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Abstract

Vortex breakdown in an unconfined laminar swirling jet is simulated using
an in-house spectral-element code to numerically solve the incompressible,
axisymmetric Navier-Stokes equations. The results show good agreement
with the flow states observed in the equivalent experiments (e.g. Billant
et al. , 1998).

The main focus of this study was to investigate the universality of the
critical swirl ratio for predicting vortex breakdown in swirling jets. For con-
ditions matched to the experimental conditions, the numerically predicted
critical swirl ratios agreed to within +3% of the experimentally determined
values. The simulations demonstrated that the swirl ratio parameter (.S) de-
veloped by Billant et al. (1998) did not universally describe the critical swirl
ratio for different axial velocity profiles. A series of five different velocity pro-
files were devised, and their critical swirl ratios tested, giving a variation of
50%. Two modified formulations of the swirl ratio, using integrated param-
eters, were then tested and found to yield similarly large spreads of critical
swirl ratios. An alternative swirl ratio (S.) was then developed based on the
conservative quantities of mass flow rate and angular momentum flow rate.
The new swirl ratio parameter demonstrated greatly improved universality,
resulting in a criterion for vortex breakdown of S, > 1.2, with a maximum

variation of £10% over the range of Reynolds numbers tested.
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The application of the new swirl ratio to the experimental velocity profiles
of Farokhi et al. (1989) demonstrates that the new criterion may explains
the difference in flow state observed by the authors. They show that two jets,
with different azimuthal velocity profiles, give vortex breakdown in one case,
but not in the other. Both jets were shown to have the same swirl ratio (as
defined by Farokhi et al. , 1989). Recalculation of the swirl ratio using the
new parameter gave S, = 1.37 and S, = 1.27, respectively, showing that the
second jet may not be at a swirl ratio great enough for vortex breakdown.

Application of the swirl ratio S and the new swirl ratio S, at a variety of
downstream locations shows that the parameter S gives variable and decreas-
ing swirl ratio with downstream distance, while the new swirl ratio remains
constant.

The study also looks at the role of initial conditions in the state selection
and meta-stability of the bubble and cone vortex breakdown types. This
study shows that for impulsively initiated jets, the bubble-type dominates
at low Reynolds numbers and the cone-type at high Reynolds numbers. The
cone type is also observed at high swirl ratios in the low Reynolds number
range. Further investigation described a bubble-type that is stable to finite

perturbations well into the cone-type dominated region.
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Description

Thesis section indicator

Integral operator

Vector gradient operator (grad)

Del squared operator

Summation operator

Adams-Bashforth weighting factors of order ¢
Adams-Moulton weighting factors of order ¢
Computational boundary

Azimuthal cylindrical-polar coordinate
Kinematic viscosity

Real variable in the equation for the Gauss-lobatto-Legendre
quadrature points
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Constant used in momentum flux matching
Total head
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Linear terms of the Navier-Stokes equations
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Description

Order of the Legendre polynomial used in spatial
discretisation

Mass flow rate

Mass flow rate for an equivalent velocity profile
with constant velocity

Angular momentum flux

Angular momentum flux for an equivalent velocity
profile with constant velocity

Mach number

Axial momentum flux

Axial momentum flux for an equivalent velocity profile
with constant velocity

Unit normal to the computational boundary I’
total number of interpolation nodes per computational
element

Axial velocity profile exponent

Non-linear terms of the Navier-Stokes Equations
Kinematic pressure P/p

Scalar pressure

Legendre polynomial of order m

Static pressure at the vortex centreline,

located at z = zg

Static pressure at the stagnation point on a vortex
centreline, located at z = z;

Far field pressure
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q
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Description

Order of the Adams-Bashforth and Adams-Moulton
co-efficient

Radial cylindrical-polar coordinate

Nozzle radius

Vortex core radius

Reynolds number

Swirl ratio as defined by Billant et al. (1998)
Swirl ratio based on W and U

Critical swirl ratio as measured using S,
Swirl ratio based on Wy and U

Critical swirl ratio as measured using S,
Critical swirl ratio as measured using S

Swirl ratio defined in Farokhi et al. (1989)
Azimuthal velocity profile averaged swirl ratio
as defined by Billant et al. (1998)

Swirl ratio as measured using S;

The swirl ratio S as applied locally

The swirl ratio S, as applied locally
Non-dimensional time units

Vector notation for velocities U, V, W

First intermediate time-step velocity vector
Second intermediate time-step velocity vector
Axial velocity

Mass flow rate averaged axial velocity
Centreline axial velocity

Axial momentum flux averaged axial velocity

Radial velocity



Symbol

Description

Weighting coefficients of the Gauss-Lobatto-Legendre
quadrature

Azimuthal velocity

Angular momentum flux averaged azimuthal velocity
Maximum azimuthal velocity

Vector notation for dimensions z,r, 6

Axial cylindrical-polar coordinate
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Chapter 1

Introduction

The first observation of the flow phenomenon dubbed vortex breakdown was
recorded in 1957, in the vortical flow over a delta wing at high angle of at-
tack (Althaus et al. , 1995). Since then, the identification and understanding
of the mechanisms governing vortex breakdown have been the focus of con-
tinuous research efforts. Vortex breakdown can drastically affect the flow
characteristics of a vortex core, and is generally characterised by the axial
stagnation and reversal of the vortex core for a limited axial extent. Several
forms of vortex breakdown have been identified in a variety of different vortex
flows; including the bubble, the spiral and the cone. This chapter describes
the flows in which vortex breakdown occurs, and gives a description of the

various forms of vortex breakdown.

1.1 Flows Exhibiting Vortex Breakdown

The initial impetus for studying vortex breakdown came mainly from the
aerodynamic characteristics of vortex breakdown in high angle of attack

flight. Many military aircraft are designed to continue controlled flight in



CHAPTER 1. INTRODUCTION 2

a post-aerofoil-stall scenario (angle of attack = 15°). Flight in this regime
depends on the strong, slender vortex that is created by a delta wing to gen-
erate the majority of the lift. The slender vortex results from the shedding
of vorticity from the under surface of the wing into a vortex that sits on
the upper surface of the wing; providing the low pressure needed for lift (see
figure 1.1 a). This vortex was found to experience vortex breakdown above
a critical angle of attack that is related to the sweep-back angle of the wing
(Althaus et al. , 1995). The resulting unsteady flow state causes loss and
fluctuation of lift, due to the destruction of the coherent vortex. Additionally,
the resulting turbulent wake of a vortex breakdown state has caused flutter
and subsequent damage of control surfaces (e.g. Ozgoren et al. | 2002).

Figure 1.1 (b) shows an example of a leading edge vortex created by the
highly swept leading edge root extension of an F/A-18 fighter jet. Here,
the flow is visualised with smoke. The slender vortex core extends from the
leading edge back to the trailing edge of the wing, where it experiences a rapid
expansion in a roughly axisymmetric bubble. In this example, significant
flutter would be experienced on the vertical stabiliser.

The early observations identified two states of vortex breakdown, dubbed
bubble and spiral, due to their strong axisymmetric and asymmetric break-
down regions, respectively. These two states were also observed to co-exist
at the same parameters in some flow scenarios. Figure 1.2 (a) shows a delta
wing in plan view with flow from left to right, the two leading edge vor-
tices extend downstream until breakdown occurs. The co-existence of vortex
states is evident here with a bubble in the lower vortex and a spiral in the
upper vortex. Figure 1.2 (b) shows turbulent vortex breakdown over a delta
wing. Observations of the dynamics of vortex breakdown in delta wing ap-

plications demonstrates that the breakdown location moves upstream with
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Dryden Flight Research Center ECE9-0086 & Fhotegr L
@' F- 18 HARV smoke and tuft flow visualization, Angl tta

(b) Reproduced from Mitchell & Délery (2001)

Figure 1.1: A schematic representation of the roll-up of vorticity from the
underside of a delta wing (a); and the leading edge vortex of a F/A-18 fighter
jet at a high angle of attack regime, as visualised with smoke. Note that the
turbulent wake of the near conical vortex breakdown impinges on the vertical

stabiliser (b).
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increasing angle of attack and with decreasing sweep back angle (Althaus
et al. , 1995).

