is at least 5Zo away from the centre of the vortex system.

These preliminary studies clearly show the advantage of a spatial filter region when implementing

the acoustic analogies in a real flow situation. In the present acoustic simulations, the length of the

spatial filter in both directions was lfx/Zo = lfy/Zo = 1.33. The filters fx and fy were applied at a radial

distance of 1.67Zo from the centre of the vortex system. Implementation-wise, the filter region can be

smaller when Powell’s vortex sound theory is used. This is because the source contribution ∇ · (ω × u)

decays faster than the additional term ∇2(u2/2) present in Lighthill’s acoustic analogy (but not Powell’s).
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(a) (b)

Figure 3.6: Instantaneous contours of the acoustic pressure fluctuations at t∗Uo/Zo = 7.07. The region

of the Lighthill acoustic source field with (0,0) as the centre limited to (a) 4Zo× 4Zo, and (b) 6Zo× 6Zo.

The contour levels are ±1× 10−4 with ∆p = 1× 10−5.
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Figure 3.7: A sample trace of the time history of the acoustic pressure located at a radial distance of

r = 0.5λ (showing divergence in the far-field). The region of the Lighthill acoustic source field with (0,0)

as the centre limited to 10Zo × 10Zo.
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Figure 3.8: Instantaneous contours of the acoustic pressure fluctuations at t∗Uo/Zo = 7.07. The region

of the Powell acoustic source field with (0,0) as the centre limited to (a) 10Zo× 10Zo. The contour levels

are ±1× 10−4 with ∆p = 0.00001.

On the effect of the start-up function

In the numerical simulations of the viscous spinning vortex pair by Mitchell et al. (1995), and Lee & Koo

(1997), there was a sharp initial peak in the time variation of the acoustic signal. This is almost certain to

be followed by spurious high-frequency oscillations as the transient wave propagates through the stretched

grid. The presence of such sharp gradients was most probably a result of the sudden introduction of the

source into the acoustic computations. This effect can be reproduced in the study here by performing the

acoustic simulations on two stretched grids with a zero start-up ramp tr in each test. Figure 3.9a shows

that the time variation of the acoustic signal at the first maxima was dominated by large grid-to-grid

oscillations. Thus, it is clear that an impulsively started initial condition to the acoustic computation

has resulted in the generation of large amplitude, high-frequency initial transients regardless of the rate

of stretching. As the transients propagate into the region of grid stretching, the spurious waves become

increasingly intense. As the spurious waves propagate, the near-field as well as the far-field region are

affected. While a grid with even finer or more moderate stretching would show an improvement, the

computational costs associated with a finer grid increase quite dramatically. As the main purpose of the

computation is to resolve the acoustic waves, which have relatively large length-scale and long time-scale,

it is illogical to construct a grid primarily to resolve the initial transient. To circumvent this problem, a

start-up function is used whereby the acoustic forcing is gradually ramped up from zero to its final true

value over a certain period tr.

The objective then is to create an initial transient having properties similar to the acoustic waves.

As such, instead of a zero ramp period, three preliminary simulations are conducted on the previous grid

with trUo/Zo = 0.884, 1.768 and 2.652. The time history of the same monitoring position is presented in

figure 3.9b. It is clear that there is considerable improvement in the properties of the initial transient.
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Figure 3.9: Time histories showing the initial transient at r = 0.5λ along the positive x axis with different

start-up ramp times of trUo/Zo = (a) 0, (b) 0.22, 0.44 and 0.66.

For all three ramps, there were no grid-to-grid oscillations and the magnitude of the initial peak decreases

as the ramp interval is increased.

The introduction of a start-up function has effectively decreased the magnitude while increasing

the time-scale of the initial transient. While the period of the start-up function can be as gradual as

possible, the selection depends on a compromise between minimising the impact of the initial transient,

and preserving the properties of the subsequent acoustic waves. Ideally, if the number of co-rotation

cycles was infinite, selection of the period tr, would not be an issue. However, in viscous flows, there is a

finite number of cycles as demonstrated in this investigation. As such, the ramping time, tr, was set at

approximately half the co-rotation period so that only the first peak is affected.

3.5 Results and Discussion

In the classical model, the co-rotation of the vortices repeats indefinitely. However, only a finite number

of corotation periods are observed in the present case of finite-sized vortices in a viscous fluid. By tracking

the position of the core centroids as a function of time, we found that there were approximately five and

a half co-rotation cycles prior to the merging of the vortices. In contrast to the results of Mitchell et al.,

there were two additional co-rotation cycles here. The reason may lie in the fact that compressibility

affects the lead-up time to vortex merger. In the study by Mitchell et al., the Mach number associated

with the swirling flow in each core was 0.56 while in the present simulation, the flow field was assumed

to be incompressible.

Figure 3.11 shows a composite picture of the vorticity snapshots totalling one co-rotating cycle. The

first snapshot is taken at approximately the start position of the second co-rotating cycle. The vortices

rotate about the centre/pivot point in a clock-wise direction. From the snapshots, it is evident that the
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Figure 3.10: Time history of the horizontal distance between the vortex cores.

peak vorticity of the vortex cores is decreasing because of viscous spreading, resulting in the gradual

’coming together’ of the vortices over successive cycles of co-rotation.

At a Mach number of Ma = 0.06, the source compactness as defined by the ratio of the acoustic

wavelength λ, to the separation distance, Zo, is 52.36. Time histories of the acoustic pressure fluctuations

computed using Lighthill’s acoustic analogy and located at (r, θ) = (0.5λ, 0◦) and (0.5λ, 90◦), are shown

in figure 3.12a. Figure 3.12b shows the time histories at identical observation positions, but Powell’s

vortex sound theory is used instead. The term r is the polar radius while the angle θ is measured from

the x axis. It is clear that apart from the initial transient, there is only minor difference in the time

variations of the acoustic signals. The acoustic waves show a nearly sinusoidal variation. This observation

is consistent with the MAE analytical predictions and the direct simulations of Mitchell et al. (1995).

It is also clear that there is a gradual increase in the amplitude of the acoustic peaks over successive co-

rotation cycles culminating in a maximum acoustic peak at the instant of vortex merger. The explanation

for this acoustic behaviour lies in the fact that the sound power is proportional to the vortex velocity

as has been pointed out by Powell (1964). While the angular velocity in the classical model remains

constant, it is not so in viscous flows. As the peak vorticity is reduced by viscosity, the core becomes less

compact and as such, the separation distance between the vortex cores also decreases. This results in

an increase in the angular rotation velocity. As a result, the sound pressure level of the acoustic signals

increases with the rate of rotation.

Instantaneous contours of the acoustic pressure field calculated using the two different source formu-

lations while the vortices are still engaged in the co-rotation motion are shown in figure 3.13a-b. Both sets

of contours are taken at the same time instant of t∗Uo/Zo = 12.39. Similar to the analytical predictions,

the acoustic pattern resembles that of a double-spiral pattern (see figure 3.1). It is also clear that there

were no significant reflections from the external boundaries.
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(a) (b)

(c) (d)

(e)

Figure 3.11: Snapshots of the instantaneous vorticity plots while the vortices are still in the co-rotating

mode. t∗Uo/Zo = (a) 6.19, (b) 7.78, (c) 9,2, (d) 10.61, (e)12.38. The min. and max. contour levels are

3.585 and 35.85, with 10 increments between them. Note, the vorticity has been non-dimensionalised

with respect to the parameters, Uo and Zo.
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Figure 3.12: Time histories of the far-field pressure fluctuations calculated using (a) Lighthill’s acoustic

analogy and (b) Powell’s vortex sound theory. The radial location of the observation position is r = 0.5λ.

(a) (b)

Figure 3.13: Contours of the instantaneous pressure field at a non-dimensionalised time, tUo/Zo = 26.52.

(a) Lighthill’s acoustic analogy, (b) Powell’s vortex sound theory. Minimum and maximum contour levels

are ±4× 10−5 with increments of ∆p = 0.4× 10−5.
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3.6 Concluding Remarks

In this chapter, the sound generated by the unsteady motion of an isolated co-rotating vortex pair in a

viscous fluid has been studied. This study has clearly indicated that the two-step aeroacoustic prediction

method is well-suited to predicting the sound radiation from low Mach number, compact, vortical flows.

Two important issues related to the common goal of obtaining an accurate acoustic solution without any

filtering scheme were highlighted.

The first issue concerns the large spatial extent of the source fields. In particular, the decay rate of the

Lighthill acoustic source term was slower than that of Powell’s vortex sound theory. Sudden termination

of the source field outside the region of active sound generation is bound to result in large spurious noise

which contaminates the far-field region. Hence, in order to be able to implement the acoustic analogies,

spatial filtering is employed to decay the hydrodynamic terms located away from the active source region

to zero so that convergence of the source term is assured. The larger spatial distribution of Lighthill’s

acoustic analogy implies that the spatial filter region has to be more extensive when compared to that

applied for Powell’s vortex sound theory.

The second issue focusses on the need for a proper initial condition to the acoustic computations.

It is well known that crude initial conditions result in the generation of large transients. The problem

is further worsened by the presence of grid stretching resulting in grid-to-grid saw-tooth like waveforms.

While filtering or artificial dissipation routines are commonly used to remove such spurious noise, there

are inherent dangers such as excessive damping of the physical acoustic field. As such, it is recommended

that a start-up function be used to gradually ramp the source function to its true value over a ramping

period.

The acoustic results showed that both Lighthill’s acoustic analogy and Powell’s vortex sound theory

resulted in effectively identical acoustic signals. At the Reynolds number simulated, there were five co-

rotation cycles prior to the merging of the vortices. The far-field pressure fluctuations showed nearly

sinusoidal acoustic signals. In addition, the amplitude of the acoustic peaks were a maximum at the

instant of vortex merger.
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Chapter 4

Sound generated by a pair of

co-axial vortex rings

4.1 Summary

In this chapter, the aeroacoustic phenomena associated with a pair of viscous co-axial vortex rings moving

in a common direction along an axis of symmetry is investigated. In the context of this Ph.D. research

project, this study in part represents the second validation test of our two-step aeroacoustic prediction

method. The effect of viscosity on the flow dynamics and hence, acoustic generation mechanism is

explicitly included by allowing the vortex rings to interact through cross-annihilation and diffusion. To

the author’s knowledge, such features have not been considered thoroughly enough in previous studies.

In any case, this study poses a more rigorous examination of the two-step method owing to the increased

complexity of the flow dynamics of the co-axial vortex rings relative to the isolated co-rotating vortex

pair structure.

For simplicity, we confine our study to vortex rings of an initially circular core. In addition, the

vortex rings are of like sign and have identical circulation. Our interest lies primarily in the acoustic

effects caused by the mutual slip-through/leapfrogging interaction of the vortex rings. Such vortex

pairing has been studied mathematically (Lamb (1932), Batchelor (1967)) and has also been observed in

experiments (e.g., Yamada & Matsui (1979)). One of the interesting aspects of the flow behaviour is that

when the rings are ‘thin’, the mutual slip-through process occurs without any significant core distortion,

i.e., the interactions are largely periodic, at least for the initial period.

The Gaussian vortex core model which was earlier used in the isolated co-rotating vortex pair struc-

ture is once again adopted in this study. To numerically simulate thin vortex rings, the size of the vortex
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cores has to be kept small relative to the initial toroidal radius of the vortex ring, and the axial distance

between the two vortex rings. In this study, we consider the effect of the initial axial distance separating

the two vortex rings on the sound radiation. The single parameter governing the motion of the vortex

pairing is the aspect ratio zo/yo which is defined as the ratio of the initial axial spacing of the vortex

rings zo, to the toroidal ring radius yo. The two aspect ratios used in this investigation, zo/yo = 0.3 and

0.5, are identical to those considered in the theoretical analysis by Kambe & Minota (1981). This is to

facilitate a direct comparison between our numerical results with the predictions derived using the MAE

technique.

The Reynolds number of the flow based on the circulation of the vortex ring was Re = 7500.

Selection of this particular Reynolds number ensured that there were a number of successive leap-frogging

cycles when analysing the acoustic effects of the rings’ interactions. For each aspect ratio, the acoustic

calculations were performed at three different Mach numbers, being Ma = 0.0025, 0.005 and 0.01. Results

showed that at all three Mach numbers, both Lighthill’s acoustic analogy and Powell’s vortex sound theory

effectively produced identical sound signatures. This implies that ∇· (ω×u) is the dominant source term

in vortex-pairing induced sound at low Mach numbers. Furthermore, the source terms in Powell’s vortex

sound theory have a faster spatial decay rate when compared to those in Lighthill’s acoustic analogy. As

such, the former is highly recommended for future studies on the aeroacoustic phenomena of compact

vortical flows.

Prior to the merger of the vortex rings, the acoustic signature bears largely the effect of the slip-

through motions. The time variations of the sound waves consisted of a series of sharp peaks and rounded

troughs. Maximum sound radiation occurred at the slip-through instants. The far-field directivity was

characterised by distinct polar angles of extinction in the range of 59◦ to 61◦ and 123◦ to 129◦. These

features are consistent with those predicted using the MAE technique. Slight discrepancy in the time

traces of the acoustic signals between the numerical results and the MAE solution is attributed to the

effects of core distortion during the leapfrogging cycles. Furthermore, the discrepancy was found to

increase with aspect ratio. This is expected because the core deformation of the ring slipping underneath

its counterpart during the leapfrogging cycle is more prominent as the toroidal ring radius is decreased.

The distortion of the vortex core is a quasi-periodic phenomenon and as such the variations in the

acoustic signals that were a result of core distortion were repeatable over the successive leapfrogging

cycles. Another point about the acoustic peaks is that the amplitude of the peaks was maximum at the

instant of vortex rings’ merger. This particular feature has also been observed in the isolated co-rotating

vortex pair structure.

Further analysis of the quadrupole and monopole sound sources of the axisymmetric vortex ring

pairing revealed the former as the dominant term because the monopole source term was found to be

several orders of magnitude smaller than the quadrupole. To relate the quadrupole source term in terms

of the dynamics of each vortex ring, the quadrupole source term was further expanded into four terms
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(Tang & Ko (1995)). A cursory analysis revealed that sound signals were strongly influenced by the

radial acceleration of the vortex rings. A sample time trace of the amplitudes of the four terms revealed

excellent agreement between the simulation data and the analytical model. This reinforces the argument

that the discrepancies of the acoustic signals when compared to the classical model are largely due to

viscous effects like diffusion and core distortion.

4.2 Introduction

The focus of this study is on the dynamics and acoustics of a pair of like-signed circular viscous vortex

rings placed in an otherwise irrotational and unbounded fluid. The interactions of the co-axial vortex

rings (also known as vortex pairing) has been studied by many researchers, for instance Dyson (1893),

Hicks (1922), Brownard & Laufer (1975), Oshima et al. (1975), Yamada & Matsui (1979). One of the

possible scenarios of the vortex pairing is the mutual slip-through event where the the initially leading

vortex ring accelerates as it slips underneath the initially trailing vortex ring. At the same time, the

initially trailing vortex rings expands and decelerates. The roles of the vortex rings are reversed at the

slip-through instant. If the conditions are favorable, the mutual slip-through event may then repeat

itself. Such vortex pairing have also been described as the ‘mutual threading’ and ‘passing game’. The

interest in the vortex-pairing stems mainly from the resemblance of the vorticity dynamics to the coherent

flow structures seen exiting an axisymmetric round jet at moderate Reynolds number. Yule (1978) has

experimentally observed coherent vortex structures at low Reynolds number. While Bridge & Hussain

(1992) has disputed that the sound source is from the breakdown of the coherent structures at turbulent

flows, direct simulations by Mitchell et al. (1999) have indicated that the sound field from low Mach

number jets are similar to the axisymmetric lateral quadrupole that is typical of the sound field from a

pair of co-axial vortex rings.

The acoustic radiation generated from a pair of co-axial vortex rings has been considered numerically

by amongst others, Kambe & Minota (1981), Shariff et al. (1988), Tang & Ko (1995), and Verzicco et

al. (1997). Several observations can be drawn from the above-mentioned studies. Firstly, Shariff et al.

have found that the far-field acoustic signal consists of two components, a short frequency component

associated with the leapfrogging cycle, and a much longer component owing to the distortion of the

vortex core. The dual acoustic frequencies were also predicted in Tang & Ko’s study. In direct contrast

to Shariff et al., Kambe & Minota predicted that the sound signal only consists of the short frequency

component. Verzicco et al. have explained that the presence of the secondary frequency is related to the

nutation of the vortex core. Secondly, at low Mach numbers, the far-field directivity of the sound signal

resembles that of an axisymmetric lateral quadrupole.

Kambe & Minota (1981) considered the effect of (zo/yo) on the sound radiation analytically by using
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the assumptions of an infinitesimally thin rings in an inviscid fluid. The assumption of an infinitesimally

thin vortex ring is impractical as in reality, vortex rings are finite. In the present study, that same effect

is considered but in the context of finite vortex rings in a viscous fluid. Hence, this study could be

considered as a natural extension to the earlier study of Kambe & Minota. The aims of this investigation

are two-fold. Firstly, this study forms the second validation test of the numerical scheme used in this

research project, with the eventual aim of studying the sound radiation from natural shedding of bluff

body flows. Secondly, there is a clear interest in the further understanding of vortex-pairing induced

sound due to its obvious link to the field of aeroacoustics of round jets.

Results indicated that the acoustic signals at low Mach numbers have a far-field directivity which was

quite similar to the stationary lateral axisymmetric quadrupole. In the implementation of the Lighthill’s

acoustic analogy, the spatial extent of the source term of ∇2u2/2 is larger than that of ∇·(ω×u). Hence,

a larger spatial filter region has to be applied when Lighthill’s acoustic analogy is used.

There are several numerical issues that needed to be properly addressed in order to obtain an accurate

acoustic solution. Besides having to ensure that the flow simulations were accurate in both space and

time, several steps have to be taken to ensure the acoustic solution are free from any significant spurious

waves. These include limiting the local rate of grid stretching in the acoustic domain and the introduction

of a suitable start-up function for the acoustic computations to ensure that the initial wave transient is

well resolved. In addition, spatial filtering of the source term was required to ensure that it converges

smoothly to zero away from the rings. In order to be able to compare the numerical solution with the

MAE prediction, the translational component of the advecting vortex system has to be removed prior to

evaluating the acoustic forcing term.

A brief summary of the far-field acoustic pressure calculated using the MAE technique is presented

in Section 4.3. The numerical procedure of the two-step method is summarised in Section 4.4. In Section

4.5, we first present the results of the flow simulations followed by the acoustic simulations. The acoustic

quantities are compared with the theoretical predictions based on the MAE technique. The procedure

of the decomposition of the sound pressure into a multipole expansion is described in Section 4.6. The

far-field directivity in terms the Mach number is then discussed. Finally, concluding remarks to this

study are presented in Section 4.7.