Civil aviation can also benefit from the understanding and control of
vortex breakdown. Wing-tip vortices are a limiting factor in take-off timing
at major airports. These vortices are observed in the wakes of all aircraft,
but are especially strong for large, heavy-laden aircraft. The vortices can be
present for several minutes after an aircraft has departed or landed. During
this time, they pose a significant hazard to other aircraft in the vicinity.
Figure 1.3 shows a landing aircraft with its wing-tip vortex being observed
in the smoke from a nearby chimney. If vortex breakdown can be induced
in these vortices, then the spacing between aircraft departures and landings
can be decreased (Mager, 1972).

Another application for vortex breakdown is in the combustion field,
where flame holding, stability, propagation and reactant mixing can be aided
by ensuring that vortex breakdown persists in the combustion flow (Umemura
& Tomita, 2001). Flame holding and stability is enhanced because the re-
circulation region allows burning gasses to recirculate upstream where they
can ignite the upstream fuel. Propagation and reactant mixing can be en-
hanced by the high shear rates (folding and stretching) of fluid elements by
a breakdown region. Furthermore, vortex breakdown can initiate turbulence

in a flow allowing greatly increased mixing.

1.2 The Main Vortex Breakdown Types

The two main types of vortex breakdown observed in most experiments are
the bubble and the spiral type. This section gives a description of the main

characteristics of each type. Other types, such as the cone are discussed



CHAPTER 1. INTRODUCTION 5

(a) Reproduced from Hall (1972)

(b) Reproduced from Mitchell & Délery (2001)

Figure 1.2: Co-existence of the bubble and spiral states of vortex breakdown
over a delta wing (a); and turbulent vortex breakdown at the trailing edge

of a delta wing (b).
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Figure 1.3: One of a pair of strong wing-tip vortices observed in chimney

smoke after a landing aircraft passes. Source unknown.

briefly in §1.3.2 and §1.3.3.

1.2.1 The Bubble

The bubble type is generally characterised by an axisymmetric expansion of
the vortex around a stagnation point that forms on the vortex centreline.
This expansion usually has a limited axial extent, after which the vortex
converges once again back toward the vortex centreline, to re-form a weaker
vortical structure (Faler & Leibovich, 1977). The new vortex has been seen
to subsequently undergo spiral vortex breakdown. Figure 1.4 shows the for-
mation of the bubble type in a pipe, as visualised with fluorescein dye and a
diametric light sheet. As seen here, the vortex breakdown bubble starts as
a widening of the vortex core downstream (near the far right of the ¢ = 0Os
image). With subsequent images, a stagnation point appears then grows into
a recirculation region that moves upstream to an approximate steady state
location. In the final image, the internal dynamics of the bubble are evident,
as is the spiralling of the wake of the breakdown. Figure 1.4 (b) shows a
schematic of the internal dynamics of the observed structure in (a). Figure
1.5 (a) shows an iso-surface of constant pressure of a numerically simulated

bubble with a spiral wake structure. The internal structure of the bubble
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type was identified by Leibovich (1978) as having dual recirculation rings
(see figure 1.5 b).

1.2.2 The Spiral

The spiral type is generally characterised by a kink in the vortex core away
from the axis, followed by a spiralling of the vortex around the axis. Gener-
ally, the vortex will not reform a columnar vortex in its wake, instead it is
dissipated into turbulence. The spiral rotation has been observed to be co-
rotating (Sarpkaya, 1971) and counter-rotating relative to the original vortex
(delta wings, e.g. Leibovich, 1984). Figure 1.6 (a) shows a schematic rep-
resentation of a spiral breakdown. Note that despite the strong spiralling
of the vortex core, a particle that is released on the centreline at point A
traces an irrotational path around the spiral enclosure, probably due to the
low circulation at the centreline. Figure 1.6 (b) shows the internal dynam-
ics of a spiral vortex breakdown. The internal dynamics show a stagnation
point that is offset from and precesses around the centreline. Apart from the
absence of steady vortex rings, the internal dynamics are similar with those
of the bubble, leading many to believe that the spiral breakdown is a bubble
breakdown that is experiencing strong asymmetric perturbation. The spiral
form of breakdown shows bi-stable characteristics with switching between
the bubble and the spiral occurring without changing the flow parameters
(Faler & Leibovich, 1977). This bi-stability is probably representative of the

role of the amplification of perturbations in a complex feed-back mechanism.
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(a)
dissipative
non - dissipative supercrilical -subcritical
supercritical - supercritical transition

transition { hydraulic jump)

viscous core
possibly becoming
supercritical

supercritical
vicous core

/

shear loyer effectively siagnant
bubble

(b)

Figure 1.4: The formation of a bubble vortex breakdown in a pipe as vi-
sualised with fluorescein dye and a diametric light sheet (a). A schematic
representation of the internal dynamics of the bubble recirculation region

(b). Reproduced from Lucca-negro & O’Doherty (2001).
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Time Averaged Streamlines

(b) Reproduced from Leibovich (1978)

Figure 1.5: Pressure iso-surface of a bubble with a spiral wake structure (a);

and the internal dynamics of a bubble (b).
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Figure 1.6: A schematic representation of a spiral breakdown including a
particle trace A-S-P-P’ (a); and the internal dynamics of a spiral vortex

breakdown. Reproduced from Lucca-negro & O’Doherty (2001).
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1.3 Other Flows Producing Vortex Breakdown

Vortex breakdown is observed in a variety of swirling flows, apart from flows
over delta wings. An introduction to vortex breakdown in pipe flows, cylin-
ders with rotating end-walls and unconfined jets, is presented. The flow in
pipes generally shows similar vortex breakdown to those in delta wing flows,
however cylinders with rotating end-walls and swirling jets have also shown

different forms, including the cone vortex breakdown type.

1.3.1 Pipe Flows

Vortex breakdown in pipe flows was studied from an early stage (Sarpkaya,
1971; Hall, 1972) as the pipe geometry allowed a more controlled experiment
than possible in delta wing geometries. The pipe flows generally used some
form of vane to impart an azimuthal component on the flow and could there-
fore have independent control of both the axial and azimuthal velocities. The
swirling flow is then redirected into a divergent pipe which serves the purpose
of stopping the vortex breakdown from attaching to the inlet and supplying
the adverse pressure present on the suction side of a delta wing. Diverging
pipe flows show vortex breakdown of similar nature to those found over delta
wings with both the bubble and spiral forms being well documented. The
main difference between delta wing and pipe flow vortex breakdown is the
rotational sense of the spiral type. Examples of vortex breakdown in pipes

are given in figure 1.4.

1.3.2 Cylinders with Rotating End-Walls

Cylinders with a rotating end-wall were discovered to include a region of

stagnation and recirculation on the centreline (Escudier, 1984). The rotat-
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ing end-wall creates a primary circumferential rotation inside the cylinder,
but also a secondary recirculation develops in the diametric plane. The
combined flow demonstrates a vortical core of relatively high swirl level pro-
ceeding from the non-rotating end-wall down to the rotating end-wall. With
sufficient rotational speed of the end-wall, vortex breakdown has been seen
to occur in this vortex. Depending on the ratio of height to radius, a series
of vortex breakdown bubbles are possible. Figure 1.7 shows dye visualisation
in the diametric plane of a twin-bubble vortex breakdown scenario within a
cylinder with a rotating end-wall (the lower wall). The vortex breakdown ex-
perienced in such an apparatus is reasonably symmetric and varies smoothly
with increasing swirl, leading some to deny it as being a vortex breakdown

state (see §2.2.1).
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Figure 1.7: Fluorescein dye visualisations of a diametrical plane through a
closed cylinder flow displaying dual recirculation bubbles. Reproduced from

Sotiropolous et al. (2002).

Figure 1.8: Fluorescein dye visualisations of a diametrical plane through a

cone vortex breakdown. Reproduced from Billant et al. (1998).
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1.3.3 Unconfined Jets

Unconfined jets offer a vortex breakdown scenario slightly different to those
of the delta wing and the pipe flow. The absence of co-flow that is present
in these flows, and the absence of a confining wall, allow the observation of a
novel form of vortex breakdown only recently observed, the cone-type (Billant
et al. , 1998). The cone represents a vortex breakdown state where the
presence of the stagnation point causes a permanent expansion of the vortex
core away from the centreline. The resulting conical shear layer usually thins
and rolls due to shear layer instability. The cone vortex breakdown may find
a useful application in wing-tip vortices for its ability to quickly dissipate a
vortex core. Figure 1.8 shows a dye visualisation of a cone vortex breakdown.
Here, the nozzle producing the swirling jet is located at the top of the image.
The vortex quickly stagnates and expands conically. A bubble and spiral
form of vortex breakdown, similar to those previously described, can also be

observed in swirling jets.