4.3 Theoretical prediction of vortex pairing induced sound

One of the earliest analysis of using Powell’s vortex sound theory on the axisymmetric motion of a pair

of co-axial vortex rings was conducted by Möhring (1978) who derived an analytical expression for the

far-field acoustic signals solely in terms of position vectors of the rings and the axisymmetric vorticity

field. Mohring’s development of Powell’s vortex sound theory gave rise to the ‘linear theory’ where the
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sound field is directly proportional to the temporal variations of the vorticity field. Möhring’s primary

aim was to avoid the inherent problem of the singularity in the velocity field when using Powell’s vortex

sound theory to study the acoustics field of vortex sheets. Kambe & Minota (1981) had used the matched

asymptotic expansions to derive a far-field expression which was found later to be identical to Möhring.

The effect of viscosity as a sound source in free-space flows was considered by Kambe (1984). Thus, for

a pair of co-axial viscous vortex rings engaging in the mutual slip-through events, the far-field acoustic

pressure is defined as follow

p(z, y, t∗) =
ρo

4c2o
√

z2 + y2
(
∂3Q∗

∂t3
(cos2 θ − 1/3) +

5− 3γ

3

∂2K∗

∂t2
). (4.1)

where

Q(t) =

∫

A

(ωy2z)dzdy, (4.2)

K(t) =

∫

A

(ψω)dzdy. (4.3)

Owing to the directivities of the acoustic source terms, ∂3Q/∂t3 is known as the quadrupole while

∂2K/∂t2 is referred to as the monopole. While the monopole does not exist in the classical model, it is

also considered to be insignificant in most viscous flow studies as the Reynolds number of the flow are

typically much higher for the viscous effects to dominate over the mutual slip-through motions. Further

examination of the quadrupole term reveals that its associated sound signal can be decomposed into

a zeroth-order mode having a magnitude of 0.5 and a second-order cosine mode. This results in the

polar angles of extinction being located at 54.7◦ and 125.3◦. The far-field pattern can be described

mathematically as a stationary lateral axisymmetric quadrupole. It is clear that the far-field directivity

remains the same regardless of variations to the parameters of the vortex rings as ∂3Q/∂t3 is a temporal

quantity. Thus, the validity of the acoustic solution away from the asymptotic limit of Ma → 0 is very

much open to question. The effect of finite Mach numbers of the far-field directivity is one issue that is

considered in this study.

In evaluating the acoustic quantities using the MAE method, the classical model of Dyson (1893) is

used to provide the trajectories of the vortex cores. There are two assumptions used in the derivation of

the classical model. Firstly, the vortex cores are circular. Secondly, there is no straining field imposed

on each vortex core by its counterpart. The governing equations for the core trajectories were solved

numerically and equation 4.1 was then used to predict the pressure fluctuations. The acoustic signals

were found to peak at the slip-through instants. In addition, as the ratio of the initial axial distance of the

vortex rings to the toroidal radius was increased, the time variations become increasingly less sinusoidal.

Typical contour plots of the analytical pressure fluctuations are shown in figures 4.1a-b. The acoustic

signals calculated using the MAE method will form the basis of the comparison study with the results

obtained from the two-step aeroacoustic prediction of the viscous vortex rings.
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(a) (b)

Figure 4.1: Analytical pressure contours for zo/yo = (a) 0.3, (b) 0.5.
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Figure 4.2: Illustration of the flow configuration. Note that the sketch is not to scale.

4.4 Numerical procedure

4.4.1 Flow configuration and parameters

In the first step of the aeroacoustic prediction method, we predict the motion of a pair of co-axial vortex

rings in a viscous fluid. The flow field is assumed to be axisymmetric with zero swirl velocity component.

The incompressible Navier-Stokes equations are solved on a cylindrical coordinate system. The numerical

method used in solving the incompressible flow equations has already been discussed in detail in Chapter

2 and as such, is omitted in this chapter. The axial and radial axes of the coordinate system are defined

using the symbols z and y, respectively. In a cylindrical coordinate system, the velocities are singular at

the internal radial boundary, y = 0. However, since there are no explicit reference to the velocity on the

axial boundary, because the grid is staggered, the spatial derivatives in the momentum equations can be

discretised without any special treatment.

The schematic of the flow configuration is shown in Figure 4.2. The vortex rings are represented

by two circular vortex cores of toroidal ring radius yo, separated by an axial distance zo. The symbol
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Ring parameters eo/zo eo/yo zo/yo

Case 1 0.075 0.0225 0.3

Case 2 0.075 0.0375 0.5

Table 4.1: Spatial parameters: vortex core radius, ring radius and ring-to-ring mean separation.

Figure 4.3: Typical grid used in the flow simulations.

L denotes the initially leading core while T represents the initially trailing vortex core. A Gaussian

distribution is used to to define the vorticity, ω in each core (see Equation 4.8). For vortex passage

interaction to occur, both vortex cores are like-signed. The notation for the velocity components is as

follows: u is the velocity component in the axial direction and v is the radial velocity component.

The relevant vortex parameters such as core radius eo, ring radius yo, and vortex rings axial separation

zo are presented in Table 4.1. It is clear that the rings are ‘thin’ since both ratios (eo/zo) and (eo/yo)

are ¿ 1. This is a parameter study which considers the effect of varying the aspect ratio zo/yo. To vary

the aspect ratio zo/yo, the initial axial distance between the vortex rings remains fixed while the toroidal

ring radius yo is changed accordingly.

In this study, the Reynolds number of the flow, based on the circulation of vortex core is fixed at

Re = ρoΓo/µo = 7500. The Mach number which is varied, is defined by Ma = uo/co, where uo =

Γo/(4πyo) is the translational velocity of the vortex ring in isolation, and co is the wave propagation

speed in the acoustic medium.

4.4.2 Computational fluid dynamics considerations

The schematic of a typical grid used in the flow simulations is shown in Figure 4.3. The CFD domain

is discretised into a structured mesh of Nz × Ny grid points. It is clear that while the grid points are

mostly concentrated near the internal radial boundary and in the downstream direction, they are sparsely
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distributed towards the external radial boundary and negative axial boundary.

The axisymmetrical boundary condition is assumed along the internal radial boundary while the

pressure outlet condition is imposed on the external radial boundary and both axial boundaries. At the

start of the flow computation, the solution field is initialised by setting the velocity field components of

the entire interior cells to that of the sum of the individual vortex velocity components (including that

of the image vortices).

The spatial and temporal parameters of the flow simulations were decided through firstly, a domain

independence study, followed by a grid refinement study, and finally, a temporal resolution study. This

is ensure that the hydrodynamic solution is both grid-and-time-step independent. These three steps

were necessary since the solution field in the CFD domain is used as a pre-processing step in the CAA

calculations i.e., when evaluating the acoustic source term (which contains second-order spatial derivatives

of the velocity field).

Initial condition

The Gaussian vortex core model which is used in the present study defines the vorticity in the azimuthal

direction as

ω(rc) =
1.495Γo
2πrc

(1− e−
rc

eo )2, (4.4)

where rc denotes the radial distance from the centre of each core (see Figure 4.1). Since the vortex core

model that is used in the present study and the Reynolds number of the flow are both identical to the

isolated co-rotating vortex pair structure, it was concluded that the spatial resolution that was applied in

the former case could be imposed here. Hence, the grid spacing around the vortex rings is ∆x/eo = 0.225

which is equivalent to placing 20 grid points across the vortex core.

The following section presents the spatial and temporal resolution studies performed for the aspect

ratio zo/yo = 0.3. There was very little difference in the computational parameters used in the flow

simulations between zo/yo = 0.3 and 0.5. Hence, the results of the preliminary simulations reported

below correspond exclusively to the former case.

Grid refinement and domain size independence study

In the present study, the size of the CFD domain is defined by two parameters l1 and l2. The symbol l1

is used to define the distance from y = 0 to the external radial boundary. It is also used to represent the

distance from z = 0 to the negative axial boundary. On the other hand, the distance from z = 0 to the

positive axial boundary is represented by l2.
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The size of the domain has to be large enough so that the motion of the vortex rings is not significantly

influenced by the blockage effect. Several simulations were conducted to determine the required domain

size. The near-field resolution remained approximately the same for each simulation. The total kinetic

energy in the flow, (0.5
∫

V
u2dV ) was used to determine if the solution is independent of the domain size

and grid resolution. A tolerance level of 2% was used since it presents a reasonable compromise between

accuracy and computer resource requirements, and it should be tight enough to faithfully reproduce

the physics. To determine the appropriate size of the l1, three different values of l1/yo = 5, 10 and 15

were considered while the other parameter l2/yo was fixed at 20. Results indicated that the variation

in the monitoring property was less than the tolerance level between l1/yo of 10 and 15. Hence, the

l1/yo = 10 was adopted for the remaining flow simulations. Through the domain tests, the length of

the other parameter l2/yo has also been been deemed large enough so that the entire interactions (from

leapfrogging to merging) was fully captured within the domain.

It is clear from figure 4.3, showing the mesh used in the CFD computations, that l2 is greater than

l1. This is because, in contrast to the isolated co-rotating case, the vortex system in the present study

is not spatially fixed. For an isolated co-rotating vortex pair structure, the mutual induction causes the

vortex pair to rotate about the centre of the vortex pair. However, for the present case, the mutual

induction consists of both a translational and rotational component. While the vortex rings engage in

the leapfrogging cycles, the entire vortex system is also convecting in the downstream direction at an

approximately constant velocity.

To resolve the velocity gradients of the vortex rings as the entire vortex system is convecting down-

stream, the grid stretching applied across l2 has to more moderate compared to l1. Otherwise, decreased

resolution may lead to erroneous predictions such as a reduction in the number of leapfrogging cycles. To

determine the spatial resolution required to adequately resolve the vortex system, three different rates

of grid stretching were tested for l2 at 0.5%, 1% and 2%. In contrast, the rate of stretching across l1

which was kept at ≈ 9% is not a major concern because the principal direction of the motion of the

vortex system is from left to right. The difference in the total kinetic energy between the 0.5% and 1%

stretching was well within the tolerance level. As such, a stretching rate of 1% across l2 was used in the

flow simulations.

Temporal resolution study

In the previous domain independence and grid refinement studies, the preliminary simulations were

advanced in time using a time-step of ∆tuo/yo = 3.98 × 10−5. To determine if there was excessive

numerical dissipation caused by the selected time step, temporal resolution tests were conducted at the

domain size and grid stretching specifications determined from the previous section but at two different

time step of ∆tuo/yo = 1.97 × 10−5 and 7.5 × 10−5. The volume integral of the total kinetic energy
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Figure 4.4: Typical mesh used in the acoustic simulations.

was monitored throughout the first leapfrogging cycle. Results indicated that there was no change to

the third significant figure when ∆tuo/yo was reduced from 3.98 × 10−5 to 1.97 × 10−5. This implies

that the simulation is well resolved temporally with the former time-step. As such, a time-step of

∆tuo/yo = 3.98× 10−5 was adopted in the flow simulations..

4.4.3 Computational aeroacoustics considerations

In this section, we highlight the issues which must be carefully addressed and the steps implemented

in order to obtain an acoustic solution that is free from spurious waves. The acoustic simulations are

performed at three different Mach numbers (Ma = 0.0025, 0.005 and 0.01). A sixth-order central-

difference scheme was used to discretise the spatial derivatives while the standard fourth-order Runge-

Kutta method was used to advance the governing equations in time. As with the modelling the flow

field, the azimuthal component of the sound field is ignored. The inhomogeneous acoustic wave equation

written in polar form is as follows

∂a

∂t
− c2o(

c

y
+
∂c

∂y
+
∂b

∂z
) = H(z, y, t). (4.5)

where a = ∂p/∂t, b = ∂p/∂z and c = ∂p/∂y.

The radiation boundary condition imposed at the external radial boundary and both axial boundaries

is based on that of Bayliss & Turkel (1980). As a result of the seven-point stencil for the interior equations,

there are three ghost points in the boundary equations. To maintain the same spatial accuracy, high-order

one-sided differencing was used to evaluate the spatial derivatives of the boundary equations.
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The acoustic solution is axisymmetric about the internal radial boundary of the domain. Therefore,

the reflecting boundary condition, ∂p/∂n = 0 where n is the unit normal to the boundary is applied

at the internal radial boundary. In the cylindrical coordinate system, the term containing (1/y) in the

acoustic wave equation is singular at the internal radial boundary. To avoid the singularity, the acoustic

pressure lying along the internal radial boundary is evaluated using the reflecting boundary condition

with a one-sided stencil e.g., the nodes along the internal radial boundary are updated using the six

interior nodes located adjacent to the boundary.

The typical grid used in the acoustic calculation is shown in figure 4.4. Notice the differences in

the physical size and the grid arrangement between the CFD domain and the CAA domain. Similar to

the isolated co-rotating vortex pair structure, the CAA domain which extends two acoustic wavelengths

radially. It is discretised into a structured mesh of N 2
a grid points. To resolve the acoustic source terms,

the grid spacing around the vortex cores was chosen to be identical to that used to resolve the velocity

gradients in the flow simulations. Far-field wise, there were 20 points across the acoustic wavelength.

The disparity in the near-field and far-field grid spacings are handled through a non uniform mesh.

In contrast to the flow solution which is limited exclusively to the region around the vortex rings,

the entire solution in the CAA domain is relevant because the acoustic waves propagates throughout

the whole domain. This also implies that any unphysical noise sources present in the domain would

also travel in all directions, thus contaminating the near-field as well as the far-field regions. One of the

main sources of spurious noise comes from crude initial conditions. It has been demonstrated clearly in

chapter 3 that an impulsive initial condition is bound to result in grid-to-grid oscillations which is further

amplified by grid stretching. Therefore, to minimise the impact of the initial transient, a start-up function

to the acoustic source term is used as an initial condition to CAA. This is further complemented with

a moderate grid stretching to allow the waves (transient and acoustic) to propagate without generating

any substantial reflections.

The suitable choice of the start-up period, tr, and the maximum local rate of grid stretching is tested

on the lowest Mach number acoustic simulation. This is because the acoustic signals are weakest at the

lowest Mach number and thus, the susceptibility of the numerical scheme to the generation of artificial

noise sources is highest. As mentioned earlier in this section, the region around the vortex cores has a

uniform grid spacing. Axially, the grid starts to stretch from z = ±1.5zo. Radially, the grid stretching

starts from y = 1.5yo. It must be noted that the same stretching function is applied in both directions. A

start-up period of truo/yo = 0.0597 for zo/yo = 0.5 was tested for several different rates of local stretching

(4%, 3% and 2%). From these tests, we conclude that the most appropriate local rate of stretching was

3% as the signal-to-noise ratio was relatively strong and there was only negligible change in the acoustic

solution from a local stretching of 3% to 2%. It was also found that in general, the stretching in the

axial direction was more sensitive to spurious noise. Because the acoustic simulations at different Mach

numbers have the same rate of stretching, the number of grid points in each simulations has to be varied
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accordingly. In each acoustic simulation, the time-step used to advance the acoustic wave equation is sized

so that it is at the limits of stability of the RK4 scheme. It is clear that because the wave propagation

speed, co, increases as the Mach number gets smaller, the time-step also decreases. Thus, the lower the

Mach number, the number of grid points increases in the domain, and the time-step used to march the

solution in time decreases, and as a result, the computational costs rises.

In addition to the grid-and-time step requirements, and the initial condition to CAA, three param-

eters that are relevant to the acoustic forcing are (1) spatial filtering of the hydrodynamic terms, (2) the

size and location of the spatial filter region, and (3) sampling interval of the hydrodynamic terms.

Spatial filtering of hydrodynamic terms

From past experience with the isolated co-rotating vortex pair structure, we found that if the acoustic

source term was suddenly terminated, the acoustic solution diverges. The fact that the termination was

applied far away from the vortex system implies that the divergence in the numerical solution is related

to the spatial discontinuities of the source term at the truncation. This is attributed to the slow decay of

the acoustic source terms. As a result, the numerical implementation of Lighthill’s acoustic analogy or

Powell’s vortex sound theory requires a sort of a boundary condition-like treatment for the source terms.

In this investigation, this is performed through a spatial filter.

The main purpose of the spatial filter is to decay the hydrodynamic velocities outside the region

of acoustic waves generation to zero and hence, allow the acoustic source term (Hl or Hp) to converge.

The filter is applied after the hydrodynamic terms are interpolated in space from the CFD domain to

the CAA domain. The filter has a value of unity around the vortex system and decays gradually to zero

away. To prevent the spatial filter itself of being an artificial sound source, the size and location of the

spatial filter have to be determined carefully.

The region where the spatial filter is applied is defined in terms of the two parameters lfz and lfy

where lfz is the length of the filter applied in the axial direction and lfy is the length of the filter applied

in the radial direction. In the previous case of the isolated co-rotating vortex pair, the lengths lfx and

lfy were identical since the centre of the rotation of the vortices was a fixed quantity. In the present

study, had the vortex system been advecting in the acoustic domain, this would imply that lfz would

be dictated by the total distance traveled by the vortex system. However, by removing the translational

velocity from the vortex system so that the sound source is spatially fixed (this is revealed in greater

detail in the following section), the two parameters lfz and lfy can be made comparable.

To determine the appropriate parameters lfz and lfy making up the spatial filter region, three

different lengths at lfy/yo = lfz/yo = 0.42, 0.83 and 1.67 were tested. The filter functions in the radial

and axial directions is of unity at 1.25yo away from (0, yo) and decays to zero over the length of the filter.
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The selection criterion is that any resulting fluctuations from the spatial filter must be at least several

orders of magnitude smaller than the acoustic signals. This is checked by positioning observation points

just outside the spatial filter region. Results from the preliminary acoustic simulations showed that there

was negligible change when the length of the filter was increased from 0.83 to 1.67. As such, the length

of the filter used in the acoustic simulations was chosen to be 0.83.

Spatially-fixed sound source

The solution calculated using the MAE technique assumes that the source is localised at one point, i.e.,

the vortex system is a spatially-fixed sound source. In the context of this particular flow configuration,

this implies that while the vortex system may be translating in the downstream direction, acoustic-

wise, the sound waves are effectively radiating from a fixed and stationary position. In contrast, when

implementing the two-step aeroacoustic prediction method, it is clear that the hydrodynamic quantities

do not actually collapse into one point in the acoustic domain. As a result, the acoustic source calculated

using Lighthill’s acoustic analogy or Powell’s vortex sound theory as it is, would result in an advecting

acoustic source field. Thus, in order to be able to compare the numerical solution due to Lighthill’s

acoustic analogy and Powell’s vortex sound theory with the MAE solution, the rate of change of the

mean axial position of the vortex system must be removed from the axial velocity component prior to

calculating the acoustic source terms. It is not possible to subtract the mean translational speed of

the vortex system from the axial velocity component directly. As such, the procedure used involves a

transformation of the spatial positions of the vortex system as follows

xta = xa + t
∂Z̄

∂t
, (4.6)

where xa and xta denotes the axial coordinates pre and post coordinate transformation, and Z̄ is the

mean axial position of the vortex system. At the start of the acoustic computation i.e., t = 0, both axial

positions xa and xta are identical. However, as the simulation progresses, the acoustic coordinate xta,

translates along with the vortex system in the flow domain. The coordinate transformation effectively

pegs the mean axial position of the vortex system back to its initial position in the acoustic domain.

There are three steps involved in this procedure. Firstly, the mean axial position of the vortex system

is obtained by averaging the axial trajectories the vortex core centroids. Next, a fourth-order function is

used to fit a curve through the selected data points to define the mean axial position as a function of time.