Chapter 2

Literature Review

Early efforts toward determining the mechanism of vortex breakdown had
some success in describing the behaviour of a vortex core, however, those
based on analogies are limited in their ability to describe all the behaviour
observed in experiments. Hence, more recent research is being directed into
observations of a variety of simplified Navier-Stokes equations, and hydro-
dynamic instability as being able to provide more universal explanations for
the behaviour of vortex breakdown. Despite the decades of effort, the exact
mechanism of vortex breakdown has yet to be identified.

Without a mechanism, there is an increased importance in studies that
identify the main controlling parameters and those that aim to predict break-
down. Other reviews of the research in the field of vortex breakdown have
been completed by Hall (1966), Leibovich (1978), Althaus et al. (1995),
Shtern & Hussain (1999) and Lucca-negro & O’Doherty (2001). More lim-
ited reviews can be found in Résner (1995), Krause (1995) and Spall et al.
(1987).

This chapter reviews vortex breakdown research, beginning with the ini-

tial research directed towards the mechanism of vortex breakdown, followed

15
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by observations of the dynamics, numerical simulation and vortex breakdown

control.

2.1 Theoretical Interpretations

There are three major theoretical approaches to explaining the mechanism of
vortex breakdown: the analogy with hydraulic jump, the analogy with two

dimensional flow separation, and hydrodynamic instability.

2.1.1 The Analogy with Hydraulic Jump

Benjamin (1962) and Benjamin (1967) proposed an axisymmetric mecha-
nism for vortex breakdown that is analogous to two-dimensional hydraulic
jump. The analogy leads to a definition of vortex breakdown as an energy
dissipative structure, necessitated by a discontinuity between conjugate flow
states. Benjamin bases the theory on the experimental observations of Har-
vey (1962), where axisymmetric undulations of the vortex were a precursor to
vortex breakdown. These undulations were recognised by Benjamin as being
similar to those seen in flows preceding hydraulic jump. Harvey’s experi-
ments were conducted under strict control of the main parameters, leading
to a near-axisymmetric form of vortex breakdown at breakdown inception.
Benjamin concluded that the near-axisymmetric breakdown form was due to
minimisation of asymmetric disturbances.

Hydraulic jump is generally a larger dissipative structure involving a sig-
nificant energy change between upstream and downstream, usually causing
the growth and superposition of the standing waves to the point where they
become turbulent. Benjamin relates this state to a vortex breakdown state

with a turbulent wake region as seen in most vortex breakdown experienced
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in flows over delta wings (Leibovich, 1978). Benjamin concludes that the
main mechanism for vortex breakdown is steady and axisymmetric. Sarp-
kaya (1971) agrees with this hypothesis citing the similarities seen between
the axial movement of vortex breakdown and the axial movement of hydraulic
jump with changes to flow conditions.

The hypothesis formed by Benjamin (1962) is that there is a jump in the
downstream flow force (the integral of the axial momentum flux plus pres-
sure across the domain) when the vortex proceeds from a supercritical flow
state upstream, to its conjugate sub-critical flow downstream. The excess
downstream flow force is accounted for by the creation of standing waves in
the downstream section. The process represented with the balance equation
S1 = S — R, where S; and S, are the upstream and downstream flow forces,
respectively, and R is the wave resistance. Benjamin proceeded to derive
a criticality condition based on wave velocities upon idealised vortex cores
with constant head and circulation over a stream-surface.

Support for Benjamin’s theory included the more rigorous proof that the
conjugate state of a supercritical flow can support waves of small amplitude
(see Frankel, 1967), while Randall & Leibovich (1973) extended a model
of weakly non-linear waves beyond formal validity and observed flow char-
acteristics and breakdown locations similar to those observed by Sarpkaya
(1971). Maxworthy (1988) analysed and discussed three forms of waves that
can be supported on vortex cores; the varicose, helicoidal and fluted forms,
representing axisymmetric swelling, bending and wrinkling respectively. The
varicose and helicoidal are found to propagate along the vortex core, and
in the non-linear range, are known to exhibit solitary wave characteristics
(as originally proposed by Benjamin, 1962). Maxworthy proposes that it is

these waves that dominate vortex core behaviour and that the complexities
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a. CA
il oo . B

N

rotating, unstable spiral

Figure 2.1: A pictorial representation of the formation of vortex breakdown
due to the formation of large amplitude axisymmetric ”varicose” waves and

the instability to spiral disturbances. Reproduced from Maxworthy (1988).

of experiments have the effect of blurring the fundamental role of these char-
acteristics. Figure 2.1 shows a pictorial representation of the formation of
vortex breakdown from an axisymmetric (varicose) wave of large amplitude,
followed by its instability to helicoidal waves.

The existence of solitary waves in the solutions of the Bragg-Hawthorne
equations (see Shtern & Hussain, 1999) was shown by Leibovich (1990).
These waves could have amplitudes large enough to cause flow reversal similar
to vortex breakdown. Bifurcation of the solution occurs when the ratio of
azimuthal to axial velocity changes. The branches of the bifurcation show
multiple-columnar solutions which are found to correspond to Benjamin’s
conjugate states.

A quasi one-dimensional model was used by Darmofal et al.  (2001)
to show that there is a maximum far field pressure for which an unconfined

vortex can remain smoothly varying. This point coincided with the transition
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from supercritical to uncritical flow and the criticality condition proposed
by Benjamin. For confined vortices the criticality condition is modified to
include core stagnation pressure, relative to the outer flow. Revuelta (2004)
notes that local criticality is a necessary condition for the appearance of
vortex breakdown based on a standing wave analysis.

Recently, Rusak & Lee (2002) extended the theoretical work of Benjamin
(1962) to include the effects of compressibility showing that increases in Mach
number accounted for an increase in a critical swirl number (formulated using
small perturbation theory). They found that the increase in critical swirl
number was asymptotic at a Mach number related to the pipe diameter.

Mager (1972) shows that the solutions of the incompressible quasi-cylindrical
momentum-integral equations have two distinct solution branches. Dissipa-
tions in flow force (similar to that in Benjamin, 1962) caused a jump from

one branch to the other at a critical point upstream of the discontinuity.

Criticism of the Hydraulic Jump Analogy

Hall (1972) reviews the hydraulic jump analogy and refutes the theory based
on measurements of the group velocity of standing waves on a vortex core,
finding that they were predominantly downstream, meaning that waves could
not propagate to an upstream standing wave. As there is no theoretical
need for a near-critical flow to stagnate and that disturbances could not
be propagated upstream, there is no need for a hydraulic jump-like state.
Additionally, measurements at the time showed the upstream flow to be
sub-critical and far from the critical state. Additionally, the hydraulic jump
analogy — which relies on a dissipative turbulent state — does not describe
observations of large scale vortex breakdown that is smooth and reversible

(see Harvey, 1962).
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Goldshtik & Hussain (1998a) proposes that inviscid vortex breakdown is a
loss-free process, and therefore any analogy with hydraulic jump or shock like
transitions should be avoided. This is based on the assertion that naturally
occurring differences in flow force can be accounted for in solutions of the
Stokes stream-function equation, and need not arise due to finite amplitude

standing waves or shocks.

2.1.2 The Analogy with 2-Dimensional Boundary Layer

Separation

Hall (1966) suggests that vortex breakdown is analogous to two-dimensional
boundary layer separation. The theory stems from the nature of the two-
dimensional boundary layer equations, whereby it is accepted that in sim-
ulations, boundary layer separation occurs when there is a failure of the
assumptions. That is, if the flow is found to be at or near a reversed flow
state at some spatial location, then the real boundary layer will experience a
separation at or near that location. Hall extends this concept into an axisym-
metric frame of reference. He uses the quasi-cylindrical approximation of the
Navier-Stokes equations, where the model assumes that the stream surfaces
are cylindrical and the axial velocity gradients are much smaller than the ra-
dial gradients. The failure of these assumptions and consequently the model,
then becomes the requirement for vortex breakdown.

Hall (1966) derives a physical mechanism for the retardation of the flow,
based on the boundary layer analogy. He considers that for a boundary layer,
the pressure gradient along the boundary doesn’t vary across the thickness
of the boundary layer. For a quasi-cylindrical vortex core, he derives an
equation which states that the pressure gradient along the axis will be more

adverse than at the outer edge of the vortex, only if the stream surfaces
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diverge.