Finally, once the coefficients of the fourth-order interpolating function is found, the translational velocity

of the mean axial position is then obtained through evaluating the first-order derivative of fourth-order

function. As such, ∂Z̄/∂t is described by a cubic function.
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Sampling of the acoustic source term

One of the issues related to the sampling of the acoustic source term that arose from this study was

the selection of an appropriate function to interpolate the acoustic forcing term over the entire flow-

map. While a local six-point Lagrange interpolating polynomial was used in the isolated co-rotating

pair structure with success, in contrast, there were periodic sharp kinks in the acoustic solution when

it was used in the present study. On closer examination, the kinks were found to occur at the same

instant as the interchanging of the frames. Hence, it was concluded that the kinks were caused by the

discontinuities in the first-order derivative of the local interpolating polynomial. After testing with several

other local interpolating functions and a global cubic spline, finally, a quintic spline which was smooth

and continuous to the second-order derivative of the approximating function resulted in a signal waveform

without any kinks. This finding indicates that the temporal variations on the acoustic source term, if not

resolved properly (i.e., smooth and continuous in the interpolating function and its higher derivatives)

is a potential spurious sound source. Subsequently, the quintic spline was adopted in all three cases

presented in this Ph.D. research project.

Sampling of the hydrodynamic velocities for both cases was tested at intervals of every 8, 16 and 32

frames per fundamental period. It must be noted that if the sampling interval was too large, the source

function would be artificially damped. Conversely, if there were too many frames per period, local errors

in the flow simulations may be amplified in the acoustic solution. As such, the appropriate choice of

the sampling interval is a compromise between excessive damping of the source term and controlling the

possible inclusion of errors contained in the velocity fields. For the present study, an interval of 16 frames

per mutual slip-through period was found to be adequate.

4.5 Results and discussion

The results of the flow simulations are first presented and analysed followed by the acoustic simulations.

It is useful to gain an understanding of the vorticity dynamics prior to analysing the acoustic field. This

is because Powell (1964) has stated that in a free flow, the sound waves are related to the changes in

the vorticity field. The quantitative measurements of the flow simulations have to be accurate since the

acoustic forcing is calculated using high-order spatial derivatives of the hydrodynamic velocity field. In

addition, the measurements are also needed in calculating both the quadrupole and monopole sound

sources. In all the figures presented in this section, the spatial parameters are normalised with respect

to the toroidal ring radius, yo, while the simulation time, t, is non-dimensionalised with respect to the

time-scale yo/uo.
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4.5.1 Flow dynamics

In the classical model, the vortex rings are assumed to be infinitesimally thin and the fluid medium is

inviscid. As such, the interaction of the rings can be called elastic. The initially leading vortex ring

slips underneath the initially trailing vortex ring. As this is happening, the mean toroidal radius of the

initially leading vortex ring increases and as a consequence, its velocity decreases. The moment that the

radial distance between both vortices is at a maximum is known as the slip-through instant. At this

instant, both vortices are lined up vertically. The role of the leading and trailing vortices alternates and

this cycle, also known as the leap-frogging motion repeats itself indefinitely. There is no distortion of the

shape of the vortex rings as the cores are assumed to remain circular at all times in the classical model.

It will be shown in this section that the classical picture is only partially observed in the results of the

viscous flow simulations.

Throughout the flow computations, the variation in the total circulation of the vortex system was

at most 1% of its initial value, 2Γo. This indicates that both the total circulation and the total impulse

of the vortex system are conserved to within numerical error. This is consistent with the fact that there

was no external force acting on the vortex system and the initial force assumed to generate the vortex

system from rest vanishes as soon as the vortices start moving.

In the classical model, the vortex core reduces to a point singularity. As such, the definition of

the core centroid is relatively straightforward. However, since a Gaussian vortex core is used in this

numerical study, the core centroid is defined as the location of the peak vorticity. By monitoring the

flow fields, the trajectories of the discrete vortices can be revealed through the time histories of the

axial and radial positions of the vortex core centroids. The location of the core centroids are determined

numerically throughout the entire flow simulation. Subsequently, the time histories of the trajectories

and peak vorticity of the core centroids are shown in figures 4.4 and 4.5. The circulation of the vortex

rings is positive in the clock-wise direction. As such, the vortex system moves from the left to the right.

From figures 4.4(a) and (b), and 4.5(a) and (b), we can readily see that the slip-through instants occur

when the radial distance between the two core centroids is at a maximum. In addition, the vortex system

travels a considerable distance axially while the variation in the radial direction is noticeably less. Using

the radial trajectories of the core centroids, the slip-through period could then be estimated. It is clear

that the period corresponding to the first leap-frog motion is in good agreement with the theoretical

counterpart prediction (see Table 4.2). However, owing to the effect of viscous dissipation, the period of

the subsequent leap-frogging cycles is expected to decrease, albeit gradually.

Another effect of viscosity is that the dynamics of the leapfrogging motions are modified. From

figures 4.4(c) and 4.5(c), it is also clear that there was a rapid reduction of the peak vorticity during the

initial stages of the flow simulations. For zo/yo = 0.3, the drop in the magnitude of peak vorticity was

about 73% over the first leapfrogging cycle. This is because at initialisation of the flow, the vorticity
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Figure 4.5: Time traces of the trajectories and peak vorticity of the initially leading- and-trailing core

centroids. Here, the left column refers to zo/yo = 0.3 while the right hand column refers to zo/yo = 0.5.

The trajectories of the core centroids presented are in (a)&(d) the axial direction and (b)&(e) the radial

direction. The time history of the peak vorticity of the core centroids are presented in (c)&(f).

zo/yo 0.3 0.5

T (uo/yo) 0.13 0.328

T (uo/yo)
∗ 0.126 0.287

Table 4.2: Tabulation of the first slip-through period of zo/yo = 0.3 and 0.5. The values designated with

an asterisk refers to Kambe & Minota’s (1981) results.
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distribution of the vortex core is very compact and the velocity gradients are very sharp especially near

the core centroids. As a result, physical viscosity acts quickly to diffuse the sharp velocity gradients

resulting in a rapid decrease of the magnitude of peak vorticity. At tuo/yo > 0.13, the temporal change

in peak vorticity is more gradual as the vortex core has spread out radially and assumed a more diffuse

and less intense structure. The time-scale of the peak vorticity diffusion now is much longer because

viscosity takes longer to diffuse a less compact vortex core structure. For the aspect ratio zo/yo = 0.5,

the drop in the magnitude of the peak vorticity between the first leapfrogging cycle was approximately

70%. The fact that the rate of vorticity diffusion was similar for both cases is expected because the

initial vorticity distribution of the vortex core and the Reynolds number of the flow used in both cases

are identical. As a result, this has led to a decrease in the amplitude of the sound pressure levels when

compared with the analytical prediction.This will be discussed in further detail in the acoustics section.

At the slip-through instant, the ring underneath (which has a smaller radius) is more compact compared

to the ring above it (which has the larger radius). This is more apparent for the aspect ratio (zo/yo) = 0.5.

For the first case i.e., (zo/yo) = 0.3, there were approximately eight slip-through instants prior to

vortex merger while for (zo/yo) = 0.5, there were seven slip-through instants prior to vortex merger. In

Verzicco et al ’s. (1997) study, there was only one slip-through instant prior to merger at a similar aspect

ratio but at a different Reynolds number of Re = 4000. Hence, this highlights the effect of Reynolds

number on the flow dynamics and hence the acoustics. The chosen Reynolds number of Re = 7500

adopted in this study has resulted in a number of successive slip-through instants occurring without

significant large-scale core deformation prior to the wrap up of the vortex rings. This is important from

the acoustic modelling point of view since the acoustic forcing would then be coherent and periodic over

several leapfrogging cycles. Having the merger of the vortex rings occurring too soon would complicate

efforts to compare the acoustic signals of the viscous vortex rings with the analytical acoustic pressure

expression, even though the effect of viscosity is clearly important in its own right.

Figures 4.6(a) and 4.7(a) show the initial configuration of the two vortex cores prior to the execution

of the flow solver. The vortex system moves from left to right owing to the self-induced translational

velocity of the vortex rings. The time development of the vortex system is revealed through successive

snapshots of vorticity totalling half a leapfrogging cycle. These are shown in figures 4.6(a) through (e)

(for zo/yo = 0.3), and figures 4.7(a) through (e) (for zo/yo = 0.5). The first snapshot in both cases are

taken at approximately the instant where the axial separation of the vortex rings is the largest. For case

1, the snapshots are taken between tuo/yo = 0.13 and 0.194, while for case 2, the snapshots are taken

between tuo/yo = 0.328 and 0.492. The selected time intervals correspond to the second leapfrogging

cycle. The second cycle was used in preference to the first cycle because the rapid change in peak vorticity

during the latter made it difficult to find a common range of vorticity levels in the contour plots.

It is clear that the discrete vortices are engaging in the classical leap-frogging motion. However,

contrary to the inviscid model, the cores do not remain circular throughout the leap-frogging motion, and
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the vorticity distribution of the vortex core changes due to diffusion and straining effects. In particular,

when the initially leading vortex ring is slipping underneath the initially trailing vortex ring, the initially

leading core becomes more compact, and distorts into an elliptic shape. Comparing the vorticity snapshots

of both cases, it is evident that the distortion of the initially leading vortex core is more severe at

zo/yo = 0.5. The distortion of the core from a circular shape to an elliptic shape is a quasi-periodic

phenomena because when both vortices are aligned horizontally with maximum axial spacing between

the two vortex cores, both core shapes assumed a nearly identical circular pattern. It is a fact deduced

from previous numerical studies (e.g., Shariff et al. (1988), Tang & Ko (1995)) that the variation of the

vortex core affects the sound radiation. As a result, this implies that the predicted sound field in this

study will also deviate from the MAE analytical prediction. Furthermore, we would expect that this

variation would be greater for increasing aspect ratio.

In sharp contrast to the passage interaction of the vortex rings, the vortex merger process is char-

acterised by strong core deformations. The contours of vorticity prior to merging are shown in a series

of snapshots in figure 4.8 for zo/yo = 0.3 and figure 4.9 for zo/yo = 0.5. The rear ring wraps around the

front ring during the final slip-through instant with a weak tail and soon after, both vortices become in-

tertwined. The vortex merger occurs in a relatively short time-frame, about half the fundamental period.

The effect of the merging of the viscous vortex rings on the sound field is expected to differ with the

results of Tang & Ko (1995) because the vortex pairings that were considered by the mentioned authors

had occurred without any cross-diffusion.

To summarise, in terms of the vorticity dynamics, prior to the vortex rings merging, the interaction

of the rings at both aspect ratios is close to the classical leapfrogging motion with the exceptions of, firstly,

the quasi-periodic phenomenon of the vortex cores distorting at the slip-through instant, and secondly,

physical viscosity acting to reduce the peak vorticity and diffuse the core, and thereby smoothen the

velocity gradients. In the next section, the influence of the core distortion, and the alteration to the

vorticity dynamics, on the sound radiation will be explored.

4.5.2 Propagation and decay of the acoustic waves

To monitor the time variations of the acoustic signals, a series of observation positions were placed at

half wavelength intervals from 0 to 2λ along the radial and axial axes. From the time histories of the

acoustic signals at all the observation points, we found that the fluctuations could be classified as far-field

waves when the radial location is ≥ λ. Since the propagation characteristics of the far-field waves are

identical across the different far-field positions, only one set of time histories of the acoustic signals are

shown. Time histories of the acoustic signals for aspect ratio zo/yo = 0.3 (calculated using the Lighthill

acoustic source term, Hl), are shown in figures 4.10(a)–(c). The observation positions are located at a

polar distance of r = 2λ at three different angles of θ = 0◦, 90◦ and 180◦. The angle θ is measured from

82



(a)
(b)

(c) (d)

(e) (f)

Figure 4.6: Instantaneous contours of vorticity for zo/yo = 0.3. The simulation time is tuo/yo = (a) 0,

(b) 0.13, (c) 0.146, (d) 0.162, (e) 0.178, (f) 0.194. The min. and max. contour levels are ωmin/ωo = 0.21

and ωmax/ωo = 0.021 with 10 increments.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Instantaneous contours of vorticity for zo/yo = 0.5. The simulation time is tuo/yo = (a) 0,

(b) 0.328, (c) 0.368, (d) 0.409, (e) 0.451, (f) 0.492. The min. and max. contour levels are ωmin/ωo = 0.22

and ωmax/ωo = 0.022 with 10 increments.
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(a)

(b)

(c)

Figure 4.8: Snapshots of vorticity prior to merging instant. Here, zo/yo = 0.3 and the time instants

tuo/yo = are (a) 0.43, (b) 0.462 and (c) 0.486. The min. and max. contour levels are 10.05 and

1005. There are 10 increments between the min. and max. levels. Note that the vorticity has been

non-dimensionalised with respect to uo and yo.
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(a)

(b)

(c)

Figure 4.9: Snapshots of vorticity prior to merging instant. Here, zo/yo = 0.5 and the time instants are (a)

0.918, (b) 0.995 and (c) 1.06. The min. and max. contour levels of vorticity are 3.98 and 398. There are

10 increments between the min. and max. levels. Note that the vorticity has been non-dimensionalised

with respect to uo and yo.
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Figure 4.10: Time histories of the acoustic pressure fluctuations of aspect ratio (zo/yo) = 0.3 at the three

different Mach numbers, Ma = (a)&(d) 0.01, (b)&(e) 0.005, (c)&(f) 0.0025. The left column refers to the

Lighthill’s source formulation while the right column refers to Powell’s source formulation. The far-field

observation position is located at a radial distance of r = 2λ away at three different polar angles. The

symbol t∗ represent the retarded time.
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Figure 4.11: Time histories of the acoustic pressure fluctuations of aspect ratio (zo/yo) = 0.5 at the three

different Mach numbers, Ma = (a) 0.01, (b) 0.005, (c) 0.0025. The far-field observation position is located

at r = 2λ at three different polar angles. The symbol t∗ represent the retarded time.
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the downstream axial axis. Figures 4.10 (d)–(f) show the acoustic signals at the same (r, θ) observation

positions but the Powell acoustic source term, Hp, is used to evaluate the acoustic forcing instead of the

Lighthill acoustic source term.

From examining the time traces of the acoustic signals for zo/yo = 0.3 (see figures 4.10), it is clear

that the Lighthill acoustic source term, Hl, and the Powell acoustic source term, Hp, are effectively

producing identical acoustic signals (apart from the initial wave transient). This suggests that at the

Mach number range studied in this investigation, the source term contribution ∇2(u2/2) present in

Lighthill’s acoustic analogy but subsequently ignored in Powell’s vortex sound theory is not a significant

acoustic source. Since the acoustic field predictions are only dependent on the source term, ∇ · (ω × u),

the acoustic simulations for aspect ratio zo/yo = 0.5 are performed with only the Powell acoustic source

term, Hp. The time histories of the far-field acoustic signals at the designated observation positions

corresponding to aspect ratio zo/yo = 0.5 are subsequently presented in figure 4.11. Due to the fact that

both acoustic source terms yielded similar far-field signals, the analysis of the acoustic quantities for the

two cases can be performed without specifying if the acoustic source term was based on either Lighthill’s

acoustic analogy or Powell’s vortex sound theory.

Owing to the symmetry of the vortex pairing, the number of acoustic waves correspond to the

number of slip-through instants. As such, for the aspect ratio zo/yo = 0.3, there were eight acoustic

peaks while there were seven peaks for the case of zo/yo = 0.5. In contrast to the isolated co-rotating

vortex pair structure which exhibited nearly sinusoidal acoustic variations in the time-histories, the time

variations of the acoustic signals consisted of a series of sharp peaks and rounded troughs. Furthermore,

the amplitudes of the acoustic peaks at the axial axes θ = 0◦ and 180◦ are larger than that located along

θ = 90◦.

For both aspect ratios and at all three different Mach numbers, the start-up interval was fixed

at tuo/yo = 0.0597 for zo/yo = 0.3, and tuo/yo = 0.166 for zo/yo = 0.5. As a result of the start-

up function coupled with a moderate grid stretching, the first acoustic peak resulting from the initial

condition has similar time-scale and amplitude as that of the physical acoustic waves. No spurious waves

were generated as the transient wave and subsequent acoustic waves propagate throughout the domain

towards the external boundaries. This was confirmed through the time-variations of the acoustic signals

at the selected observation points and plots of instantaneous contours of the acoustic pressure fluctuations

(which would be shown subsequently).

Preceding the merger of the two vortex rings, there is a gradual increase in the amplitudes of the

peaks. This behaviour can be explained by using the fact that the amplitude of the acoustic signals is

proportional to the induction velocity. Viscosity acts to reduce the peak vorticity of the core and therefore

slackens the velocity gradients. This results in the distance between the vortex rings becoming smaller

over time. As the vortex rings approach each other, the induced velocity also increases (to conserve the
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angular momentum of the flow). As such, leading up to the merging of the vortex rings, the amplitude

of the peaks should increase over the successive leapfrogging cycles. At the instant of vortex merger, the

amplitude of the acoustic peak is maximum.

In order to be able to visually observe the far-field directivity of the acoustic signals, instantaneous

contours of the typical pressure field while the vortex rings are still engaged in the leapfrogging cycles are

shown in figures 4.13. The contours are shown at the time tuo/yo = 0.477 for zo = 0.3 and tuo/yo = 1.33

for zo = 1.33. As the aspect ratio is increased, it is clear that the width of the positive peaks becomes finer.

This is in agreement with the analytical pressure contours (shown in figure 4.1). However, in contrast to

the MAE solution, as the Mach number is increased, it is clear that the propagation characteristics of

the waves between the positive and negative sides of the axial axis changes. It seems that the waves are

propagating preferentially towards the upstream direction. Furthermore, this effect is more prominent at

larger Mach numbers. As such, we argue that it is related to the source compactness. Source compactness

is synonymous with the low Mach number assumption. This issue will be attended to in greater detail

through the decomposition of the predicted sound field via a multipole expansion.

By correlating the time histories of the trajectories of the core centroids with the far-field acoustic

signals, we found that the acoustic peaks occurred at the slip-through instants while the acoustic troughs

corresponded to when the axial distance between the core centroids is largest. This finding is consistent

with the theoretical analysis (Kambe & Minota (1981)), and numerical results of Tang & Ko (1995), and

Verzicco et al. (1997).

However, in contrast to the results of Shariff et al. (1988), and Tang & Ko (1995), there were no

wavy oscillations present in the time traces of the acoustic signals. According to Shariff et al., and Tang

& Ko, the wavy oscillations were superimposed on the signal associated with the fundamental frequency.

In addition, it had a secondary frequency which was much shorter than the fundamental one. Verzicco et

al., (1997) have argued that the thickness of the vortex core affects the secondary frequency. Specifically,

they have found that by using different initial vorticity distributions, the secondary frequency could be

either larger or smaller than the fundamental frequency. This secondary frequency is linked to the vortex

core nutation. The nutation of the vortex core is defined as the time taken for a particle located at the

point of maximum tangential velocity to orbit once around the core. Since the aspect ratios studied here

have identical core thicknesses, the secondary frequencies are going to be equal in both cases.