Using this model in numerical simulations, Hall was successful at pin-
pointing the axial location of vortex breakdown to within 1.5 viscous core
radii, as compared to previous experiments. He approximated the duct shape
and included the measured azimuthal and axial velocity profiles as initial con-
ditions. The thin boundary layer on the wall was ignored and the turbulent
fluid was crudely represented by making the kinematic viscosity the eddy
viscosity. Despite the assumptions made, the numerical model failed at the
same time as a strong deficit in the core velocity emerged in the divergent part
of the pipe. The location of the stagnation was very near the observed vortex
breakdown location. Further tests showed that reductions in swirl level also
moved the velocity deficit further downstream giving good agreement with
the experimental observations.

The study by Reyna & Menne (1988) provides an interesting link between
the analogy with hydraulic jump and the analogy with boundary layer sep-
aration. They proposed (similarly to Hall, 1966) that vortex breakdown is
predicted by the failure of the assumptions used in the slender vortex ap-
proximation of the Navier-Stokes equations. They found that the critical

condition based on this model corresponded to the critical condition derived

by Benjamin (1962).

Criticism of the Analogy with 2-Dimensional Boundary Layer Sep-

aration

Despite the accuracy of the model in predicting the onset of breakdown, Hall
admits that the analogy lacks the detail to be more than just a tool in vortex

breakdown prediction (Hall, 1966).
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2.1.3 Other Simplifications of the Navier-Stokes

Equations

A variety of other simplifications of the Navier-Stokes equations for a variety
of flow situations have been analytically studied in an effort to elucidate the
mechanism of vortex breakdown. The results of such studies are explored
here.

For a range of particular flow parameters, the steady, inviscid and incom-
pressible Navier-Stokes equations as applied to a circular pipe with ‘semi-
infinite’ length, show non-uniqueness of the solution (Goldshtik & Hussain,
1992, 1997, 1998a,b). For this range, there exists two solutions that are
smooth along the length of the pipe and have the same mechanical energy.
The flows represented by these solutions contain stagnation and regions of
reversed flow similar to those seen in vortex breakdown. Interestingly they
also found that the co-existing states have different flow forces, reflecting the
hypothesis of Benjamin (1962).

Bossel (1969) proposes that vortex breakdown is a necessary feature of
supercritical flows. The analysis however requires the use of a four region
solution of the Navier-Stokes as shown in figure 2.2. These regions allow
simplification of the equations of motion which give solutions with axial re-
tardation, bulges and bubbles (with recirculation). However, these solutions
are dependent on prescribing downstream conditions and a supercritical flow
was not seen to contain a vortex breakdown region until a favourable down-
stream stream-function was applied. Despite the flaws, the solutions do show
a range of behaviours that are commonly observed in vortex flows such as the
axial positioning of the breakdown location depending on adverse pressure
gradient, swirl dependence and Reynolds number independence.

The importance of viscous forces in the formation of vortex breakdown
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Figure 2.2: A diagrammatic representation of the four regions of solutions
used in the model proposed by Bossel (1969). Reproduced from Bossel
(1969).

was shown by Krause (1985). Simplification the Navier-Stokes equations to
express the pressure gradient along the centreline in the form of an integral
relation revealed that one component of the frictional velocity could not be
neglected. The conclusion was that viscous forces, along with inertial forces,
contribute to the initiation of breakdown. The model also shows impor-
tant similarities to the dynamics of observed vortex breakdown; increases in
the initial axial velocity component were found to delay stagnation, as did
reductions in the azimuthal velocity.

Wang & Rusak (1997b) demonstrated that a regular-expansion solution
of the axisymmetric incompressible Navier-Stokes equations displays singu-
larity. This means that a near-columnar vortex cannot exist at this point
for near critical swirl. Also, beyond this point, two equilibrium states exist.
Rusak et al. (1998) further explore the non-linear dynamics of the transition
to axisymmetric breakdown. They show that their axisymmetric, unsteady
and inviscid columnar flow, demonstrates the fundamental characteristics
leading to vortex instability and breakdown.

Shtern & Hussain (1993) used the full Navier-Stokes equations of a swirling
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Figure 2.3: The cone form of vortex breakdown as described by one of three
solution branches of the full Navier-Stokes equations. The axis of rotation is

at the far left. Reproduced from Shtern & Hussain (1993).

jet emerging normal to a plane to show that three solution branches create a
hysteresis loop with cusp catastrophes. They show that vortex flow similar
to a tornado shows a solution with roughly conical two-celled expansion flow.
This solution branch is identified as a possible vortex breakdown. For large
circulations, a swirling cone (Figure 2.3) was observed. Shtern et al. (1997)
and Shtern & Hussain (2000) then proposed a new class of solutions to the
Navier-Stokes equations by considering vortex sinks on curved axisymmet-
ric surfaces with axial flow, matching the flow with a swirling jet to avoid
the singularity. These solutions displayed flow fields similar to those seen in

vortex breakdown.

2.1.4 The Role of Hydrodynamic Instability

With the limited explanation of vortex breakdown provided by the theories of

analogy with hydraulic jump and boundary layer separation, many studies
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have supposed that hydrodynamic instabilities will give a more complete
description. The following section details some of the studies focusing on
stability of vortical flows.

The role of asymmetric disturbances in the vortex breakdown state se-
lection process was recognised at an early stage; Sarpkaya (1971) found that
for 1000 < Re < 2000 the swirling flow was highly unstable to spiral distur-
bances. The majority of studies suppose that non-axisymmetric disturbances
play only a secondary role in the mechanism of vortex breakdown (Leibovich,
1984). A predominantly axisymmetric mechanism is supported by the ap-
pearance of vortex breakdown-like states in axisymmetric simulations and in
near-axisymmetric flows in closed containers. Indeed, most analytical stud-
ies assume axisymmetry and are quite successful at describing the main flow
behaviours. However, the bias toward an axisymmetric model may be driven
by the necessity of simplification of the governing equations.

Loss of stability to axisymmetric disturbances was shown to trigger the
evolution of a near-critical base columnar flow to one representing flow around
a stagnation point (Wang & Rusak, 1997a). The study examined the stability
characteristics and time-asymptotic behaviour of the axisymmetric unsteady
Euler equations for a swirling flow in a finite, constant area pipe. Gallaire
& Chomaz (2004) extended this analysis to show that the inlet and outlet
conditions can drive the instability. Their conclusions are based on an en-
ergy argument and observations of the effects of downstream and upstream
disturbances upon each other. The propagation of disturbances both up-
stream and downstream is shown by spatial linear stability analysis, at a
particular frequency range. The resulting flows in this range were stabilised
or de-stabilised, depending on the ability of the inlet and outlet conditions
to supply energy.
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Differences in behaviour between flows in ‘semi-infinite’ pipes with solid
body rotation and axial velocity, and those without axial velocity, were made
by (Goldshtik & Hussain, 1992, 1997, 1998a,b). They found that the flows
with axial velocity were inviscidly unstable to axisymmetric disturbances at
large swirl numbers. Alternatively, the columnar vortex (no axial velocity)
was found to be unconditionally stable.

An axisymmetric model of vortex breakdown does not explain the pres-
ence of asymmetric modes in some experiments. Some explanation for this
discrepancy is given by Tromp & Beran (1997), where the condition causing
the breaking of symmetry in solutions of the Navier-Stokes equations was
found to be close to the onset of axisymmetric vortex breakdown. This re-
sult implies that axisymmetric forms of breakdown are quickly followed by
asymmetric forms. Keller (1995) also shows that for axisymmetric forms of
vortex breakdown (as defined by Benjamin, 1962), the departure from con-
stant vortex core size and swirl ratio are surprisingly small. Keller concludes
that the appearance of large departures must be due to viscous diffusion at
low Reynolds numbers, and shear-layer instabilities at high Reynolds num-
bers. Based on the evidence in Panda & McLaughlin (1994), who found that
axisymmetric instability waves were suppressed at high Reynolds numbers
in swirling jets, these instabilities may be predominantly asymmetric.

Additional support for the axisymmetric mechanism for vortex break-
down is given in Tsitverblit (1993), where it is concluded that asymmetric
bifurcation does not play a role in the appearance of vortex breakdown, but
contributes to the transition from a steady to an oscillatory regime. Their
application of the continuation method to study bifurcation of the steady
Navier-Stokes equations shows good agreement for a range of parameters

with steady vortex breakdown in experiments, and the geometric form of
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vortex breakdown.