With the Gaussian vortex core model, the position of maximum tangential velocity is at the core

radius, r = eo. The secondary period, ts, turns out to be tsuo/yo = 0.0022 for zo/yo = 0.3, and

tsuo/yo = 0.0062 for zo/yo = 0.5. Thus, it is clear that the secondary frequency is significantly higher

than the fundamental frequency. In this study, both the sampling rate of the hydrodynamic terms and

the acoustic grid are geared towards the acoustic solution corresponding to the fundamental frequency.

As a result, the fact that no wavy oscillations were present in the acoustic far-field signals should be
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(a) (d)

(b) (e)

(c) (f)

Figure 4.13: Instantaneous contours of the acoustic pressure fluctuations. The left column refers to

(zo/yo) = 0.3 at simulation time tuo/yo = 0.477, while the right column refers to zo/yo = 0.5 at

simulation time tuo/yo = 1.3. The three different Mach numbers are Ma = (a)&(d) 0.01, (b)&(e) 0.005,

(c)&(f) 0.0025. The range of the contour levels are from (a) ±7× 10−4, (b)±2.5× 10−6, (c) ±7× 10−8,

(d) ±1× 10−5, (e) ±2× 10−7, (f) ±1× 10−8 with 10 increments.
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expected. This issue also highlights one of the potential difficulties in solving an acoustic problem with

multiple sources with widely different frequencies.

Having ascertained that the vortex cores were thin and thus resulted in the secondary frequency being

too high to be captured by the simulations, we now proceed to compare our acoustic results (bearing

only the fundamental mutual slip-through frequency) with that of the MAE analytical expression. The

time histories of the far-field pressure calculated using the MAE technique are shown in figures 4.12. The

observation positions are identical to those used to show the time variations of the signals in the acoustic

simulations. It is clear that there is a distinct difference in the time variations of the acoustic signals

between the numerical results and the MAE prediction (see figure 4.12). While the time variations of

the analytical pressure maintain a perfect symmetry, our results indicate otherwise. In particular, the

time variation beginning from the slip-through instant (acoustic peak) and ending at the point where

both vortices are aligned horizontally with maximum distance deviated from the classical model. By

correlating the temporal variations of the acoustic signals with the vorticity snapshots, it is evident that

the differences are linked to the core deformations of the vortex rings sustained during the leapfrogging

motions. The fact that the deviation from the classical model is more noticeable at the larger aspect

ratio indicates that the core deformation is more intense with smaller rings.

Decay and scaling law of the acoustic pressure

The propagation and decay characteristics of the far-field acoustic signals can be observed through plotting

the spatial distribution of the peak pressures. Shown in figure 4.14 are the acoustic peaks measured along

the positive axial axis occurring at the second slip-through instant. It is clear that while the acoustic

waves are propagating radially outwards, the decay of the peaks in the near-field is not proportional to

(1/r0.5). This is because in the near-field, the fluctuations are affected by the temporal variations in the

sources as well as by the pressure gradients of the vortex core. In the classical model, the decay rate

would be uniform everywhere because the acoustic source reduces to a point. This is not the case here, as

the vortices are finite. However, it is evident that as the location is further away from the source region,

the acoustic peaks tend to decay inversely with r0.5 in agreement with Landau & Lifshitz (1987).

4.5.3 Decomposition of the acoustic waves

By decomposing the far-field acoustic signals into a multipole expansion, we can quantify the amplitudes

of the various modes present in the predicted acoustic field. Decomposition of the acoustic signal into a

multipole expansion is possible because the acoustic waves are linear. The acoustic pressure waves are

decomposed into harmonic modes using the following

p(z, y) = Ao(z, y) +Bm(z, y) cos(nθ). (4.7)
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Figure 4.14: Decay of the pressure peaks located along the positive axial axis. Here, zo/yo = (a) 0.3, (b)

0.5. The radial distance r has been normalised with respect to yo.

94



where the terms, Ao and Bn are defined as follows,

Ao =
1

π

∫ π

0

p(z, y)dθ, (4.8)

Bm =
2

π

∫ π

0

p(z, y) cos(mθ)dθ. (4.9)

Here, m is an integer which ranges from 0 to∞, and Ao is the zeroth-order mode with uniform directivity

while Bm are the mth order cos modes. Owing to the axisymmetric pattern of the vortex pairing sound,

the only modes that can be present in the acoustic field apart from the monopole are the cosine harmonics.

The amplitudes of the modes are evaluated through integration using Simpson’s 1/3 rule. Once we have

determined the amplitudes of the modes present, we can then determine the far-field directivity of the

sound field. The polar angle of extinction is evaluated at the radial positions by equating the amplitude

of the acoustic signal to zero and subsequently using the Newton-Rahpson method to iterate for the

extinction angle θ.

On the effect of Mach number on far-field directivity

Using the MAE technique, Kambe &Minota (1981) have argued that in the limit of Mach number Ma ≈ 0,

the far-field directivity of the sound radiation from an axisymmetric vortex pairing resembles a lateral

axi-quad (axisymmetric quadrupole). Another way of depicting the axi-quad pattern is to decompose

the acoustic field into a multipole expansion. Then it can be easily shown that the axi-quad consists of

a second-order cos harmonic mode and a zeroth-order mode. With an axi-quad, the values of the polar

angles of extinction are located exactly at 54.7◦ and 125.3◦. However, with the MAE technique, the

validity of the acoustic solution away from the asymptotic limit is very much open to question as the

solution may be affected by both the spatial distribution of the source term and the advection of the

source field when the Mach numbers are finite.

Mitchell et al. (1999) have argued that when Lighthill’s acoustic analogy is applied to predict the

sound waves radiated from vortex pairing, the theoretical polar angles of extinction are shifted because

the trace of Lighthill’s acoustic source term is nonzero. To confirm Mitchell et al ’s. argument and also

investigate the effect of source compactness on the far-field directivity, the decomposition of the acoustic

signal is performed at the three different Mach numbers. The pressure fluctuations located along a radial

arc of 1.5λ are used in the decomposition routine to determine the corresponding values of the harmonic

modes. The time histories of the amplitudes of the harmonic modes at the three different Mach numbers

is shown in figure 4.15(a)-(c) for (zo/yo) = 0.3, and in figure 4.15(d)-(f) for (zo/yo) = 0.5. Only the

first three cos harmonic modes are shown in the figures as the contributions of even higher modes are

too small to be of any real significance. In the MAE expression, the predicted sound field consists only

of a monopole component and a quadrupole component. However, it is clear from the figures that the

acoustic signals present in our simulations contain other modes too. This is because the Mach numbers

of our acoustic simulations are finite.
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zo/yo Ma(10−2) first angle(◦) second angle(◦)

0.3 1.0 72.5 141.32

0.3 0.5 63.925 132.36

0.3 0.25 59.88 128.85

0.5 1.0 64.1 132.17

0.5 0.5 60.26 128.4

0.5 0.25 60.12 123.38

Table 4.3: The first and second polar angles of extinction as a function of Mach number for both aspect

ratios. Here the angles are measured at the second slip-through instant.

At both aspect ratios and for all Mach numbers, it is clear that the zeroth-order mode and the second-

order cos mode are the dominant terms in the decomposed acoustic signal. However, the amplitudes of

other modes being cos(θ) and cos(3θ) becomes increasingly significant as the Mach number is increased.

The polar extinction angle is evaluated from the peaks of the various modes at the second slip-through

instant. It is evident from table 4.3 as the polar extinction angles are clearly seen to have shifted towards

the upstream direction at higher Mach numbers. The shift is also noticeable from the instantaneous

contour plots of the acoustic signals as shown previously in figure 4.13. The shift in the polar angles of

extinction is related to the compactness of the source region. We see that at aspect ratio zo/yo = 0.5,

between Mach number of 0.0025 and 0.005, the first polar angle of extinction seems to have converged

to approximately 60◦. Hence, this implies that the polar extinction angle is never located exactly at the

theoretical values, in line with the argument presented by Mitchell et al. Hence, the effect of increasing

the Mach number is that the far-field directivity becomes less of an axi-quad. As the source region

becomes less compact, the contributions of the other order cos modes start to become significant and

starts to shift the far-field directivity towards the upstream direction.

4.5.4 Analysis of the quadrupole and monopole sources

Kambe & Minota (1981) has shown that the amplitude of the far-field acoustic signal is dependent on

rate of change of the mean axial position of the vortex system. To better relate the acoustic signals to

the properties and dynamics of the vortex cores, Tang & Ko (1995) further expanded the the quadrupole

term, ∂3Q/∂t3 into four source terms as follows

∂3Q

∂t3
∝

∑

(I
∂3z

∂t3
) + 3(∆z̈) ˙IL + 3(∆ż)ÏL + (∆z)

∂3IL
∂t3

. (4.10)

Here the symbol ∆ in the above equation represents the spatial difference operator. The four source

terms describes the quadrupole in terms of the positions, velocities and accelerations of the vortex cores

in the axial direction, and the impulses of the initially leading and trailing vortex core centroids.
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Figure 4.15: Time histories of the amplitudes of Ao and mth order cos modes present in the acoustic

signal. The figures on the left column correspond to (zo/yo) = 0.3 while those on the right column

correspond to (zo/yo) = 0.5. The three different Mach numbers, Ma = (a)&(d) 0.01, (b)&(e) 0.005,

(c)&(f) 0.0025. The symbol t∗ represent the retarded time.
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Figure 4.16: Time histories of the amplitudes of the four source terms calculated using trajectories of the

classical model. The aspect ratio is zo/yo = (a) 0.3, (b) 0.5. In the figures, term 1 is
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∂t3

), term 2 is
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Figure 4.17: A sample time trace of the four source terms of Tang & Ko11 calculated using the simulation

data. Term 1 is
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zo/yo = is (a) 0.3,(b) 0.5.
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To compare the behaviour of the source terms between the classical and viscous rings’ interactions,

firstly, the trajectories from the classical model (Dyson (1893)) are used in the calculation of the four

source terms in equation 4.21. The time derivative of each source term are evaluated numerically by using

the central-difference method. The analytical source terms are subsequently shown in figure 4.16. From

figure 4.16, it is clear that all four source terms have a frequency equal to the fundamental mutual slip-

through frequency. In addition, the amplitudes of each term are time-periodic. This is expected because

the classical leapfrogging motion repeats itself indefinitely. It is also clear that the dominant source term

is 3(∆ż)Ïl as it has the largest amplitude relative to the other three terms. It is also the only significant

contribution to the acoustic peak occurring at the slip-through instant. Conversely, the term 3(∆z̈)İl is

the important source term compared to the other three terms when examining the contributions to the

acoustic trough. Hence, the acoustic peak is strongly related to the coupling of the relative difference

between the axial velocities of the vortex rings and the radial acceleration of the initially leading ring.

Similarly, the acoustic trough is greatly influenced by the coupling of the difference between the axial

accelerations of the vortex rings and the radial velocity of the initially leading vortex ring.

Next, the time variations of the four source terms are calculated using the data output from the

viscous flow simulations. Due to the fact that the vortex core model used in the viscous flow simulations

is finite, hence the core centroids used in the calculations of the source terms are based on Lamb’s (1932)

definitions. The centroids of each core were obtained through numerical integration of the vorticity field

associated with each core. A sample time trace of the four terms are shown in figure 4.17. It should be

noted that the time trace is representative of the successive leapfrogging cycles because the circulation

of the flow is conserved and the trajectories of the core centroids presented earlier in the section on the

flow dynamics are largely repeatable with only minor variations. From figure 4.17, it is clear that all four

terms have the characteristic frequency of the leap-frogging motion. In addition, the amplitudes of the

first term is largest relative to the rest indicating that it is the dominant acoustic source. In contrast to

Tang & Ko, there were no wavy oscillations in any of the four source terms. This implies that the rate

of change of the axial acceleration of the vortex ring is not an important factor in the sound radiation of

co-axial viscous rings.

Apart from the quadrupole, another potential source that needs to be considered in aerodynamic

sound generation is the effect of the presence of viscosity. According to Kambe (1984), physical viscosity

acts as a monopole sound source. A sample of the time histories of the amplitudes of the monopole term

is shown in figure 4.18. It is clear that in both cases, the monopole is negligible because it is several

orders of magnitude smaller than the quadrupole term. This result is consistent with the observations of

Verzicco et al. (1997).
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4.6 Concluding remarks

Numerical simulations of the acoustic radiation from a pair of co-axial vortex rings moving along a

common axis of symmetry has been investigated in this study. Although the vorticity field of a real jet

is much more extensive and complex this simplified flow and acoustic model provides some insight into

vortex pairing and leap-frogging which can be present in jet shear layers. Thus, in view of exploring the

feasibility of using acoustic analogies in more complex flows, this study can be considered as a building

block towards the more complicated case of the sound radiation from flow exiting a round jet.

As the vortex rings are engaging in leap-frogging cycle, the vortex system is actually self-advecting

through the fluid. However, the acoustic analysis using the MAE technique assumes that the Mach

number is Ma → 0, i.e., the advecting vortex system reduces to a stationary point source in the acous-

tic approximation. The advecting vortex system adds a further complication when using the acoustic

analogies. Therefore, in order to be able to compare the results with the MAE solution, the translational

velocity of the mean axial position of the vortex system has to be removed from the axial velocity com-

ponent prior to calculating the acoustic source terms. Hence, the acoustic source terms, either Hl or Hp,

are effectively radiating sound from a fixed position in the acoustic domain.

The MAE technique is based on the assumptions of thin rings and an inviscid fluid. As a result,

the theoretical far-field acoustic pressure expression is devoid of any effect of core distortion. However,

the classical leap-frog motion is a highly idealised model. Shariff et al. (1998), and Tang & Ko (1995)

have used contour dynamics to show that for vortex rings having finite core thickness, the vortex cores

deforms into an elliptical shape during the leapfrogging motion. This results in the presence of wavy

oscillations superimposed on the far-field acoustic signals. The aim of this study is to investigate the

effect of varying the initial toroidal ring radius on the acoustic radiation using the two-step approach.

In sharp contrast to both authors, we found no presence of wavy oscillations in the time-trace of the

acoustic signals. Using Verzicco et al.’s. (1997) argument, the secondary frequency is approximately one

order of magnitude greater than the primary frequency and as such, may be filtered out by the sampling

interval.

Numerical simulations are performed at Re = 7500 with the ratio of the initial axial distance of the

vortex rings to the toroidal ring radius being zo/yo = 0.3 and 0.5. The deviation of the numerical results

with the MAE solution indicates that the acoustic signals are not completely dominated by the largely

inviscid leapfrogging motion. In particular, the difference in the acoustic signal’s waveform is greater

at aspect ratio zo/yo = 0.5. This is believed to be related to the core distortion which is also more

significant at zo/yo = 0.5. The amplitude of the peaks of the acoustic signal is dominated by the inviscid

phenomena while the waveform of the acoustic signal is dependent on both the leap-frogging motion and

the vorticity gradients.
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On the analysis of the acoustic sources, the magnitude of the quadrupole term increases as the aspect

ratio is increased from 0.3 to 0.5. In addition, the magnitude of the monopole term is at least one order of

magnitude smaller than the quadrupole term indicating the viscosity itself is a weak sound source. This

is consistent with Verzicco et al ’s. (1997) finding. Comparisons of the quadrupole source term calculated

using the data from the simulations with the classical model showed good agreement.

The effect of a finite Mach number is that the far-field directivity is not exactly identical to the

stationary lateral quadrupole field. In particular, as the Mach numbers is increased, the contributions

of other higher-modes becomes greater and as a result, the polar extinctions angles are shifted towards

the upstream direction. In addition, we do not expect to recover the theoretical polar extinction angles.

This is because at the lowest Mach number considered where the acoustic wavelength is approximately

63 times that of the initial ring toroidal radius, the polar extinction angles seems to have converged at

60.1◦ and 123.4◦.
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Chapter 5

Sound radiated by flow past a

rectangular plate

5.1 Summary

This chapter describes a numerical study of the sound radiation associated with the natural shedding

from laminar flow past a two-dimensional bluff body. The bluff body is rigid and is immersed in a fluid

having a uniform freestream velocity. The body geometry considered consists of a two-dimensional plate

(or cylinder) of rectangular cross-section. An interesting aspect of this flow problem is that the shedding

of vortices occur at both the leading and trailing edges of the plate. The presence of both leading-edge

shedding and trailing-edge shedding leads to more complex flow phenomena when compared to flow past

a circular cylinder. The latter related problem has been studied in detail recently by a number of authors

using a variety of alternative approaches. Inoue & Hatakeyama (2002) tackled the problem by solving

the compressible flow equations directly. Hardin & Lamdin (1984) used a method based on the acoustic

analogy. Shen & Sorensen (1999) treated the problem using an approach known as the acoustic/viscous

splitting developed by Hardin & Pope (1994). Such numerical studies provide a basis for comparison

with the predictions of the present study.

The bluff body under consideration is rectangular and its chord (c) is aligned in parallel to the

direction of the freestream velocity. The plate chord-to-thickness ratio is fixed at c/d = 7. Here, d is the

plate thickness. This particular aspect ratio is chosen because previous flow simulations by Tan (2000)

have shown that it leads to a stable and locked periodic shedding from both the leading and trailing

edges. In this study, the effect of the Reynolds number is considered by performing the flow simulations

at two different Reynolds numbers, Re = 300 and 400.
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For each Reynolds number, acoustic simulations are then performed at three different Mach numbers,

Ma = 0.05, 0.1 and 0.2. The acoustic computations are performed using the acoustic source terms

associated with both Lighthill (1952), and with Powell (1964). Both approaches give effectively the same

far-field behaviour although the spatial distribution of the near-field source field is surprisingly quite

different. This implies that the spatial terms represent potential acoustic sources while the properties

of the far-field acoustic signals are ultimately determined by the time variation of the potential acoustic

source field. The Lighthill acoustic source, Hl, is not as localised when compared with the Powell acoustic

source, Hp, because it retains an extra contribution in the form ∇2(u2/2), which only decays to zero

slowly away from the source. Möhring (1978) has shown that the far-field acoustic pressure is directly

proportional to vorticity. This implies that the Powell acoustic source falls to zero outside the boundary

layers and vorticity in the wake. In contrast, the slower decay rate of the Lighthill acoustic source away

from the bluff body means that, in general, it is more difficult to use in aeroacoustic computations as

it involves a larger spatial filter to decay the hydrodynamic terms so that ∇2(u2/2) converges to zero

outside the region of the potential acoustic sources.

In our analysis of the predicted sound field, we expand on the hypothesis first proposed by Yudin

(1947), and subsequently adopted by Etkin et al. (1954), that the acoustic source can be replaced by a

point force acting on the fluid. According to Etkin et al., this point force is equal and opposite to the

aerodynamic force experienced by the plate. Assuming that the direction of the point force is varying

with time sinusoidally, Etkin et al. predicted that the acoustic field is made up of two dipoles of different

strengths and orthogonal directivities. The dipole normal to the fluid stream is significantly stronger and

is associated with the fluctuating lift force, while the dipole parallel to the fluid stream is related to the

fluctuation in the drag force. Curle (1955) has also presented a similar argument from taking a formal

mathematical approach by integrating Lighthill’s acoustic wave equation over a flow which contained solid

boundaries to obtain a volume integral containing a distribution of quadrupoles and a surface integral

due to the surface pressure fluctuations over the boundaries. According to Curle, the distribution of the

quadrupoles in the wake is insignificant at low Mach numbers because it is a less efficient source than the

dipoles.