An important study highlighting the different modes of breakdown seen
for jet- and wake-like axial velocity profiles for a range of Reynolds num-
bers was contributed by Ruith et al. (2003) and Ruith et al. (2004). These
studies used the two-parametric velocity profile as described by Grabowski &
Berger (1976) to study three-dimensionality and unsteadiness, mode selection
and internal structure of vortex breakdown in three-dimensional, incompress-
ible Navier-Stokes equations. Their findings show that low Reynolds numbers
(Re < 10) showed no vortex breakdown or helical modes despite high swirl
ratios. Larger Reynolds numbers (Re > 10 — 100) displayed the bubble, spi-
ral and double helical modes. Wake-like profiles prove to allow the growth
of a helical instability and therefore shows preference to asymmetric modes,
while jet-like axial flow prefers axisymmetric solutions. Figure 2.4 shows
streak-lines of the jet case tested by Grabowski & Berger (1976), simulated
in three-dimensional flow. The three images show the axisymmetric bubble
yielding to a helical instability with time. Ruith et al. (2003) concludes
that Benjamin (1962) was correct in postulating that vortex breakdown is
inherently axisymmetric. The transition to spiral modes is due to a large
pocket of absolute instability in the wake of the bubble. Although this study
is limited in its analysis, it highlights the dynamics in a model with minimum
simplification.

Loiseleux & Chomaz (2003) observes the pre-breakdown behaviour of
an unconfined swirling jet with respect to azimuthal modes of instability,
finding the modes of instability with respect to swirl ratios (as defined by
Billant et al. , 1998). They find that for swirl ratios near vortex breakdown,
mode 1 instabilities persist, creating kinking and rotation of the vortex in

the opposite sense to the swirling flow (spiral mode). Figure 2.5 shows the
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Figure 2.4: A series of streak-lines in time for the reference case tested by
Ruith et al.  (2003) showing the loss in axisymmetry and the growth in
helical instabilities. Reproduced from Ruith et al. (2003).
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Figure 2.5: The dominant azimuthal wave numbers as a function of swirl

ratio S. Reproduced from Loiseleux & Chomaz (2003)

modes plotted against swirl ratio. Gallaire et al. (2004) extends the work
of Loiseleux & Chomaz (2003) by forcing the vortex with the use of a cam
run set of syringes connected azimuthally to the nozzle. A strong response
was shown to occur for m = £2 and m = +£3, only when the frequency of
forcing was an order of magnitude higher than that of the natural response.

A marked resistance to disturbances was noted for the vortex core in general.

Peculiarities of Closed Cylinder Flow Vortex Breakdown

Vortex breakdown observed in closed containers with spinning lids tends to
more axisymmetric than flows seen in pipes and over delta wings. In fact,
suggestions of asymmetry of the base flow have in some respects been shown
to be related to flaws in experimental techniques of visualisation and small
geometrical misalignment of the experimental equipment (see Hourigan et al.

, 1995; Thompson & Hourigan, 2003, respectively).
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An alternative explanation for symmetry breaking in closed cylinder vor-
tex breakdown is given by Tsitverblit & Kit (1998). This numerical study
of the onset of unsteadiness reported in confined vortex flows (see Escudier,
1984) finds that the onset of axisymmetric oscillations was in fact not created
by instability in the central vortex core, but that the instability mechanism
originates in the wall region of the container. In this region, Taylor-Gortler
vortices are migrated by the secondary motion (the diametric plane flow)
induced by the spinning lid. These vortices tend to be swept away by the
secondary flow before they can grow sufficiently (at Re ~ 2000). Increas-
ing the Reynolds number up to Re ~ 2550 increased the intensity of the
Taylor-Gortler vortices, however it also increased the intensity of the sec-
ondary recirculation, carrying them away quicker. The instability was found
to grow at lower Reynolds number than those found for the independently
considered wall region. This difference is attributed to a feedback of the
instability into the start of the reversed Rayleigh region. This leads to the
conclusion that exponentially growing infinitesimal disturbances, causing the
unsteadiness observed by Escudier (1984) is created in the reversed Rayleigh
discriminant region of the cylinder wall.

Floquet analysis was performed by Blackburn (2002) on the three-dimensional
Navier-Stokes equations on the axisymmetric branch of the three possible so-
lution branches for flow in a cylinder with a rotating end-wall. In accordance
with Tsitverblit & Kit (1998), he found that the flow was unstable to rotat-
ing waves that displayed the characteristics not of circumferential instability,
but of instability in the wall shear flow. Similarly, Marques & Lopez (2001)
applied linear stability analysis to three-dimensional perturbations and found
a Hopf bifurcation to a rotating wave leading to a m = 4 mode of instability

(a series of four waves rotating in the same direction as the mean flow).
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Type | Description

0 Axisymmetric Bubble

1 Turbulent Bubble

Spiral

Flattened Spiral Transition State

Double Helix

2
3
4 Flattened Bubble Transition State
5
6

Large Amplitude Low Re Filament Diversion

Table 2.1: List of the types of vortex breakdown described by Faler & Lei-
bovich (1977)

Criticism of the Hydrodynamic Instability Theory

Hall (1972) denies the refutability of theories relying on hydrodynamic insta-
bility, stating that such a flow state, with large velocity gradients, is likely
to have instabilities somewhere. Benjamin (1962) cites approximate axisym-
metry shown by Harvey (1962), the presence of an abrupt expansion of the
stream function and the steady behaviour of the breakdown state as contra-

dictory evidence to the role of hydrodynamic instability.

2.2 Vortex Breakdown Dynamics

In this section, studies describing observations and measurements of vortex
breakdown are presented. Initially the extensive observations of the dynamics
of vortex breakdown in pipe flows performed by Faler & Leibovich (1977) is
reviewed in detail. The seven resulting vortex breakdown types observed
by Faler & Leibovich (1977) are given in table 2.1 which provides a short

description of their main characteristic.
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Type 0 refers to the traditional axisymmetric bubble vortex breakdown
as described in §1.2.1. Apart from the early observations reported in §1.2.1,
Faler & Leibovich (1977) also noted a secondary method of filling and emp-
tying that was infrequently evident at low Reynolds numbers. The dual emp-
tying and filling process, involved two emptying ’tails’ diametrically opposed
and two filling locations 90 degrees out of phase with these. The bubble type
was also seen to move along the tube axis in a seemingly random fashion,
sometimes settling on a single location for a short time before restarting os-
cillatory behaviour. Type 1 is a turbulent bubble where turbulence ensues
at the bubble’s widest point, giving a turbulent wake of approximately the
same diameter as the bubble.

Type 2 refers to the spiral vortex breakdown as described in §1.2.2. The
rotational sense of the spiral was confirmed as being in the same direction as
the vortex core. The spiral form was seen to move randomly along the tube
axis and increased in rotation speed and closeness of the spiral turns with
upstream movement. Additionally, the Type 2 was also seen to spontaneously
change into a Type 0 or Type 1 with a corresponding upstream displacement.
With increases of circulation or Reynolds number, the Type 2 was seen to
move upstream and become turbulent sooner. The frequency of rotation of
the spiral filament also increases, along with the frequency of bi-stability
switching between the spiral and bubble.

Type 3 and 4 are specialised cases found in transition between Types 5
and 6 and Types 0, 1 and 2 which represent a quasi-bubble or quasi-spiral
that is flattened onto a meridional plane. The flattened spiral periodically
sheds only on a preferred plane — similar to Karman vortices. Increase of
circulation leads to a morphing into the Type 0 or Type 2 variants.

The Type 5 and Type 6 breakdowns were observed to have distinct but
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less abrupt movement of the vortex core away from the axis. The Type 5
being a double helix shearing of the vortex filament, while Type 6 is repre-
sented by a large amplitude divergence of the vortex filament away from the
centreline. Both of these forms do not display a stagnation point and are

therefore not usually considered to be vortex breakdown examples.

2.2.1 Mode Selection

This section describes, studies that deal with vortex breakdown mode selec-
tion.

Early observations of the spiral, bubble and the double helix types as
seen in pipe flows (e.g. Sarpkaya, 1971) show that Reynolds number flows
in the region 1000 < Re < 2000 were less stable to asymmetric disturbances,
and therefore more likely to experience the spiral and double helix form.
Sarpkaya (1971) also observed a well defined bi-stability region where both
the spiral and the bubble were observed for the same parameters.