A primary result of this study is that the far-field sound has a dipolar nature. This dipole field

radiates in phase with the fluctuating lift force. It has a directivity normal to the longer sides of the

plate. This finding is consistent with to the numerical result from a direct compressible flow simulation

of flow past a circular cylinder by Inoue & Hatakeyama (2002). This dipole sound field due to the

fluctuating lift force has been well documented by past researchers (Gerrard (1955), Phillips (1956),

Etkin et al. (1954)) and is commonly known as the Aeolian tone (Strouhal (1878)). Furthermore, as the

magnitude of the lift force increases when the Reynolds number is varied from Re = 300 to 400, the

amplitude of the dipole field also increases. An additional fact, less well-known, is that by increasing the

Reynolds number, the weaker dipole sound field, which is associated with the fluctuating drag, becomes

more significant. However, at both Reynolds numbers, the drag dipole is still considerably weaker than
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the lift dipole.

By using a spatial filtering technique to selectively zero out the acoustic source field over certain

regions near the plate and most of the downstream wake, we found two interesting features of the

acoustic field. Firstly, the leading- and trailing-edge region can be described as separate sound sources.

Furthermore, because of the strong lock-in between the leading- and trailing-edge, both sound sources

are in phase and thus, complement each other.

Secondly, the acoustic source is mainly associated with the trailing-edge region. By comparison, it

appears that the leading-edge region, which still injects significant time-varying vorticity into the flow,

only contributes, at most, approximately 10% of the far-field acoustic amplitude when the Reynolds num-

ber is Re = 400. This finding is consistent with Howe’s (1975) interpretation of the acoustic generation

process. The vortices shed from the shear layer associated with the leading edge convect almost parallel

to potential acoustic field lines while moving along the sides of the plate. As a result, there is very little

injection/removal of energy into/from the acoustic field. In contrast, when the vortices move into the

wake (particularly near the trailing edge), they traverse potential acoustic field lines at an angle close

to 90◦. Hence, at this stage, the vortices can transfer significant energy between the flow and acoustic

fields. However, the analysis employed in this study (using spatial filtering) does not associate the sound

generation mechanism with either leading-or-trailing edge vortices. This is because to do so would require

tracking each individual vortex structure during the time evolution. This is an extremely difficult task

due to the merging of the leading-edge vortices with those from the trailing-edge as they interact with

each other while moving into the wake downstream of the plate.

After considering the location of the dominant sound source, we turned our attention to the propa-

gation behaviour of the sound waves as they radiate from the near-field to the far-field. Two factors that

may affect the characteristics of the propagation of sound waves are source compactness and Doppler

shift. The influence of both factors on the propagation characteristics can be studied by performing

a multipole expansion on the predicted sound field. The contributions of the various harmonic modes

present in the acoustic field are quantified as a function of the Mach number. The generalisation of the

pressure into a linear sum of harmonic modes is possible because of the linearity of the acoustic wave

equation.

The influence of the non-compactness of the acoustic source is analysed by quantifying the amplitudes

of the harmonic modes (which include a zeroth-order uniform directivity term). As the Mach number

of the sound field is increased, it is clear that the acoustic source becomes relatively less compact. At

both Reynolds numbers, the lift dipole remained the dominant term among the sine modes at all Mach

numbers. In contrast, the drag dipole only became the significant term among the cosine modes at

Ma = 0.05. The amplitude of the drag dipole was approximately one order of magnitude smaller than

that of the lift dipole.

106



Aeroacoustic computations using Lighthill’s acoustic analogy and Powell’s vortex sound theory do

not explicitly include the influence of non-zero Mach number on the propagation of the sound waves. This

is because the acoustic medium is assumed to be stationary, which has the advantage of allowing easier

identification of the multipole nature of the sound field. In particular, the lift dipole is very obvious.

However, finite Mach numbers are known to lead to significant shifts in the propagation of sound waves

to the far-field. This is shown by Inoue & Hatakeyama (2002) where the direction of the acoustic wave

propagation is upstream from the circular cylinder. To include the Doppler effect, postprocessing of

the predicted sound field is performed using the transformation, r
′

= r/(1 −M cos θ). After applying

this post-processing step, the acoustic field distribution is found to be very similar to that found for

a circular cylinder using direct simulations of the compressible flow equations by the above-mentioned

authors, which include Mach number effects. This postprocessing step has also been adopted by Inoue

& Hatakeyama when implementing Curle’s (1955) acoustic analogy.

5.2 Introduction

The study of acoustic radiation from flow past bluff bodies is an active area of investigation in the field

of aerodynamic sound as it underpins many important engineering issues such as flow-induced acoustic

and structural vibrations, mixing of fluids, automobile aerodynamics, fatigue and stress analysis, which

in certain cases may trigger structural failure. An important question that is still very much unanswered

is the physical mechanism of energy conversion from the fluctuating flow to the acoustic field. While

there have been extensive studies on the flow instabilities of bluff body wakes, both two-dimensional and

three-dimensional, resulting in a wide range of flow measurements such as lift and drag coefficients, base

suction, vortex formation lengths, to name a few, investigations into the acoustics associated with the

wake dynamics is however, very much lagging.

Historically, studies of sound generation from flows past rigid bodies have focused on the circular

cylinder. One of the earliest experiments on cylinder-induced sound was conducted by Strouhal in 1878.

Quantitative measurements were made of the frequency of the sound produced from flow past a wire

of circular cross-section. Strouhal observed that this frequency is related to the freestream velocity and

cylinder diameter such that fd/U∞ = 0.2 to 0.22 for a range of Reynolds number of Re = 300—104. This

non-dimensional parameter is now commonly known as the Strouhal number (St). Acoustic radiation

from flow past a 2D cylinder placed in a fluid stream has been studied experimentally by Etkin et al.

(1954), Gerrard (1955), and Phillips (1956). One of the earliest theories on the sound radiation from flow

past a bluff body came from Yudin (1945) who suggested that the Aeolian tone, which has a cross-stream

directivity, may be somehow related to the variable force acting on the circular cylinder.

Flow past elongated bluff bodies has been widely studied both numerically and experimentally by a
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number of authors including, amongst others, Parker & Welsh (1981), Stokes & Welsh (1986), Nakamura

et al. (1991), Ohya et al. (1992), Naudascher & Wang (1993), Tan (2000), Hourigan et al. (2001), and Mills

et al. (2002, 2003). The elongated bluff body which forms the basis of this study is a two-dimensional

cylinder of rectangular cross-section. This will be referred to as a rectangular plate (or cylinder) in the

remainder of this chapter. The plate has square leading and trailing edges, and is immersed in a uniform

flow as shown in figure 5.1. This flow is quite complex because vortex shedding occurs from both the

leading and trailing edges. There is a strong interaction which is controlled by a feedback loop acting

between the boundary layers on the plate surfaces and the wake vortices. This generally results in the

locking of both leading- and trailing-edge shedding for Reynolds number below approximately Re = 1000.

The nature of the flow also depends strongly on the aspect ratio (c/d =chord/thickness) of the plate. The

number of boundary layers vortices shed from the leading-edge and distributed along the plate varies in a

stepwise manner as the aspect ratio is increased due to the controlling influence of the feedback loop. The

mechanism of such flow instabilities appears to be due to a combination of impinging leading-edge vortices

(ILEVs) and trailing edge vortices (TEVs) when these vortex structures pass/form at the trailing edge.

A detailed explanation of the flow and the underlying mechanisms can be found in articles by Hourigan

et al. (2001), and Mills et al. (2002, 2003). For a more general treatment of flow instabilities, the reader

is advised to refer to Naudascher & Rockwell (1994).

For plate aspect ratio in the range 3.2 < c/d < 7.6, Parker & Welsh (1981), Stokes & Welsh (1986),

and Tan (2000) have found a regular wake pattern with a distinct shedding mode of n = 2, i.e., there

are two vortices originating from the leading edge distributed along both the top and bottom surfaces of

the plate at any given time. In this particular flow regime, both the leading- and trailing-edge shedding

is ‘locked’. Furthermore, the Strouhal number which is based on the plate’s thickness is approximately

constant across the regime. For the simulations described in this chapter, the aspect ratio is restricted to

c/d = 7. This is because previous simulations have shown that this aspect-ratio leads to a strong lock-in,

i.e., locking occurs rapidly and is relatively stable to perturbations (e.g., Tan (2000), Tan et al. (2003)).

This is advantageous from an acoustic study point of view because it allows the sound from a strongly

periodic source to be studied. Further follow up studies on the influence of different aspect ratio have

been planned but these will not be considered in this thesis.

The Reynolds numbers considered in this study are Re = 300 and 400. These values are chosen

because Re = 400 is approximately the Reynolds number at which the flow undergoes transition from

two-dimensional flow to three-dimensional flow. Thus, it is reasonable to treat the flow problem as two-

dimensional and thus, use a two-dimensional solver. For Re = 400, the leading-edge shedding is relatively

well-developed. As a result, modelling the low Reynolds number flow allows the main flow features to be

captured without the complications of three-dimensionality and turbulence which would otherwise occur

at higher Reynolds number. This allows us to focus exclusively on the role of the periodic leading- and

trailing-edge vortex structures as the sound generation mechanism in the acoustic study. At the lower

Reynolds number, Re = 300, the leading-edge shedding is significantly less vigorous. In addition, the

108



d

c

-

-

-

-

U∞

6
y

-x

-¾ l1 -¾ l2

6

?

l1

Figure 5.1: Schematic of flow past a long rectangular plate. Note that the sketch is not to scale.

trailing-edge shedding is less compact and not as intense as at the higher Reynolds number Re = 400.

Hence, the case of Re = 300 provides a useful comparison to the choice of Re = 400. In addition, the

flow dynamics of the vortex shedding from a plate at Re = 300 is quite similar to the two-dimensional

circular cylinder at Re = 150, which has been studied in detail by Inoue & Hatakeyama (2002). As such,

the results at Re = 300 can also be compared with the results of these authors. The change to the details

of the vortex structures has a direct influence on the multipole structure of the acoustic field. This point

will be addressed in greater detail in the later part of this chapter.

It comes as a surprise that while the acoustic radiation from flow past a circular cylinder has been

studied quite extensively, little attention has been paid to the other body geometries such as two-

dimensional plates of rectangular cross-section. Thus, the objective of this investigation is to study

the sound generated by laminar flow past a long rectangular plate with square leading and trailing edges.

The shedding process is natural, i.e., there is no external forcing imposed on the flow. This study can be

considered as a natural extension to the study of the Aeolian tones generated from a circular cylinder.

This is a limited parametric study that considers the effect of varying the Reynolds number of the flow

on the acoustic radiation. In particular, it was envisaged that the leading- and trailing-edges of the plate

act as separate sound sources. In addition, by varying the propagation speed of the sound waves (i.e.,

Mach number), we aim to clarify the effect of source compactness by decomposing the predicted sound

field into harmonic modes. The effect of the Mach number on the directivity and propagation of the

acoustic waves is also examined by postprocessing the acoustic solution.
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(a)

(b)

Figure 5.2: Typical mesh used in the respective (a) flow, and (b) acoustic simulations. Note that the size

of the CFD and CAA meshes are not to scale.
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5.3 Flow modelling issues

The fluid is assumed to be incompressible and Newtonian. As such, it is governed by the incompressible

Navier-Stokes equations. A schematic of the flow configuration is shown in figure 5.1. The plate centroid

is placed at (x, y) = (0, 0). This is a parametric study that only considers the sound radiation as a

function of the Reynolds and Mach numbers. The ratio of plate chord-to-thickness is fixed at c/d = 7.

As mentioned in the summary of this chapter, the chosen Reynolds numbers are Re = ρoU∞h/µ = 300

and 400. Here, the Reynolds number is based on the freestream velocity, U∞ and plate thickness, h. The

Strouhal number which is based on the plate chord is defined as St = fc/U∞. The Mach number of the

sound field is based on the freestream velocity and is Ma = U∞/co where co is the sound speed. Finally,

the source compactness is defined as ratio of the acoustic wavelength to plate thickness, λ/d.

5.3.1 Computational domain and boundary condition

The computational domain used in the flow simulation is shown in figure 5.2a. It is clear from this figure

that the grid points are concentrated towards the plate. The domain is discretised into a structured mesh

consisting of Nx×Ny grid points. In general, a structured mesh offers better convergence characteristics

over an unstructured mesh despite the reduced flexibility. The CFD domain effectively consists of two

regions with distinctly different grid distributions. The first region encloses the plate and has a uniform

grid spacing. It spans a distance 2d from all four plate boundaries (on all sides). This region includes the

boundary layers on the plate surface, the sharp velocity gradients as the flow separates from the leading

and trailing edges, and finally, the vortex formation region at the rear of the plate. In contrast, the grid

in the second region is stretched at the interface of the two regions and continues towards the boundaries

of the computational domain. This type of stretching is typical of aerodynamic simulations where the

most critical part of the mesh is close to the body.

An important feature of the computational grid is that local rate of stretching applied in the second

region across the four lengths (see figure 5.2a) is not identical. In particular, the grid stretching applied

towards the pressure outlet, associated with the length l2, is more gradual relative to the other directions.

This is expected since the wake downstream of the trailing face must be resolved adequately.

At the inlet, top and bottom boundaries, a freestream velocity U∞ in the x direction is applied. At

the outlet, a pressure boundary condition is imposed. At the plate surfaces, the no-slip velocity boundary

condition is imposed. The flow simulations are started from an irrotational state. Prior to execution of

the solver, the interior cells of the entire domain are initialised with the freestream velocity U∞. This is

to accelerate the development of the flow towards the asymptotic state.
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5.3.2 Domain size

When simulating viscous flow past a bluff body, the size of the domain can influence the dynamics of

flows near the body in three different ways. Firstly, locating the top and bottom boundaries too close to

the plate induces an artificial blockage effect. Secondly, incorrect placement of the upstream boundary

can prevent the correct development of the vortex shedding process. Finally, if the outflow boundary is

placed too close to the plate, it can induce a back-effect on the wake development. Because accurate

quantitative simulations of the flow are needed to generate the acoustic source field, it is vital that the

three above-mentioned effects are controlled so that the computed solution is acceptable to within a

certain tolerance level. In this study, the tolerance level was set at around 5% as a compromise between

accuracy, and computer-time and memory requirements.

As seen in figure 5.1, the size of the CFD domain is defined by three parameters. The parameter l1

is the distance from the inlet to the front face of the plate. It is also the distance from the top/bottom

boundary to the plate, while l2 is the distance from the rear face of the plate to the outlet boundary.

These distances are normalised by the plate thickness. Two different trial values were used to determine

the appropriate length for l1. Note that the parameter l2/d is fixed at 40 for these tests. The mean cp is

shown in Table 5.1. It is clear that the values of cp for l1/d = 15 and 20 for both Reynolds numbers are

within 1%. As such, the smaller length was deemed to be satisfactory.

5.3.3 Spatial and temporal resolution

From experience, it has been found that both the stability and accuracy of the predicted sound field are

very sensitive to adequately resolving the flow field (see also Cox et al. (1998)). This is because evaluation

of the acoustic source term, Hl or Hp, relies on the calculation of high-order spatial derivatives of the

hydrodynamic velocity field. In addition, it has been found through experience that the sharp corners

of the plate can lead to large local errors. However, the effect of these singularities can be reduced and

isolated through increasing the spatial resolution around the edges.

To determine the required spatial resolution, flow simulations were performed with an identical

domain but the minimum grid spacing ∆x/d was varied. In the present spatial resolution study, three

grid spacings of ∆x/d = 0.0125, 0.025 and 0.04 corresponding to 81, 51 and 25 grid points across the

plate thickness were used. The chosen domain size, which was determined through the study described

previously, is used in the spatial resolution study here. Again, the base pressure coefficient was used

to judge the difference in the solutions computed with different minimum grid spacings. The results

presented in Table 5.2 indicate that a resolution of ∆x/d = 0.025 produced a result with 0.5% of the

more highly resolved case.
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Re l1 l2 Mean cp

300 15 40 -0.332

300 20 40 -0.329

400 15 40 -0.483

400 20 40 -0.485

Table 5.1: The mean base pressure coefficient at the simulated Reynolds numbers as a function of domain

size.

Re ∆x/d Mean cp

300 0.04 -0.343

300 0.02 -0.332

300 0.0125 -0.331

400 0.04 -0.499

400 0.025 -0.483

400 0.0125 -0.481

Table 5.2: The mean base pressure coefficient at the simulated Reynolds numbers as a function of three

different grid resolutions.

In the grid and domain independence studies, the time-step used to advance the flow computations

was set at ∆t = 0.01. To verify that this was acceptable, a flow simulation was conducted with a smaller

time-step of ∆t = 0.005. The domain and the minimum grid spacing correspond to those used to generate

accurate data for the acoustic computation. Again, the values of the mean cp was used in the comparison

study. The change in cp was less than 0.2% indicating that the time-step of ∆t = 0.01 is indeed sufficient

to properly resolve the flow dynamics.

5.4 Acoustic modelling issues

The acoustic wave equation is solved numerically on a square domain. A typical computational mesh used

in the acoustic simulation is shown in figure 5.2b. There are several differences to note between the CAA

domain and the CFD domain. Firstly, the physical sizes of the CFD domain and CAA domain are widely

different. The CAA domain extends two acoustic wavelengths from the plate in both x and y directions.

As the Mach number decreases, the disparity of the size of the two domains become even larger. While

it would be preferable to capture more acoustic wavelengths, again, the choice is a compromise, this time

between computer-time and adequate representation of the properties of the far-field acoustic waves.
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5.4.1 Computational domain and boundary condition

Similar to the flow domain, the acoustic domain is discretised into a structured mesh but since it is a

square, hence the number of grid points in the x and y directions are equal. It is clear from figure 5.2 that

the grid distribution in the CAA domain is different to that of the CFD domain. Here, the grid density

near the plate has to resolve the acoustic source field which is calculated through high-order spatial

derivatives of the hydrodynamic velocities. In the far-field, the grid spacing is based on the resolution of

the acoustic waves with a minimum of 20 points across a wavelength. The disparity between the near-field

and far-field grid spacings are handled by a non-uniform mesh. The stretching in the CAA domain from

the near-field to the external boundaries has to be gradual to prevent generation of spurious waves at

numerical interfaces. Through previous experience with the isolated co-rotating vortex pair structure

and the co-axial vortex ring pair, a local rate of stretching of 3% was used in the acoustic simulation for

Re = 400 and at the lowest Mach number simulated in this study. The results indicated that the acoustic

signals were well-resolved. As such, for all further simulations the stretching of the acoustic domain was

kept at 3%. A direct result of such a small stretching rate is that the number of grid points in the domain

increases quite rapidly as the Mach number is decreased. The time step used to advance the acoustics

simulations is the maximum possible under the stability limits of the RK4 method.