Briicker (2002) devised an experimental apparatus that could force ax-
isymmetry in a pipe flow. This was achieved by the rotation of the divergent
pipe section. The vortex breakdown bubble achieved in this case was a long
conical bubble that was near-axisymmetric and had a characteristic outer
radius of 0.8 of the tube radius. Despite the fact that the form of the bubble
region was significantly different to those seen in most other experiments,
their results show that for conditions that normally favour asymmetric (spi-
ral) forms, the bubble form only exists. They conclude that mode selec-
tion is influenced by the propagation of asymmetric disturbances upstream.
Kurosaka et al. (2003) applied axisymmetric and asymmetric azimuthal
waves to a pipe flow and achieved complete control over mode selection for

a limited range of results. More limited success was achieved over a broader
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Figure 2.6: The turbulent conical state observed by Sarpkaya (1995) where
the bubble and its turbulent wake have merged into one structure. Repro-

duced from Sarpkaya (1995)

range of forcing frequencies and Reynolds numbers (see §2.3.2 for the details
of this study).

Spall (1996) studied the transition from spiral to bubble using numeri-
cal simulations of the three-dimensional, incompressible Navier-Stokes equa-
tions. He showed that transition from a spiral to a bubble could be initiated
by a small increase in the magnitude of the free-stream velocity deceleration
(the adverse pressure gradient). The resultant single recirculation region
bubble state eventually becomes unstable and transitions back to an even
stronger spiral.

Sarpkaya (1995) extended pipe flow observations into the turbulent flow
region (50 x 10> < Re < 225 x 10%) observing an acute angled conical
turbulent wake after a bubble (beginning at Re = 50 x 103) that merges
with the bubble to form a turbulent conical form of vortex breakdown at
Re = 100 x 103 (see figure 2.6). These flows qualitatively compare with
those observed in smoke visualisations of flows over in-flight F/A-18 fighter
jets (see figure 1.1 lower). Although claims were made that these flows rep-
resented a new conical form of vortex breakdown, the form seen more likely

describes a bubble type vortex breakdown with a large turbulent wake.
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The mode selection of the wake of a simulated pipe flow with a cen-
tral body (similar to a vortex breakdown bubble) was studied by Ortega-
Casanova & Ferndndez-Feria (1999). The study highlighted the effect of
inlet azimuthal velocity profile on the downstream structures of such pipe
flows. They found a strong dependence on pipe geometry and azimuthal
profile and an abrupt change in downstream structure above a threshold
value of swirl. The downstream structures represented flows similar to those
seen in the wakes of vortex breakdown, such as reformation of the vortex and

subsequent breakdown.

The Breakdown State Observed in Cylinders with Rotating End-
Wall

Vortex breakdown within closed cylindrical containers with a rotating end-
wall were explored by Escudier (1984). This study shows that the ratio of
height to container radius is an important parameter in the flow dynamics
for cylindrical containers. A series of experiments at different height ratios
demonstrates the presence of one, two and three separate vortex breakdown
bubble modes. This study also provides the useful map of vortex breakdown
states depending on height ratio and Reynolds number (as shown in figure
2.7 upper).

Spohn et al. (1998) extended the work of Escudier (1984) by exploring
the differences between fully enclosed cylinders and those with a free surface.
Figure 2.7 lower shows the alternative parameter map for cylinders with a
free surface as developed by Spohn et al.  (1998). The main difference
found was that the vortex breakdown bubble becomes attached to the free-
surface and the recirculation regions become elongated and larger. They

found that closed cylinders maintained the vortex breakdown state whereas
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in an open cylinder it would have vanished. The observations described a
vortex breakdown state that is similar to those in pipe flows; having an open
bubble structure (with inflow and outflow) that is axisymmetric upstream
and asymmetric downstream. In these flows, the asymmetry of the bubble
was identified as resulting from asymmetric separation of the flow along the
cylinder wall (see §2.1.4 and Blackburn, 2002).

Goldshtik & Hussain (1992, 1997, 1998b,a) argue that the flow state seen
in cylinders with a rotating end-wall is not a vortex breakdown state, but
merely an internal separation with reversed flow. They propose that vortex
breakdown requires a ‘jump’ and hysteretic transition between flow states.
This definition of vortex breakdown precludes the flow state seen in cylin-
ders because they do not display a jump or hysteresis; the bubble changes
smoothly with varying flow parameters.

Hourigan et al.  (1995) argue the case for axisymmetric base flow in
closed cylinder containers and that the supposed asymmetric form of vortex
breakdown observed in experiments is an artifact of the limits of experimental
accuracy. The asymmetry of streak-lines of dye released along the centreline
of the container was attributed to the inherent asymmetry of the flow. In
this study, axisymmetric simulations with Lagrangian particle tracking were
used to show that in pre-vortex breakdown states, spiraling of a particle trace
released with a small offset from the centreline shows qualitatively similar
asymmetry to the experiments.

The effect of experimental imperfections on the resulting vortex break-
down state is studied by Ventikos (2002) and Thompson & Hourigan (2003).
In these studies, the three-dimensional Navier-Stokes equations are solved
for flows in cylindrical containers with slight imperfections comparable to

those in experimental rigs. Ventikos (2002) studies the imperfections in the
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Figure 2.7: The occurrence of vortex breakdown states in closed (upper) and

open (lower) cylinders with a rotating end-wall for Reynolds number and

height ratio. Reproduced from Spohn et al. (1998)
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Figure 2.8: The break in symmetry of a vortex breakdown bubble due to 0.1°
angular misalignment of the rotating end-wall of a closed cylinder flow. A
variety of diametrical ’slices’ are shown in comparison to an image from ex-
periments of Spohn et al. (1998). Reproduced from Thompson & Hourigan
(2003)

side-walls by simulating a slightly (1%) elliptical geometry and demonstrated
asymmetric resulting flows. Thompson & Hourigan (2003) offset the angle
between the container axis and the end-wall rotational axis to show that very
small misalignments can cause significant diversion of the flow from a purely
axisymmetric one. This is well illustrated in figure 2.8 where characteristic
folding is evident in the vortex breakdown bubble for a range of diametrical
slices of the computational domain, the far right picture being of visualisation

from Spohn et al. (1998).

A Novel Conical Vortex Breakdown State

A mode unobserved in flows in pipes and over delta wings, dubbed the ‘cone’,
was first seen by Khoo et al. (1997). Their experiments of tornados shows
a flow state that is similar to those analytically studied by Shtern & Hussain
(1993) and Shtern et al. (1997); a conical expansion of the vortex core
away from the vortex centreline. The cone was observed at relatively large
Reynolds numbers Re > 3000 and swirl. Figure 2.9 shows a representation

of the cone state observed; the main flow structure involved in these flows is
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Figure 2.9: The conical state of vortex breakdown observed in tornado like

flows. Reproduced from Khoo et al. (1997)

a tightly wound spiral that is not seen in the axisymmetric analysis of Shtern
& Hussain (1993). Liang & Maxworthy (2005) show results similar to Khoo
et al. (1997) with a tightly wound spiral progressing in a conical sense.
They show that the spirals are formed by axial Kelvin-Helmholtz instability
roll-up.

Coghe et al. (2004) also observe a cone-like structure in experiments of a
swirl combustor at high swirl rates; however, the vortex is relatively confined
in a cylinder and the conical breakdown attaches itself to the walls, creating
an enclosed recirculation region behind the breakdown. Figure 2.10 shows a
diagram of this confined conical breakdown. Kalkhoran et al. (1998) also
observed a conical form of vortex breakdown at high Mach number, similar

to the turbulent cone observed in Sarpkaya (1995).
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Figure 2.10: The cone state observed in a confined vortex combustor. Re-

produced from Coghe et al. (2004)

A cone that shows even better comparison with the flow state identified
by Shtern & Hussain (1993) was first discovered by Billant et al. (1998) in
their experiments of unconfined swirling jets. The cone occurs at laminar
Reynolds numbers and displays a 90° included angle expansion of the vortex
core. Their cone had significantly different characteristics than the cone-like
breakdown states seen in Khoo et al. (1997) and Sarpkaya (1995). These
experiments show a cone-like state at high Reynolds number and could be
explained as being a bubble with a wide, turbulent wake. Figure 2.11 shows
the cone state as visualised with an axial laser sheet and a second laser sheet
offset 20° from horizontal. The cone was consistently observed at Re < 1000.

The cone type was found to co-exist with a standard bubble type vortex
breakdown. It was suggested that the bi-stability is caused by slight tem-
perature inhomogeneities between the inlet flow and the otherwise stagnant

tank flow; the resulting slight buoyancy increase was proposed to prefer the
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Figure 2.11: The proposed cone breakdown of Billant et al. (1998).

cone type. Both the bubble and the proposed cone were observed to have an
asymmetric form at higher Reynolds numbers, where the bubble and cone
became flattened. Billant et al. (1998) also showed that hysteresis was a
measurable, but a fairly minimal phenomenon in vortex breakdown of un-

confined swirling jets.

2.2.2 Numerical Studies

Grabowski & Berger (1976) were the first to numerically simulate vortex
breakdown in an unconfined viscous vortex by solving the steady-state, ax-
isymmetric Navier-Stokes Equations. They showed that the assumptions of
steady state and axisymmetry led to solutions which exhibited some of the
main features associated with vortex breakdown and compared favourably

with the experimental observations of Sarpkaya (1971) and Bossel (1969).
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The numerical study by Salas & Kuruvila (1989), of vortex breakdown
in pipes using the stream-function-vorticity form of the steady, laminar, ax-
isymmetric Navier-Stokes equations, was successful at producing flow recir-
culations similar to those seen in experiments. However, the form of the
recirculation was qualitatively dissimilar to experimental observations. Mul-
tiple breakdown states (up to five different bubbles) emerging downstream
for increases in Reynolds number were also observed.

Darmofal (1996) was only slightly more successful in simulating vortex
breakdown using the axisymmetric form of the Navier-Stokes equations
(stream-function-vorticity method). Using comparisons of velocity profiles
upstream and downstream of the breakdown bubble, they showed that the
forward halves of the simulated vortex breakdown bubbles were accurately
representing their own experimental results. The latter half of the bubble
showed differences that were explainable by assuming that the tail of the
bubble was unstable to asymmetric disturbances. Similar to Salas & Kuruvila
(1989), their vortex breakdown wake was seen to re-form and break down
more than once, although less markedly. Sensitivity of the location of vortex
breakdown due to the inlet boundary conditions was also observed.

More successful axisymmetric solutions were obtained by Beran (1994),
where the time asymptotic behaviour of the vortex breakdown structure was
dependent on initial conditions and the rate of variation of the inlet parame-
ters. They achieved a single-celled vortex structure of slightly different form
than that seen in three-dimensional simulations and experiments.

Keller et al. (1988) reviews numerical approaches based on the slender-
vortex approximation and the Navier-Stokes approach, concluding that the
slender-vortex approximation is successful at giving an insight into the physics

of vortex breakdown despite not actually being able to determine the location
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of the free stagnation point. The solutions to the Navier-Stokes equations,
although giving much better representation of a vortex breakdown event,
were found to be very sensitive to inflow and outflow conditions.

Spall et al. (1990) modelled the complex internal dynamics of the vortex
breakdown bubble using unsteady three-dimensional incompressible Navier-
Stokes equations with a Burger’s vortex inflow condition. They found that
the internal dynamics of the bubble type breakdown was highly asymmet-
ric and contained multiple recirculation regions that compared excellently
with those reported in Leibovich (1978). The bubble was seen to absorb
fluid near the centreline of the wake section and releases fluid at the outer
portion of the rear internal ring vortex. They reported bubble aspect ra-
tios (length/diameter ~ 1.75) with excellent similarity to those measured in
previous experimental results. Their study shows that in order to represent
the major internal structures of vortex breakdown in its entirety, unsteady
three dimensional simulations are necessary. Their simulation at Re = 200
showed good qualitative and quantitative comparison of velocity, pressure
and vorticity to earlier experimental work by Faler & Leibovich (1978).

Numerical simulations of an experimental set-up similar to that of Sarp-
kaya (1971) was conducted by Snyder & Spall (2000) using the three-dimensional,
unsteady and laminar form of the Navier-Stokes equations. Their grid is
shown in figure 2.12 with contours of azimuthal velocity superimposed. They
chose to simulate the vanes used by Sarpkaya to avoid constraining the veloc-
ity at the entry to the pipe and therefore avoid contamination of the solution
to upstream propagating asymmetric disturbances. They found that the use
of constrained velocity conditions at the pipe do not affect the location or
structure of vortex breakdown.

In simulations of the flow over delta wings, Hsu & Liu (1992) achieved
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Figure 2.12: The computational domain as used to simulate pipe flows more
accurately. Note, the addition of turning vanes removes the need to impose
velocity profiles at the pipe inlet. The contours show azimuthal velocity.

Reproduced from Snyder & Spall (2000)
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reasonable qualitative comparisons using the three-dimensional incompress-
ible Navier-Stokes equations. Their results, however, were limited to time-
independent flows and the bubble form of breakdown only.

With the increase in computational power, the simulation of turbulent
flows has recently begun. Mary (2003) performed Large Eddy Simulations
(LES) of flow over a delta wing at Re = 1.6 x 10° and found that simulations
were inaccurate using a no-slip condition on the wing with or without the
logarithmic law (see Mary, 2003). Additionally, simulations were found to be
under-resolved using the grid resolution studied, suggesting that the future
of modelling vortex breakdown with turbulent effects is still to be achieved.

Sotiropolous et al. (2001) examined the Lagrangian dynamics of a parti-
cle interacting with vortex breakdown within three-dimensional closed cylin-
drical containers with rotating lids. Based on their observations they argued
that the Eulerian characteristics of the flow are able to be ascertained by ax-
isymmetric computations because the asymmetric component of the flow is
small compared to the axisymmetric component. They found that the small
asymmetric perturbations drastically alter the Lagrangian characteristics of
the flow by increasing the chaotic nature of the flow.

In a numerical study, Beran (1994) observed hysteresis in the solutions
of the unsteady axisymmetric Navier-Stokes equations, with changes in cir-

culation.

2.2.3 Time-Dependent Dynamics

Gursul & Yang (1995) used flow visualisation and velocity measurements
(using Laser-Doppler Velocimetry) to study the unsteady vortex breakdown
location over a delta wing. They found that vortex breakdown fluctuations

in location occur at much lower frequencies than than the hydrodynamic
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instability of the wake of the breakdown bubble. Directly comparing the
frequency of the helical mode instability of the wake shows that this instabil-
ity does not influence the unsteady nature of vortex’s longitudinal location,
refuting previous hypotheses that the two are linked.

Menke et al. (1999) also reported on the unsteady dynamics of vortex
breakdown over delta wings noting that the Strouhal frequencies of oscilla-
tion of the downstream location were much lower than those of any known
instabilities. A mechanism of interaction between adjacent vortex break-
down states was proposed and shown to be important in the low frequency
longitudinal oscillations (see also Menke & Gursul, 1997). Although this
mechanism was not explained, its increased effect at higher angles of attack
indicates that it is an oscillation of the mean flow similar to that seen in
many bluff body applications (Von Kérmén instability). Menke & Gursul
(1997) added velocity profile measurements (see figure 2.13) including a va-
riety of unsteady velocity measurements showing very large fluctuations in
both the axial and azimuthal velocities with and without the presence of
vortex breakdown.

Lagrangian particle tracking and experimental visualisation were em-
ployed by Sotiropolous et al. (2001, 2002) to observe particle paths interior
to vortex breakdown bubbles in closed cylinders with a rotating end-wall.
Differences between the numerical solutions and the experimental results are
observed; Additionally, they observed that the emptying of the bubble oc-
curs in bursts as opposed to continuous release. In flows demonstrating two
bubbles, they observed that the second bubble was surprisingly axisymmet-
ric, despite the asymmetry of the upstream bubble. The axisymmetry of the

second bubble was proposed to be due to the different swirl condition.
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Figure 2.13: A diagrammatic representation of studied delta wing vortex
breakdown showing the delta wing with the leading edge shear layer roll-up.
The vortex on the left shows a typical azimuthal velocity profile, while the
right vortex shows the typical axial velocity profile. Reproduced from Menke

& Gursul (1997).
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2.2.4 The Onset of Vortex Breakdown

This section outlines studies that focus on conditions leading to vortex break-
down in a variety of flow situations.

A switch in azimuthal vorticity of the jet flow over a delta wing was
observed by Ozgoren et al. (2002) to occur at the inception of vortex break-
down. Detailed images of the structure of vortex breakdown emphasising
instantaneous vorticity were presented. The switch in vorticity was identified
to occur in both instantaneous and time-averaged vorticity. This switching
of vorticity precedes the stagnation of the axial velocity and is identified as
a useful indicator of vortex breakdown incipience.