At the surfaces of the plate, the reflecting boundary condition of Poinsot & Lele (1992) is applied.

With sixth-order spatial schemes, three ghost points were necessary in order to find the normal derivatives

of the acoustic variable close to the surface. The values of the acoustic variable at the ghost points are

obtained through the reflecting boundary condition. Thus, a central difference stencil can be applied

everywhere including the surfaces of the plate. The implementation of the reflecting boundary condition

on this particular flow geometry is relatively simple since the wall surfaces are flat. At the four edges of

the plate, the local value of the acoustic variable is obtained through averaging over the four neighbouring

points. At the external boundaries, the first-order radiation boundary condition of Bayliss & Turkel (1982)

is imposed. Here r denotes the radial distance from the source assumed to be at the plate centroid.

5.4.2 Spatial filtering of the hydrodynamic terms

When evaluating the acoustic source term on the CAA mesh, it is essential to ensure that the predicted

hydrodynamic fields are fully resolved (Crow (1970)) even away from the potential source terms. Other-

wise, local inaccuracies in the velocity field, which are amplified by the numerical differentiations required

for the source calculation can lead to the generation of spurious acoustic wave components which can

contaminate the acoustic solution.

To assist in reducing the need to fully resolve the flow away from the true acoustic source regions, a

spatial filter is used to smoothly reduce the source field to zero. The size of this spatial filter is governed by
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Figure 5.3: Schematic of the spatial filter used in the CAA domain. Note that the sketch is not to scale.

The bounds of the spatial filter are defined by the two parameters, lf1 and lf2.

two parameters, lf1 and lf2 (see figure 5.3). The parameter lf1 defines the decay length of filter function

placed upstream from the leading face, and also normal from the top and bottom side of the plate chord.

The other parameter lf3 represents the decay length of the filter function placed in downstream direction

from the trailing face. The choice of length of parameter lf1 is not as important as lf2 due to the fact

that no eddies actually pass the front or side boundaries. In contrast, sudden or abrupt termination of

the wake vortices through the outlet boundary leads to an artificial source of sound. Such an effect can

be easily revealed through performing flow simulations at a fixed value of lf1 but with different lengths

of the parameter lf2. The simulations with different lengths of lf2 can give an indication of the strength

of the artificially induced fluctuations.

At low Mach numbers, the main sources of sound are associated with the vortices around the plate

rather than the wake downstream of the plate (Curle (1955)), and these control the amplitude and phasing

of the acoustic signal in the far-field. Therefore the selection of a suitable length for lf2 should not affect

the acoustic results.

Thus, it is necessary to perform an extensive optimisation study the determine the appropriate decay

lengths to minimise the possible introduction of spurious waves. The decay begins at a normal distance

of three plate thicknesses away from the plate surface in each direction. To determine the suitable lengths

of the spatial filters, the parameter lf1/d is tested with lengths of 3, 4 and 5 while the other filter length

lf2/d was fixed at 30. Results show that there was little variation (phase and amplitude) in the acoustic

signals using different decay lengths. This was expected because the eddies do not pass through the lf1

region. As such, lf1/d = 3 was used in the flow simulations. Next, lf2 is tested for two more different

lengths at lf3/d = 20 and 25. In contrast to lf1, with the smaller lf3/d = 20, there was some phase

variations in the time histories of the acoustic signals when compared with the larger filter lengths. The

phase variations decrease as the length of the filter function is increased. Hence, it was decided in this

study to use the maximum permissible length, that is lf2/d = 30. The typical filter functions used in

the truncation of the hydrodynamic terms are shown in figures 5.5 and 5.6. From the figures, it is clear

that the filter function fy is symmetric about x axis and the filter length is largest in the downstream

direction. Note that the downstream decay only effectively begins approximately 8d from the trailing
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Figure 5.4: Distributions of the typical filter functions.
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Figure 5.5: A sample of the spatial distribution of the acoustic source term taken along the plate centre-

line, and starting from three thicknesses away from the trailing face and extending into the downstream.

The acoustic source term is H = (a) Hl, (b) Hp.

edge.

Once the hydrodynamic velocity field has been filtered, numerical differencing is then performed

on the velocity terms to calculate the respective acoustic source. A sample spatial distribution of the

acoustic forcing calculated using Lighthill acoustic source term before- and-after filtering is shown in

figure 5.5a. In figure 5.5b, the spatial distribution of the acoustic forcing downstream along the plate

centreline calculated using Powell’s acoustic source term before- and-after application of the filter function

is shown. As both figures show, the source function is finite and extends well downstream from the plate.

However, it will be shown that the wake is not an active part of the acoustic generation region at low

Mach number flows. In addition, it is evident while the absolute values of the source terms differ, the

decay rates of the two source terms away from the plate were approximately equal.
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5.4.3 Source decomposition

The acoustic source term derived from the instantaneous hydrodynamic field obtained from the flow

simulations cannot be used directly in the acoustic wave equation, or at least, it is preferable not to do

this. This is because the acoustic source term effectively contains both the fluctuating pressure (which

is unsteady) and the mean pressure (which is a function of space but temporally independent). In turn,

the source generates a pressure consisting of both a time-periodic component and a mean component. If

the acoustic simulation is undertaken using the acoustic source term as it is, the acoustic solution will be

dominated by, or at least contain, a significant contribution from the mean pressure which can mask the

fluctuating component. Since the mean component of the acoustic source does not contain any temporal

information, it should be removed prior to execution of the acoustic solver. This is analogous to the

step taken by Inoue & Hatakeyama (2002) in extracting the acoustic component from the instantaneous

pressure field in their direct simulations because the pressure field also contained a time-invariant mean

component.

To remove the mean component from the acoustic source term, the instantaneous acoustic source

term is decomposed to a time-averaged component, Ho and a fluctuating H
′

component as follows

H
′

(x, y, t) = H(x, y, t)−Ho(x, y), (5.1)

where H
′

is the instantaneous acoustic source term after subtracting the time-averaged component.

Prior to the removing the mean, the time-averaged acoustic source component is calculated through time

averaging the acoustic source over a finite number of lift periods.

If the time-averaged component of the acoustic source term is not removed prior to the acoustic

computation, the effect can be strong enough to lead the evolving pressure field to diverge. In passing,

we note that similar behaviour seems to have been observed by Mitchell et al. (1997), in their study of co-

rotating vortex pair sound using Lighthill’s acoustic analogy. They found that the pressure field diverged

during the calculations. The divergent nature of the pressure field in our study is probably due to the

introduction of finer scales that are not well resolved on the acoustic grid even though considerable effort

was made to maximise grid resolution. In any case, the mean source is irrelevant and even misleading,

and thus, decomposition of the source into a mean and fluctuating component is important in numerical

implementation of the acoustic analogy. It is worth noting here that the acoustic analogy is incapable

of presenting an accurate description of the acoustic pressure in the rotational region of the flow. Direct

numerical simulations can produce the fluctuating pressure field over the entire region but some means

of decomposing the hydrodynamic and acoustic pressure must be performed if one is interested in the

intermediate field acoustic behaviour.

The time development of the acoustic source terms, H
′

l and H
′

p are shown in a series of snapshots over

one shedding cycle in figures 5.6 to 5.9. For both sources, the initial snapshots are taken at the same phase
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of the shedding cycle. It is clear that the acoustic source fields of Lighthill and Powell are significantly

different spatially. However, temporal-wise, both source formulations oscillate at the shedding frequency.

From an implementation viewpoint, the input of the hydrodynamic fields into the acoustic computation

is through quintic spline interpolation using 21 stored fields per Strouhal shedding cycle.

5.4.4 Initial condition

The acoustic simulations are started with the source term initially set to zero over the entire domain.

Using a start-up function, the acoustic source field is then gradually ramped towards its true time-

dependent form. At all three Mach numbers, the ramp interval was set to half the lift period. This

amounted to approximately 1400–5600 acoustic time steps (depending on the Mach number) before the

acoustic source finally reaches its true value. Such a long ramp interval was required in order to reduce

the frequency of the initial wave transient, thereby reducing the generation of spurious waves as the

solution propagates across the stretched grid. It is important to note that the selection of this particular

ramp interval has been selected in conjunction with the local rate of stretching of 3%. Specifically, if the

local rate of stretching was further reduced, the ramp interval could be further decreased. Conversely,

the ramp interval might have to be increased if the local rate of stretching was more severe.

5.5 Results and discussion

As a precursor to discussing the results of the acoustic simulations, we first present the results of the flow

simulations. The CFD simulations were performed at two different Reynolds numbers, Re = 300 and

400. In each case, a plate chord-to-thickness ratio of c/d = 7 was adopted. In the flow simulations, the

plate is non-moving and is embedded in a fluid stream of unit freestream velocity. On the other hand,

both the medium and the plate are assumed to be stationary in the acoustic simulation (due to the low

Mach number approximation). This means the Doppler effect is excluded from the acoustic simulations.

In the acoustic simulations, the hydrodynamic simulations at the given Reynolds numbers are used to

predict the sound field at three different Mach numbers: Ma = 0.05, 0.1 and 0.2.

Flow dynamics

With the imposition of an initial condition of free-stream velocity everywhere in the domain, the flow

field took approximately 80 to 100 non-dimensionalised time units to start developing an asymmetric

pattern. The simulation then took a further 100 time units for the shedding of the vortices to become

periodic. To monitor the flow state, a time trace of the base pressure coefficient, cp, starting from the non-

dimensionalised time of 250 is presented in figure 5.10. The measurement of the base pressure coefficient
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Figure 5.6: Snapshots of instantaneous acoustic source showing the time development of the source region

around the plate. The forcing is evaluated using the Lighthill acoustic source term, H
′

l . Re = 300. The

times are: t = (a) 253, (b) 254.5, (c) 256.3, (d) 257.8, (e) 259.6. The contour levels are Hl = ±0.5 with

∆Hl = 0.05. The source term has been non-dimensionalised with respect to U∞ and d.
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Figure 5.7: Snapshots of instantaneous acoustic source showing the time development of the source region

around the plate. The forcing is evaluated using the Powell acoustic source term. H
′

p. Here, Re = 300.

The times are: t = (a) 253, (b) 254.5, (c) 256.3, (d) 257.8, (e) 259.6. The contour levels are Hp = ±4

with ∆Hp = 0.4. The source term has been non-dimensionalised with respect to U∞ and d.
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Figure 5.8: Snapshots of instantaneous acoustic source showing the time development of the source region

around the plate. The forcing is evaluated using the Lighthill acoustic source term, H
′

l . Here, Re = 400.

The times are: t = (a) 250.4, (b) 251.9, (c) 253.4, (d) 255.2, (e) 256.7. The contour levels are Hl = ±1

with ∆Hl = 0.1. The source term has been non-dimensionalised with respect to U∞ and d.
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Figure 5.9: Snapshots of instantaneous acoustic source showing the time development of the source region

around the plate. The forcing is evaluated using the Powell acoustic source term, H
′

p. Here, Re = 400.

The times are: t = (a) 250.4, (b) 251.9, (c) 253.4, (d) 255.2, (e) 256.7. The contour levels are Hp = ±4

with ∆Hp = 0.4. The source term has been non-dimensionalised with respect to U∞ and d.
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Re c/d St c̄p c̄d σcl

300 7 0.152 -0.332 0.864 0.0973

400 7 0.156 -0.483 1.005 0.1655

Table 5.3: Shedding frequency, mean base pressure coefficient, mean drag coefficient, and standard

deviation of the lift coefficient at the two Reynolds numbers simulated.

was taken at the centre of the trailing edge of the plate. It is clear from the figure that the flow has

reached an asymptotic state in the Reynolds number range simulated. The signals at both Reynolds

numbers become strictly periodic, indicating that the flow is strongly locked to the particular shedding

mode. Furthermore, the mean and amplitude of cp increase with the Reynolds number. As the base

pressure is strongly related to the overall drag, this indicates that the amplitude of the fluctuating drag

force also increases with Reynolds number.

The shedding frequency is estimated from the time histories of cp. The period of cp is half that of

the shedding because the base pressure coefficient is measured at the centre of the trailing face of the

plate. There was less than a 3% variation in the Strouhal number between the two Reynolds numbers

(see Table 5.3).

The time development of the flow in the near field is depicted through a series of instantaneous plots

of vorticity totalling one shedding cycle as shown in figures 5.11 and 5.12 for the two Reynolds number

cases. For both Reynolds numbers, the first vorticity plot was taken at approximately the same phase of

the shedding cycle. The figures show that the shedding process at both Reynolds numbers correspond

to the n = 2 shedding mode. The figures also reveal that the vortices shed at the trailing edge occur in

between the passing of the leading edge vortices over the trailing edge. Away from the plate, the leading-

and trailing-edge vortices form a combined wake vortex which then convects at an approximately constant

convective velocity. The phase of the leading- and trailing-edge shedding appears to be the same for both

Reynolds numbers. From the figures, it is clear that the vortex shedding is more well-defined for the

higher Reynolds number flow. In particular, the vortices along the plate chord are more concentrated

and intense. In addition, the vortex formation region at the trailing edge is shorter with the vortices

more compact at Re = 400. In contrast, at the lower Reynolds number, the vortices along the top and

bottom sides of the plate are more diffusive and less compact. This is the likely explanation for the

increased drag fluctuations shown later in figure 5.13b. As described previously, this particular aspect

ratio leads to a strong lock-in of both leading- and trailing-edge shedding. The phasing just described is

associated with this phenomenon. Tan et al. (2003) have found that strong lock-in and high base suction

are associated with the leading-edge vortex not reaching the trailing-edge until the trailing-edge vortex

has time to develop and begins to shed. This phasing varies little between different aspect ratios (due to

the existence of a feedback loop), until a switch occurs to a new shedding mode.
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Figure 5.10: A sample trace of 25 time units of the base pressure coefficient taken at the centre of the

trailing face.

5.5.1 Lift and drag forces

The aerodynamic forces acting on the plate are global quantities and as such, are obtained through

integrating the pressure acting over the entire surface of the plate. In the case of a rectangular plate,

the drag force is caused by the difference in pressure across the front and rear faces while the lift force is

caused by the pressure difference across the top and bottom surfaces of the plate. Owing to the moderate

Reynolds number of the flow, viscous forces are not expected to contribute significantly to the lift and

drag forces.

The lift coefficient, cl, and drag coefficient, cd, (per unit span) are defined as follows

cl =
L

0.5ρoU2
∞c

, (5.2)

cd =
D

0.5ρoU2
∞d

. (5.3)

where L and D represent the dimensional lift and drag force components, respectively.

Inoue & Hatakeyama (2002) have shown that there is little variation in the magnitudes of both the

lift coefficient and the drag coefficient for flow past a circular cylinder across the Mach number range

Ma = 0.1 to 0.3 at a Reynolds number of Re = 150. Figure 5.13a and 5.13b show the time histories of

the lift coefficient and the drag coefficient at Re = 300 and 400. Similar to cp, the periodic nature of the

time traces of both cl and cd indicate that the flow is strongly locked to the n = 2 shedding mode. As

expected, the mean of the lift coefficient is zero because the plate geometry is symmetric about the x

axis. Therefore, the standard deviation of the lift coefficient is used in the analysis.

Figure 5.13a clearly show that the variation in cl increases as the Reynolds number is increased from
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Figure 5.11: Snapshots of instantaneous vorticity to show the time development of the flow structure

around the plate at Re = 300. The simulation time is t = (a) 253, (b) 254.5, (c) 256.3, (d) 257.8,

(e) 259.6.. The range of the contour levels is ω = ±3 with ∆ω = 0.3. The vorticity has been non-

dimensionalised with respect to U∞ and d.
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Figure 5.12: Snapshots of instantaneous vorticity showing the time development of the flow structure

around the plate at Re = 400. The simulation times are: t = (a) 250.4, (b) 251.9, (c) 253.4, (d) 255.2,

(e) 256.7. The contour levels are ω = ±4 with ∆ω = 0.4. The vorticity has been non-dimensionalised

with respect to U∞ and d.
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Figure 5.13: A sample trace of 30 time units of the (a) lift coefficient cl, and (b) drag coefficient cd, at

the two Reynolds numbers.
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Re = 300 to 400. The peaks in cl are not in phase between Reynolds number as they are dependent

on the initial conditions. This issue is however of little significance in this study. A more important

point is that the increase in the magnitude of the lift fluctuations when the Reynolds number is varied

from Re = 300 to 400 is attributed to the more intense vortex structures at the edge of the plate. The

contributions to the lift force from the vortices along the top and bottom sides of the plate chord are

negligible as they cancel each other out. Figure 5.13a also shows that the magnitude of the fluctuations in

cl is much greater than that of cd. Using Etkin’s et al. (1957) argument that the strength of the acoustic

signal is proportional to the amplitude of the fluctuating force, this would suggest that in the present

acoustic study, the lift dipole would be be much more significant than the drag dipole. After comparing

the relative magnitudes in the lift and drag fluctuations, both lift and drag dipoles are expected to be

more intense at Re = 400. While Inoue & Hatakeyama (2002) have shown that the acoustic generation

mechanism is independent of Mach number in the range 0.1 ≤ Ma ≤ 0.3, our results indicate that the

source mechanism is influenced by the Reynolds number. These points will be examined in greater detail

subsequently in section 5.5.2.

In the following section, we proceed to present the results of the aeroacoustic simulations. In the

analysis of the acoustic-flow interactions, we investigate the effect of Reynolds number on the sound field.

The differences in the acoustic solutions obtained from using the acoustic source terms of Lighthill and

Powell are also discussed. The finding that the total force coefficient is non-zero, implies the existence of

an acoustic monopole in the predicted sound field is plausible. This is analysed through decomposition

of the sound field into harmonic modes.

As described, the acoustic simulations are performed at a low Mach number, however, using the

spatial transformation r
′

= r/(1 −M cos θ), it is possible to postprocess the field predictions to include

the Doppler effect of the moving fluid medium. This is discussed in more detail below.

5.5.2 Propagation and decay of the acoustic waves

As mentioned for the flow simulation, the acoustic simulations were conducted at three different Mach

numbers, Ma = 0.05, 0.1 and 0.2. While the flow solver was started from an irrotational, stationary

state, data acquisition for the evaluation of the acoustic source term was carried out only after the flow

had reached an asymptotic state corresponding to about 30 shedding periods. This is to ensure that the

hydrodynamic velocity field used to generate the acoustic source field for the CAA solver corresponded

to the fully locked shedding mode. The acoustic simulation was subsequently evolved for approximately

four shedding cycles.

Time histories of the acoustic pressure fluctuations located at (r, θ) = (0.5λ,±90◦) for Ma = 0.05, 0.1

and 0.2 are shown in figures 5.14 (calculated using Hl), and figures 5.15 (calculated usingHp). The spatial
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term r is the polar radius while the angle θ is measured from the x axis. The designated observation

points are representative of the far-field acoustic behaviour because further monitoring positions located

between 0.5λ and 2λ showed identical propagation characteristics. The pressure traces are provided

for both the predictions based on Lighthill’s source and Powell’s source. It is clear that both source

formulations are producing acoustic signals that are virtually indistinguishable from one another. This is

despite the seemingly extreme difference in the spatial distribution of the source fields as seen earlier in

figures 5.6—5.9. This emphasizes that it is the temporal variation of the source terms that is ultimately

responsible for determining the properties of the acoustic signals.

The first peak in the time histories of the acoustic signals showed a slight difference in both amplitude

and frequency when compared with the subsequent peaks. This is because it was partially a result of

the start-up function. It is clear that the moderate local rate of stretching coupled with the start-up

function has restricted the initial transients so that they do not overly contaminant the true field and

can be successfully propagated out of the domain.

At the selected angle of θ = ±90◦, the amplitude of the fluctuations is at its maximum in accordance

with the direction of the lift force. This is expected because the shedding of the leading- and trailing-

vortices is symmetric about the x axis. The frequency of the acoustic oscillations matches the shedding

frequency indicating the acoustic signals are also locked to the shedding mode n = 2. At both Reynolds

numbers, each time the Mach number is halved, the amplitude of the sound signal drops by approximately

an order of magnitude. At a particular Mach number, the acoustic signal increases with Reynolds number

indicating that the strength of the acoustic generation mechanism increases with Reynolds number.

Typical coloured contours of the far-field pressure at the three different Mach numbers are presented

in figures 5.16a-c for Re = 300, and figures 5.16d-f for Re = 400. The far-field pressure contours are

taken at the instantaneous time of t = 274. At both Reynolds numbers, we can readily see that the

acoustic solution is dominated by a dipole that is radiating from the plate in the direction normal to the

fluid stream. Because the acoustic analogy does not include the effect of the Doppler shift, the signs of

the pressure field at the three different Mach numbers are alternating at θ = ±90◦. Also, it is clear that

the drag dipole is not immediately observable from the instantaneous contour plots. This may be due to

the small amplitudes of the pressure fluctuations associated with the drag dipole which are masked by

the more dominant lift dipole. This is consistent with previous discussion of the relative magnitudes of

the lift and drag fluctuations.

AtRe = 300, the temporal traces are close to sinusoidal over the entire Mach number range simulated.

However, at Re = 400, while the traces are periodic over the Mach number range simulated, they become

less sinusoidal as the Mach number is decreased. This is particularly apparent at the lower Mach number.

This is in contrast to the time variations from those presented by Inoue & Hatakeyama (2002), which

showed a sinusoidal time variation from Ma = 0.05 to 0.2. At Ma = 0.2, the time variations are sinusoidal
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Figure 5.14: Time histories of acoustic pressure fluctuations calculated using Hl and located at (r, θ) =

(0.5λ,±90◦) at the three different Mach numbers, Ma = (a)&(d) 0.2, (b)&(e) 0.1, (c)&(f) 0.05. Here,

the figures on the left column are for Re = 300 while the figures located on the right column are for

Re = 400.
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Figure 5.15: Time histories of acoustic pressure fluctuations calculated using Hp and located at (r, θ) =

(0.5λ,±90◦) at the three different Mach numbers, Ma = (a)&(d) 0.2, (b)&(e) 0.1, (c)&(f) 0.05. Here, the

figures on the left column as for Re = 300 while the figures located on the right column are for Re = 400.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.16: Contours of the acoustic pressure at a particular time instant of t∗ = 275. Left-hand column

represents Re = 300 and right-hand column represents Re = 400. The Mach numbers are: Ma = (a)&(d)

0.2, (b)&(e) 0.1, (c)&(f) 0.05. The minimum and maximum contour levels are: (a) ±5 × 10−4, (b)

±5× 10−5, (c) ±5× 10−6, (d) ±7.5× 10−4, (e) ±7.5× 10−5, (f) ±7.5× 10−6. There are 10 increments

between the minimum and maximum levels.
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because the acoustic signals are more affected by the near-field hydrodynamic pressure fluctuations which

are sinusoidal over time (as evident from the cp plot). The locations of the monitoring positions in terms

of the plate thickness decrease as the Mach number is increased. The fact the acoustic signal traces

at low Mach number are not sinusoidal at Re = 400 is perhaps not surprising as the flow situation

here is more complex than that of a circular cylinder. In particular, both the leading- and-trailing edge

vortices may be associated with the maintenance of the sound field. In addition, despite the locking of

both sheddings, it is not clear that they have the same phase relationship with respect to the acoustic

oscillations. The higher Reynolds number also leads to more intense vortex structures that are likely to

produce a non-sinusoidal near-field source and its associated acoustic far-field.

To show the decay of the pressure waves, radial distributions of the acoustic pressure fluctuations at

θ = 90◦ at different times are shown in figure 5.17. Note that the spatial distribution y in both figures do

not start from zero. This is because the amplitudes of the pressure fluctuations near the plate are much

larger than the amplitudes of the far-field acoustic fluctuations. Since the pressure fluctuations near the

plate contain both near-field and far-field effects, the values close to the plate should be ignored when

considering the decay of acoustic waves. It is clear that the pressure waves propagating away from the

plate decay with radial distance.

The amplitude of the drag dipole is smaller than that of the lift dipole. Comparing the waveforms

with those for the circular cylinder, the variation in shape may be explained in terms of pulses generated by

vortex shedding. Leading-edge shedding and trailing-edge shedding from each side of the plate generate

pulses which are out of phase. If each pulse generates a sinusoidal signal, the superposition from the

leading and trailing edges combine to form a non-sinusoidal pressure.

5.5.3 On the relationship between the aerodynamic forces, vortex shedding,

and the fluctuating acoustic pressure

In order to see the relationship between the aerodynamic forces and the time-development of the near-

field flow structures, the time-history plot of cl (see figure 5.13a) and the instantaneous plots of vorticity

(see figures 5.11a-e and 5.12a-e) were used to correlate the lift force with the vorticity field. We found

that whenever the lift coefficient has a positive peak, a vortex is shed off the upper trailing edge of the

plate. Conversely, a vortex is shed off the lower trailing edge at times when cl is a local minimum. This

finding is consistent with the observations of Inoue & Hatakeyama (2002) even though the flow situation

here is more complex.

Inoue & Hatakeyama have also found that the acoustic peaks on the upper and lower sides of the

cylinder were in phase with the alternate shedding of the vortices from both sides of the cylinder. To shed

further light into the relationship between the vortex shedding and generation of the acoustic waves in
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Figure 5.17: Spatial distribution of the acoustic pressure to show the propagation and decay character-

istics. Here, Re = (a) 300, (b) 400.
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the present study, the phase relationship between the shedding of a vortex structure at the trailing edge

and the acoustic peaks is correlated through the instantaneous vorticity plots and the time histories of

the far-field pressure fluctuations normal to the top and bottom plate chord. It is clear that the shedding

of a vortex at the upper trailing edge corresponds to a negative pressure peak at θ = 90◦ and a positive

pressure peak at θ = −90◦. Conversely, at a typical time instant when a vortex is shed off the lower

trailing edge, the pressure peak at θ = 90◦ is positive while the pressure peak at θ = −90◦ is negative.

This finding is similar to Inoue & Hatakeyama. In short, the alternate shedding of the vortices from

the upper- and-lower trailing edges of the plate corresponds to the generation of negative and positive

pressure peaks from the top and bottom sides of the plate chord.

Furthermore, Inoue & Hatakeyama went on to suggest that the generation of the acoustic waves can

be described in terms of pressure pulses. These pulses are generated as a result of the vortex shedding

from the sides of the circular cylinder. In contrast to the circular cylinder, vortex shedding occurs at both

the leading- and-trailing edges of the plate. Since the leading- and trailing-edge shedding are locked, the

pulses generated from the respective leading- and-trailing edge regions will also be locked in frequency.

However, it is not clear that there will not be a phase difference between the two regions since vortex

growth and subsequent shedding do not necessarily have to follow the same behaviour between the two

regions. In addition, as the leading-edge vortices pass the trailing-edge region there may be another

burst of sound generation. In fact, the passage past the trailing-edge occurs in between the formation

and shedding of vorticity from the trailing edge. Thus, because of these phase differences, even if the

individual source components all radiate sinusoidally, the combination is likely to lead to a non-sinusoidal

far-field acoustic signal. Note also that the relative strengths of pulses generated from the leading- and-

trailing edge are expected to differ.

An attempt is made to try to quantify the effective sound generation from both the leading- and

trailing-edge regions in section 5.5.6.

5.5.4 The effect a non-stationary fluid medium: the Doppler shift

Inoue & Hatakeyama (2002) has already shown that the Doppler effect plays a significant role in the

propagation of sound waves from the near-field to the far-field. Specifically, they found that at Ma = 0.2,

the acoustic waves propagate in the upstream direction at an angle θ = cos−1(Ma) = 78.5◦. The

Doppler shift caused by finite Mach number has so far been ignored in this chapter. This is because the

acoustic wave equation does not explicitly include a convective term (and this actually has advantages

for interpreting the pressure field in terms of multipoles). However, since the convective term caused by

a moving acoustic medium merely transports the pressure signal in the direction of the moving fluid, the

effect can be included in the far-field signals through a post-processing step. This involves a spatial shift
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in the radial position. The spatial transformation is defined as follows

r
′

=
r

1−Macos θ
(5.4)

where r
′

is the Doppler-shifted radial coordinate and the angle θ is measured in the clockwise direction

from the −ve x axis. This relationship is valid if we assume that the Mach number is very small. At the

particular angle of θ = ±90◦, the modified wave propagation speed, c
′

o = co, indicating that the acoustic

waves are free from any Doppler’s effect. However, c
′

o has a local minimum at θ = 0◦. This implies that

the pressure waves take longer to reach a specified far-field observation position. Conversely, at θ = 180◦,

c
′

o = (1 +Ma)co and as such, the pressure waves takes a shorter time to reach an equi-distance far-field

observation position.

The instantaneous contour plots with the Doppler shift included in shown in figures 5.18. The

deviation of the propagation angle from 90◦ of the (dipolar) acoustic waves when the Doppler effect is

included is clearly seen when the pressure contour plots are compared to those without the Doppler shift.

As found by Inoue & Hatakeyama (2002), the Doppler shift causes a twisting of the apparent dipolar field

towards the upstream direction. While this effect is clear at Ma = 0.2, as the Mach number is decreased,

the upstream twisting decreases and the propagation angle moves towards 90◦ at Ma = 0.05.

5.5.5 Decomposition of the sound pressure

In the limit Ma −→ 0, the sound waves effectively propagate from the centroid of the plate. In the study

by Etkin et al. (1954), the centre of the circular cylinder was assumed to be the location of the sound

source. In the present study, the plate centroid is assumed to be the centre of the acoustic far-field.

Decomposition of the pressure waves into multipole components allows us to quantify the ampli-

tudes of the various multipole components contributing to the overall sound field. The phasing of the

aerodynamic forces, as presented earlier in section 5.5.3 suggests that the predicted sound field consists

not only of dipolar components but a monopole and higher-order multipoles as well. Hence, to determine

if this is true, a multipole decomposition needs to be performed. We adopt the same expansion of the

pressure field used by Inoue & Hatakeyama (2002), i.e., the fluctuating acoustic pressure p is composed

of the sum of harmonic functions as follows

p(x, y) = Ao(x, y) +Bm(x, y) cos(mθ) + Cm(x, y) sin(mθ). (5.5)

where Ao is the zeroth-order mode, m is an integer between 1 and ∞, Bm is the mth order cosine mode

and Cm is the mth order sine mode. The respective modes are defined from the following relations

Ao =
π

2

∫ 2π

0

p(x, y, t)dθ, (5.6)

Bm = π

∫ 2π

0

p(x, y, t) cos(mθ)dθ, (5.7)
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(a) (d)

(b) (e)

(c) (f)

Figure 5.18: Contours of the Doppler-shifted acoustic pressure at a particular time instant of t∗ = 275.

Left-hand column represents Re = 300 and right-hand column represents Re = 400. The Mach numbers

are: Ma = (a)&(d) 0.2, (b)&(e) 0.1, (c)&(f) 0.05. The minimum and maximum contour levels are: (a)

±5× 10−4, (b) ±5× 10−5, (c) ±5× 10−6, (d)±7.5× 10−4, (e) ±7.5× 10−5, (f) ±7.5× 10−6. There are

10 increments between the min and max contour levels.
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Cm = π

∫ 2π

0

p(x, y, t) sin(mθ)dθ. (5.8)

The first-order sine harmonic component, C1 is an odd-order function that has a directivity normal

to the fluid stream and as such, represents the lift dipole. Conversely, the first-order cosine harmonic,

B1 is aligned parallel to the fluid stream and is known as the drag dipole. The values of the harmonic

modes were obtained by numerically integrating the pressure fluctuations along a circle at r = λ. Only

modes up to m = 3 are included as the contributions of higher-order modes are too small to be of any

real significance. Since the CAA grid is Cartesian, the bilinear method was used to interpolate the nodal

values from the grid to the radial integration points. The integration method used was Simpson’s 1/3 rule

with 50 increments over 2π. It was verified that the results were insensitive to the number of increments.

On the effect of source compactness

Figures 5.19(a)-(c) show the time histories of the amplitudes of the harmonic sine modes, Cn=1,2,3, at

Re = 300. It is clear that the dominant mode corresponds to the n = 1 sine mode. This indicates that the

lift dipole is dominant at all three Mach numbers. The amplitudes of the higher-order sine modes become

more prominent as the Mach number is increased owing to the non-compactness of the source region.

This is also seen in the time histories of the cosine modes, Bn=1,2,3, as shown in figures 5.19(d)-(f). The

cosine modes oscillate at twice the shedding frequency. In contrast to the sine modes, the drag dipole

was found to be only dominant relative to the m = 2 and m = 3 cosine modes at a Mach number of

Ma = 0.05. At Ma = 0.1 and 0.2, the amplitudes of all the three cosine modes were comparable. This

indicates that at higher Mach numbers, the drag dipole is not the significant cosine mode because the

non-compactness of the acoustic source term results in other modes having similar amplitudes to the drag

dipole. This is consistent with the observations of Hardin & Pope (1984) who found that the fourth-order

harmonic was larger than the second-order harmonic when measuring the drag coefficient cd.

The time histories of the amplitudes of the harmonic modes at the higher Reynolds number Re = 400

are shown in figures 5.20(a)-(f). Basically, the observations that were reported for the Re = 300 case are

also found for the Re = 400 case. Again, the lift dipole component, C1 is dominant at all three Mach

numbers. In addition, the drag dipole only became significant at the lowest Mach number simulated:

Ma = 0.05.

There are, however, two differences that should be noted between the results at the two Reynolds

numbers. Firstly, the relative strength between Cl/B1 was approximately two orders of magnitude when

the Reynolds number was Re = 300. At Re = 400, the difference between C1/B1 has dropped to

approximately one order of magnitude. This means that the drag dipole becomes more important as the

Reynolds number is increased. However, it is also clear that the lift dipole is still considerably larger

in the range of Reynolds number simulated in this study. Secondly, the form of the lift dipole signal at
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Re = 400 is less sinusoidal compared with the lower Reynolds number case.

On the presence of the zeroth-order mode (i.e., monopole)

Apart from the presence of the mth-order harmonic modes, the decomposition also revealed the presence

of a zeroth-order mode of uniform directivity oscillating at the drag frequency. As the Reynolds number

is increased from Re = 300 to 400, the monopole increased by approximately one order of magnitude.

Even though the monopole has only negligible influence on the acoustic field, it is however, of interest to

understand the cause of its presence. Etkin’s et al. (1954) mathematical representation of a concentrated

point force results only in a pair of orthogonal dipoles and does not have a monopole component as

predicted in this study. This is because the variation in phase of the total force vector acting over the

cylinder (
√

c2l + c2d) was not taken into consideration. While the lift and drag dipoles were proportional

to the amplitudes of the fluctuating lift and drag forces, it is argued here that the phase variations of the

force distributed over the surfaces of the plate would lead to a pulsating monopole of uniform directivity.

Phase plots of cl vs cd for both Reynolds number are shown in figures 5.21. If the periodic variations of

cl and cd were to traverse along the same curve, there would be no phase shift in the total force vector.

However, it is clear that from figure this is not the case. Hence, this leads to the presence of a zeroth-order

mode.

5.5.6 On the location of the dominant source region

In this section, localised spatial filtering is used to examine the hypothesis that the trailing-edge region

is the location of the dominant acoustic source. Here, the acoustic simulation is performed with spatial

filtering of the acoustic source field. In particular, the filtering is used to zero the source over certain

spatial regions to try to isolate the major spatial contributor leading to energy input into the acoustic

field. The resulting amplitude and phase of the far-field fluctuations are then compared with the previous

results. This, in effect, then enables us to deduce the percentage contribution of different regions to the

overall acoustic field.

In previous simulations, the horizontal spatial filter acts between 3 and 30 plate thicknesses down-

stream of the trailing edge. Here, to artificially remove the source near the trailing-edge region of the

plate, the starting position of the spatial filter is moved inside of the trailing edge towards the plate cen-

troid. The decay length, lfx, is fixed at 3 plate thicknesses. This ensures that only the leading-edge region

is captured as an acoustic source region. Simulations were performed with different starting positions to

verify that the results were insensitive to this parameter.

Figures 5.22(a)&(b) show the time-histories of the fluctuations at Reynolds numbers Re = 300 and

400 at the identical Mach number of 0.05. It is clear that the amplitude of the acoustic signals are now
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Figure 5.19: Time histories of the amplitudes of the cosine and sine modes at Re = 300. The amplitude

of the wave modes are calculated by integrating over a circle at r = λ. The subfigures correspond to

Ma = (a)&(d) 0.2, (b)&(e) 0.1, (c)&(f) 0.05.
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Figure 5.20: Time histories of the amplitudes of the cosine and sine modes at Re = 400. The amplitude

of the wave modes are calculated over a circle at r = λ. Different subfigures correspond to Ma = (a)&(d)

0.2, (b)&(e) 0.1, (c)&(f) 0.05.
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Figure 5.21: Phase plot of cl vs cd at Re = (a) 300, (b) 400.
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Figure 5.22: Time history of the acoustic signals at radial location r = 0.5λ. In these simulations, only

the leading-edge region of the plate is captured when evaluating the source field. Here, the Reynolds

numbers are: Re = (a) 300, (b) 400.

significantly weaker previously when the full acoustic source was included. In particular, at Re = 400,

the contribution of the leading-edge region to the acoustic field is at most approximately 10% relative

to the case with both the leading- and trailing-edge source contributions included. As such, the leading-

edge region is a weak source compared to the trailing-edge region. This is consistent with Howe’s (1975)

interpretation of the acoustic generation mechanism. Another interesting point of note is the fact that

time variations of the acoustic signals presented in figures 5.22(a)&(b) are close to sinusoidal at both

Reynolds numbers. This suggests that the non-sinusoidal traces present at Re = 400 when both leading-

and trailing-edge regions were considered are a result of the trailing-edge source region, or at least, the

combination of the leading and trailing-edge regions.
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5.6 Concluding remarks

Of the three aeroacoustic problems examined in this thesis, the numerical simulation of the aeroacoustics

associated with vortex shedding from flow past a long, flat plate proved to be the most challenging.

Apart from the increased difficulty in adequately resolving the flow field to provide accurate quantitative

data for the acoustic source evaluation, the implementation of the steps in the acoustic modelling for

this particular flow geometry was also found to be quite challenging. However, in terms of computational

cost, the two-step aeroacoustic method is still considerably less expensive than direct simulations of

compressible flows, especially at low Mach number.

Because the spatial decay of the Lighthill acoustic source field is much more gradual than that of

the Powell acoustic source field, care must be taken to avoid introduction of spurious noise which may

degrade the solution or even lead to divergence. In particular, the Lighthill source is more prone to

problems with initial acoustic transients from switching on the acoustic source too suddenly, problems

with filtering the source away from the dominant region near the body, and stretching of the acoustic

grid. Mitchell et al., (1995) also found similar problems with this formulation from a practical point of

view. Since both formulations effectively radiate the identical acoustic signals at low Mach numbers, we

strongly recommend Powell’s vortex sound theory for further work on the aeroacoustic phenomena from

flows past rigid bluff bodies.

In this investigation, the acoustic waves are generated from the strong lock-in between the leading-

and-trailing edge shedding corresponding to the n = 2 shedding mode. The acoustic computations at

Re = 300 and 400 produced similar radiating pressure distributions to those observed for a circular

cylinder. The lift dipole clearly dominated the drag dipole by at least an order of magnitude in the

amplitude of the far-field pressure fluctuations at the higher Reynolds number and more at the lower

Reynolds number. However, although the drag dipole was not apparent for sound produced by vortex

shedding from a circular cylinder, it was observable in this study. A key difference in the far-field

fluctuations between the plate and the circular cylinder is the non-sinusoidal nature of the pressure time

histories for the plate. This is especially apparent for the case of Re = 400, and for the lower Mach

numbers: Ma = 0.05 and 0.1. We have suggested that this may be associated with the phase differences

between different contributors to the acoustic source, in particular, the sources associated with vortex

shedding from the trailing edge, and those from formation and shedding of leading-edge vortices and from

the passage of the leading-edge vortices past the trailing edge. It may also be influenced by the more

compact vortex structures for the flow past a plate which are more likely to produce a non-sinusoidal

fluctuating force.

Preliminary results from using spatial filtering to isolate parts of the plate indicate that the primary

acoustic source region lies near the trailing edge of the plate. The restricted simulations indicated that

perhaps 90% of the acoustic energy generation was associated with trailing-edge region. Although we
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have mainly concentrated on associating the sound source with the aerodynamic surface force components

acting on the body, in future work, it would be useful to consider the alternative approach of Howe (1975,

1998), amongst others. In that interpretation, the acoustic source can associated with localised vortex

structures, the flow field and the (potential) acoustic particle velocity. Energy transfer between the flow

and acoustic fields can occur when the vortex structures cut across acoustic field lines. In particular,

the direction of transfer depends on the phase of the acoustic field. This framework has previously been

successful in identifying the main acoustic source with the trailing edge region of rectangular plate for

resonant cases when the plate is placed in a duct (e.g., Hourigan (1991), Tan et al. (2003)).
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Chapter 6

Concluding remarks

6.1 Summary

In this section, some of the important numerical issues encountered in the development of the two-step

aeroacoustic prediction method are briefly reviewed. Specifically, the topics relevant to the numerical

application of the aeroacoustic theories of Lighthill (1952), and Powell (1964) are covered. These include

spatial filtering of the hydrodynamic fields, and the advantage of using a start-up function to slowly

introduce the acoustic forcing. Furthermore, conclusions drawn from the interpretation of the results of

this research and by past studies are also presented.

The aeroacoustic phenomena of three different flow scenarios have been considered in this study. In

the first two cases, the sound field was generated by a spinning vortex pair, and a pair of co-axial vortex

rings. In both of these flow situations, the flow field is spatially compact. In contrast, the final case

considers the acoustic radiation caused by the natural shedding from laminar flow past a rectangular

plate in a two-dimensional space. Owing to the slow recovery of the flow downstream which results in an

extended potential acoustic source region, a more careful treatment of the downstream region is necessary.

Thus, the final case forms a critical examination of the numerical scheme presented in this investigation

owing to the increased complexity of the flow dynamics.

6.2 Solution procedure

The two-step prediction method consists of separate computations of the flow and acoustic solutions.

In the first step, the viscous flow is predicted by numerically solving the incompressible Navier-Stokes

equations. In the second step, the acoustic field is predicted by numerically solving the acoustic wave
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equation. The acoustic forcing is specified by using either Lighthill’s acoustic analogy or Powell’s theory of

vortex sound. Because the grids used in the flow and acoustic subproblems are different, the hydrodynamic

fields from the flow simulation have to be spatially interpolated from the flow mesh to the acoustic mesh.

If was found that it was possible to reconstruct the time-varying velocity field with just 16—24 snapshots

per period if quintic splines were used for interpolation.

6.2.1 Numerical technique for CAA

According to Lighthill (1952), and Powell (1964), the governing equation for far-field sound generated

aerodynamically is an inhomogeneous wave equation with the acoustic forcing calculated from the in-

compressible fluctuating flow velocities. Numerical differencing of the spatial derivatives is performed

by using a sixth-order central-difference stencil based on a regular grid in computational space. A clas-

sical four-stage Runge-Kutta method is used to advance the acoustic solution in time. In general, it

is preferable to use high-order methods, both spatially and temporally, when modelling acoustic wave

propagation, thus minimising low-order truncation errors which can introduce artificial dissipation and

dispersion. The near-field grid spacing is identical to that used to resolve the velocity gradients in the

flow simulations. In the far-field, the mesh density was reduced so that there were approximately 20

points across an acoustic wavelength. The matching of the the near- and far-field grid spacings is dealt

with using gentle stretching to prevent unphysical reflections as the waves propagate from the source.

The time-step used to march the acoustic wave equation is approximately at the stability limits of the

RK4 scheme. The radiation boundary condition based on Bayliss and Turkel (1980) is imposed at the

computational boundaries.

6.2.2 Benchmark tests

Two benchmark tests are used to validate the numerical scheme, namely, the sound generated by a pair

of co-rotating vortices, and the sound radiated from the motion of a pair of co-axial vortex rings moving

along a common axis of symmetry in the same direction. These flow configurations were selected because

both the flow and acoustic solution can be obtained analytically for the point vortex approximation.

Furthermore, governing parameter ranges were selected to be similar to those from past numerical studies

in order to facilitate a comparison with previous results.

Isolated co-rotating vortex pair

In the study of the sound generated by the unsteady motion of a pair of co-rotating vortices, the two

vortices have identical circulation Γo, and are initially separated by a distance 2Zo. Owing to mutual
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induction, the vortices rotate around one another with an angular rotational velocity of Ω = 8π2Z2
o/Γo.

The Reynolds number based on the circulation of the vortex core was chosen as Re = 7500 while the

Mach number based on the induced co-rotation velocity was Ma = 0.06. A Gaussian distribution was

used to define the vorticity distribution of each vortex core. The ratio of the core radius to the separation

of the two vortices was eo/2Zo = 0.075.

To highlight the difficulties associated with the large spatial extent of the Lighthill’s acoustic source,

the hydrodynamic velocities were abruptly terminated at three radial distances of 3Zo, 4Zo and 5Zo away

from the centre of the vortex system. In all three simulations, a start-up ramp time of trUo/Zo = 2.56 was

used. Comparison of these simulations showed that there was considerable contamination of the far-field

acoustic field for the two smaller radial distances. At the largest radial length tested, the acoustic field

diverged. In practice, the slow decay rate of the source terms in Lighthill’s acoustic analogy must be

artificially enhanced to prevent divergence. In contrast, Powell’s vortex sound theory was found to be

less sensitive to the sudden termination of the source terms. This may be because the source term in

Powell’s vortex sound theory is proportional to vorticity which is localised spatially. In any case, spatial

filters were applied to both source formulations.

In addition, the importance of a slow and smooth introduction of the source field to the acoustic

computations was also shown through comparison of simulations with an impulsively-started condition

and the use of a start-up function. It has been shown not only in these tests but by other researchers

that an acoustic forcing that is impulsively introduced results in the generation of a large initial transient

wave. Furthermore, the propagation of the initial transient wave through the non-uniform mesh generally

results in high-frequency grid-to-grid oscillations. Through the use of the start-up function where the

acoustic forcing is gradually ramped up to its true value, the negative impact of the initial transient can

be largely avoided.

Co-axial vortex rings

In this study, the acoustic radiation from the leapfrogging motion of a pair of co-axial vortex rings was

considered. The Reynolds number based on the circulation of the vortex core was Re = 7500. The effect

of the toroidal ring radius was considered through a comparison of results for two different aspect ratios

of zo/yo = 0.3 and 0.5. For each aspect ratio, the acoustic simulations were performed at three different

Mach numbers of Ma = 0.0025, 0.005 and 0.01. The Gaussian vortex core which was used in the earlier

validation study was once again used here.

In this study, the acoustic solutions were compared with the MAE analytical predictions. In the

MAE analysis, the vortex system was considered spatially-fixed, radiating sound from a point. In order

to compare the predicted acoustic solution with the MAE results, the rate of change of the mean axial
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position of the vortex system was removed from the axial velocity component prior to the calculation of

the acoustic forcing. This effectively pegs the vortex system so that for the acoustic computation, the

source is radiating from a fixed position.

Through this study, we found that the six-point Lagrange interpolating polynomial which was used

in the isolated co-rotating vortex pair with success, was not satisfactory in the present study. This was

because the reconstruction led to noticeable kinks in the time variation of the acoustic signal. Further-

more, the frequency of these kinks corresponded to the interchanging of the frames used to interpolate

the source field temporally. This led us to conclude that the interpolating polynomial is itself a potential

source of spurious noise. After extensive testing with different types of interpolating polynomial, a global

quintic spline was found to be the most suitable as both the function, derivative and curvature vary

smoothly across data points.

6.2.3 Rectangular plate

One of the main objectives of the benchmark tests was to demonstrate that our numerical schemes

were capable of accurately predicting sound from flow fields which are localised in space (i.e., compact

flows). Comparison of the simulation results for the benchmark cases with both analytical predictions and

past studies using more complex approaches have subsequently verified the capability of this numerical

approach. As such, further development of the the two-step approach was pursued through applying

it towards a more complex flow field. Hence, in a departure of the simple vortical flows, the final case

study considers the acoustic radiation from laminar flow past a two-dimensional cylinder of rectangular

cross-section. This is a natural extension to the body geometry of a two-dimensional circular cylinder.

In the present study, the effect of the Reynolds number on the sound radiation was considered. The

Reynolds numbers chosen were Re = 300 and 400. A plate aspect ratio of c/d = 7 was used for both

Reynolds numbers. This particular aspect ratio was chosen because previous studies (Tan 2000) showed

that the lock-in between the leading- and trailing-edge shedding is both strong and periodic. For the

acoustic viewpoint, this means that both the forcing and the acoustic field would be periodic.

Several preliminary flow simulations were carried out to determine the appropriate domain size and

spatial and temporal resolution of the velocity gradients around the plate. These tests are an important

part of the numerical procedure because the flow field was used in the calculation of the acoustic source

for the CAA computation. A tolerance level of 5% was chosen as a reasonable compromise between

computational cost and numerical accuracy in capturing the physics of the flow. Through a series of

tests, a domain size of 15d from the leading face to the upstream boundary, and the chord to the top and

bottom boundaries, and 45d from the trailing face to the outlet boundary was used. A minimum grid

spacing of ∆x/d = 0.025 was used to resolve the velocity gradients around the plate. The time-step used
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to advance the flow simulations was set at ∆tU∞/d = 0.01.

While the application of the spatial filter in the two benchmark cases can be easily justified because

the flow fields were compact, this is not so in the case of bluff body flows. This is due to the extensive

wake downstream of the plate which implies that the source region extends well away from the plate.

However, the contribution to the acoustic source field from the wake was not expected to be relevant at

the Mach number range simulated (Curle 1955). As such, the role of the spatial filtering is to remove

parts of the wake so that the source field converges to zero. It is also clear that any resulting fluctuations

introduced from the application of the spatial filter must be many times smaller than the physical acoustic

waves.

In the previous benchmark cases, in general, the magnitude of the fluctuations in the source was

greater than its mean and as such, the acoustic pressure field accurately portrayed the effects of the

fluctuations in the source terms. However, in the case of the natural shedding from the bluff body,

the mean component of the source dominates the fluctuations. As a result, the acoustic pressure field

contained a fluctuating component as well as a mean component. Since the mean component of the source

field is time-invariant, it is preferable to remove it prior to performing the acoustic simulations. This was

done through subtracting the time-averaged component of the source field from the instantaneous source

field. The issue of a mean pressure field also occurred in the direct simulations of Inoue & Hatakeyama

(2002) who had to perform a similar decomposition of the compressible pressure field into a fluctuating

and mean component in order to accurately describe the acoustic pressure fluctuations.

On the decomposition of the sound field into a multipole expansion

In the study of acoustic radiation from simple inviscid flow configurations, Möhring (978), Kambe &

Minota (1981), and Kambe (1986) derived an analytical far-field expression which was valid in the asymp-

totic limit of Ma→ 0. As such, the effect of finite Mach numbers on the far-field directivity of the acoustic

signals was ignored. However, this effect can be considered in the present study by performing a multipole

expansion of the predicted acoustic field. This analysis was applied by Inoue & Hatakeyama (2002) to

quantify the contributions of the various modes present in the acoustic field. The decomposition of the

acoustic signals into harmonic modes is possible because the acoustic field is linear. By performing the

decomposition over a range of Mach numbers, the contributions of the various harmonic modes can be

quantified and their relationship with the Mach number analysed.
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6.2.4 Results from simulations

Similarity among the three cases

At low Mach numbers, both Lighthill’s acoustic analogy and Powell’s vortex sound theory effectively

produced identical sound signals. Hence, the assumption that was made by Powell that the term∇2(u2/2)

can be neglected for low Mach number flows has been validated. This is in spite of the distinct differences

in the spatial distributions of the two source formulations. It is clear that the spatial distribution acts

like a potential sound source. The properties of the acoustic signals are actually determined from the

time variations of the source field. In terms of numerical implementation, as the source field in Powell’s

vortex sound theory decays more rapidly in space than Lighthill’s source, the former is recommended for

future studies on aeroacoustic phenomena.

Co-rotating vortex pair

Classical acoustic analysis by Möhring (1978) and Kambe & Minota (1981), has shown that flow unsteadi-

ness in the absence of solid boundaries results in a quadrupole sound field. In the flow configuration of

a spinning vortex pair, the quadrupole field assumed a double spiral pattern which rotates in the same

direction as that of the induced co- rotation velocity. The number of acoustic peaks corresponded to twice

the number of co-rotation cycles owing to the symmetry of the motion. Results from this study showed

five and a half co-rotation cycles before the vortices merged into a single entity. The amplitude and time

variation of acoustic signals were in good agreement with analytical predictions and previous numerical

studies. The direct simulations of Mitchell et al. (1995) showed a gradual increase in the amplitude of

acoustic peaks leading to a local maximum at the instant of vortex merger. These acoustic features were

also captured in our simulations.

Co-axial vortex rings

The acoustic radiation from the interaction of a pair of co-axial vortex rings was considered at two different

aspect ratios of zo/yo = 0.3 and 0.5. In contrast to the near-sinusoidal time traces of the isolated co-

rotating vortex pair, the acoustic signals consisted of a series of sharp peaks and rounded troughs. These

observations were similar to the classical model. However, in contrast to the findings of Shariff et al.

(1988), there were no wavy oscillations present. Using the argument given by Verzicco et al. (1997), the

secondary frequency was related to the nutation of the vortex core and was found to be negligible in the

present viscous simulations. The introduction of viscous effects also has an effect on the vortex dynamics

during merger and consequently on the sound radiation. While the magnitude of the acoustic peak was

largely dictated by the inviscid leapfrogging phenomenon, the variations in the time traces of the acoustic
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signals were found to be caused by the quasi-periodic deformation of the vortex cores (particularly by the

ring slipping through the other) during the leapfrogging motion. As the initial toroidal ring radius was

decreased, the core distortion increases and hence, the variations in the acoustic time traces also became

more noticeable. Another point of interest is that with a smaller initial toroidal ring radius, the number

of leapfrogging cycles decreased. Through the decomposition of the acoustic signals to the zeroth-order

mode and mth order cosine harmonic modes, the first and second polar extinction angles were located at

59◦ to 61◦ and 123◦ to 129◦. These values differ from the theoretical ones as predicted using the MAE

technique because the trace of the source terms is not zero (Mitchell et al. (1999)).

Rectangular plate

The results from this study showed that the shedding at the leading- and-trailing edges of the plate led

to a dipolar sound field. The dominant dipole, associated with the lift fluctuations radiates normal to

the fluid stream, while the much smaller dipole (typically one order of magnitude less) is linked to the

fluctuations in the drag force and radiates preferentially along the free-stream direction. While the lift

dipole was easily obtained from the simulations at all three different Mach numbers simulated in this

study, a decomposition of the sound signals had to be performed in order for the magnitude of the drag

dipole to be quantified. It was also apparent that at Mach numbers of Ma = 0.1 and 0.2, that the drag

dipole was not the dominant cosine harmonic mode indicating that if the source was not compact, the

amplitudes of the higher-order cosine modes become comparable to those of the drag dipole. Whilst

the effect of the free-stream velocity on the wave propagation is not explicitly included in the acoustic

analogies, a post-processing step was carried out whereby the spatial positions of the predicted acoustic

field were varied to take into account wave advection by the flow velocity. This spatial transformation

has earlier been applied by Inoue & Hatakeyama in the acoustic solution calculated using Curle’s (1955)

acoustic analogy. Results showed that at Ma = 0.2, the directivity of the propagation pattern of the

acoustic field shifted towards the upstream direction. This is in agreement with the direct simulations of

Inoue & Hatakeyama (2002) for the circular cylinder.

One major difference between the rectangular plate and the circular cylinder is that with the former

geometry, shedding occurs at both leading and trailing edges. Using the argument that the sound

generation is a direct result of the vortex shedding, then, it is clear that the leading- and trailing-edge

regions may act as separate and distinct sound sources. Furthermore, the vortices convecting along the

longer sides of the plate are not expected to radiate much sound as they are expected to cancel each other

out (this is also the reason why they are not expected to contribute towards the fluctuations in the lift

force). The acoustic signals at the lower Reynolds number of Re = 300 were nearly sinusoidal. This is

in agreement with the direct simulation results of Inoue & Hatakeyama (2002). However, at the higher

Reynolds number of Re = 400, the traces became less sinusoidal at the lower Mach numbers. In order to

isolate the dominant source region and also explain the non-sinusoidal nature of the time variations, the
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role of the spatial filter was expanded so that only the leading-edge region of the plate contributed to the

source field. It was found that the contribution from the leading-edge region was at most approximately

10% of the total sound pressure level, suggesting that the trailing-edge region is the dominant sound

source. Furthermore, the non-sinusoidal nature of the temporal variations of the acoustic signals are

caused by the phase difference between the passing of the leading-edge vortices in between the shedding

of the vortices at the trailing edge.
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