Fernandez-Feria & Ortega-Cassanova (1999) uses the axisymmetric Euler
equations with two families of inlet conditions applied, one singular at the
centreline and a more realistic viscosity regularised profile. They showed
that for both diverging and converging pipes, cylindrical solutions for the
downstream flow, determined by the inlet flow, exist even for large swirl
parameters for the singular velocity profiles. For the viscosity regularised
flows, characterised by constant axial flow, solid-body rotation and small
core radius, flow reversal on the centreline was observed. The implication of
this is that vortex breakdown is governed by viscous effects.

Some indication that vortex breakdown is unable to be achieved in a
converging tube is given by MacDonald (2003) who performed experiments
in impulsively rotated converging and diverging tubes with slow moving axial
flow. MacDonald showed a vortex breakdown-like region of reversed flow
in the diverging tube, whereas the converging tube shows only a toroidal
recirculation at the tube wall.

Revuelta (2004) studied swirling flow in pipes with sudden expansions

using the quasi-cylindrical approximation of the Navier-Stokes equations.
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Revuelta found that a pipe divergence causes bifurcation of the solution into
two branches which were seen to fold for limited swirl, leading to multiple
solutions. Above a limiting expansion ratio the fold disappears leaving only
one possible solution for all swirls. Reynolds numbers below Re = 125 also

show solutions without a fold.

Critical Conditions for Breakdown Onset
Presented here are the studies that develop a parameter to measure the
incipiency of vortex breakdown.

Hall (1972) proposes the swirl angle ¢, defined by

¢ =tan"t —, (2.1)

gl

where v and w are the local azimuthal and axial velocities respectively. This
parameter can be applied as a function of radius, where the maximum value
indicates the overall characteristic swirl angle of the vortex. Hall (1972)
proposes a loose criterion that for vortex breakdown to occur downstream a
swirl angle ¢ 2 40° is required. Deng & Gursul (1996) finds that the swirl
angle ¢ is insufficient to locate the occurrence of vortex breakdown over delta
wings with any accuracy.
Spall et al. (1987) reinterpreted results from previous experiments in
light of the Rossby number defined as
U+
Ro = ot (2.2)
where U*, r* and () are the characteristic axial velocity, radius and rota-
tion rate respectively. This study found that for wing tip type vortices and
for Re > 100, that vortex breakdown occurs below a critical Ro = 0.65.

Figure 2.14 shows the Rossby numbers for a variety of studies. Here, the
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Figure 2.14: The Rossby number required for vortex breakdown in wing-tip
vortices as a function of Reynolds number. Reproduced from Spall et al.

(1987).

critical Rossby number was seen to increase as a function of Reynolds num-

2> 100. Despite the apparent success of

~Y

ber, becoming independent at Re
the Rossby number in providing a critical parameter for the onset of vortex
breakdown, its application to a swirling jet experiment yielded a spread in
critical numbers of 0.55 < Ro < 0.85 (see Billant et al. , 1998).

Farokhi et al.  (1989) defined an integrated parameter (also used by
Panda & McLaughlin, 1994) for measuring the swirl of a jet. Their parameter

referred to here as Sy was defined as

Gy
S = 2.3
where Gy is the jet torque, defined as
Gy = 27?/ pUWrdr, (2.4)
0

G, is the axial thrust, given by
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G, =27 /OOO[/)U2 + (p — poo)|rdr, (2.5)

and R is the nozzle radius. Farokhi et al. (1989) used an experimental set-up
that could produce two different forms of azimuthal velocity profile, one with
solid body rotation and one with a free-vortex profile. Velocity profiles for two
cases with the same integrated swirl ratio (S; = 0.48) were published, where
one shows the inception of vortex breakdown (the free vortex profile case)
and the other shows no sign of breakdown. These experiments led Farokhi
et al. (1989) to conclude that integrated parameters were inadequate for
defining vortex breakdown onset.

Billant et al. (1998) proposes a swirl ratio and corresponding critical
condition based on a Bernoulli’s equation analysis of the streamline on the
axis of symmetry. The analysis is of a Rankine vortex (solid body rotation
in the core region, surrounded by irrotational flow) with a stagnation point
on the centreline a finite distance downstream, the swirl ratio (as defined
by equation 2.6) will be S = v/2 or S > /2, depending on whether the

stagnation point relates to a cone or bubble type breakdown, respectively.

g = W) (2.6)

where W(g/2 -,) is the azimuthal velocity at half the nozzle radius R from the
centreline and Ulg.,) is the centreline axial velocity, and z = z; is a loca-
tion upstream of the vortex breakdown occurrence. Both the swirl velocity
and the axial velocity used in this formulation were approximated with the
maximum swirl velocity and the centreline axial velocity. Figure 2.15 shows
the results of measuring the critical swirl ratios S, for a range of Reynolds
numbers in a swirling jet experiment (see Billant et al. |, 1998). Their

results show good agreement with the criterion developed in their analy-
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Figure 2.15: The swirl ratios for vortex breakdown in a swirling jet, where
the analysis predicts breakdown at S > 1.44. Reproduced from Billant et al.
(1998)

sis (S = 1.44). Marginal improvements were also gained by dismissing the
Rankine vortex assumption and using an integrated azimuthal velocity for-
mulation of the swirl ratio denoted as S;. The success of the Bernoulli’s
equation analysis of the vortex core is impressive, however the applicability
of the swirl ratio (5) formulation is questionable considering the peculiar
axial velocity profile created by their experimental apparatus. Billant et al.
(1998) also applies the Rossby number to their experiments, giving poorer
collapse on the critical criterion than seen in Spall et al. (1987).
Compressibility effects were studied by Herrada (2003) using the ax-
isymmetric Navier-Stokes equations and the quasi-cylindrical approximation
of Benjamin (1962). The steady state solutions describe a range of flow
states depending on Mach number, Reynolds number and velocity profiles.

More importantly, they found that the critical threshold for vortex break-
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down increased with Mach number. They demonstrated that the quasi-
cylindrical approximation was representative of the near-inviscid, incom-
pressible, Navier-Stokes equations. This result is reflective of the analytical

results of Rusak & Lee (2002) as described in §2.1.

2.3 The Control of Vortex Breakdown

Vortex breakdown has importance in a range of swirling flows that can ei-
ther benefit or suffer from its presence. Hence, much research into vortex
breakdown has focused intensively on aspects of control. Presented here is a
discussion on studies that focus on control aspects is given in sections dealing

with each flow type; delta wings, closed cylinders, etc.

2.3.1 Delta Wings

Significant buffeting and aerodynamic stability issues arise with high angle
of attack flight regimes that are caused mainly by the presence of an unstable
and unpredictable vortex breakdown state. Additionally, vortex breakdown
is responsible for loss of high angle of attack lift. The need to control vortex
breakdown in order to suppress, induce and stabilise, has been an important
impetus in research direction. For further information, Mitchell & Délery
(2001) extensively review the control of vortex breakdown over slender delta
wings.

In an attempt to control the longitudinal location of vortex breakdown,
Wang et al. (2003) used a vectored jet at the trailing edge of the delta wing
with varying angles measured between the trailing edge chord and the jet
direction (for 90°, the jet was directly downstream). Jet angles above 30°

generally caused permanent movement of the breakdown downstream for the
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breakdown on the same side as the jet pointed. They also found that this
effect decreased with increasing angle of attack. Menke et al. (1999) showed
that adding a splitter plate between two halves of a delta wing suppressed
low frequency longitudinal oscillations giving more stationary breakdown lo-
cations.

Similarly, Schmiicker & Gersten (1988) used a series of jets on the centre-
line just below the delta wing apex to control the location of vortex break-
down. They showed that blowing along the axis of vortex breakdown yields
a delayed stagnation and therefore vortex breakdown occurs further down-
stream than without blowing.

Deng & Gursul (1996, 1997) achieved results similar to the blowing tech-
niques by using leading edge flaps in fixed angle and in oscillating regimes.
Initial investigation showed that flap angle has a marked effect on the loca-
tion of vortex breakdown. More detailed investigation found that fixed flaps
at 100° (as measured from the top surface of the wing) moved the vortex
breakdown location from near the trailing edge to 10% of a chord length
from the delta wing apex for an angle of attack of 30°. Generally, increases
in flap angle caused the vortex breakdown location to move upstream. For
smaller angles of attack, their results became less marked giving some indi-
cation that vortex breakdown is more strongly affected by adverse pressure
gradients. Results for cases with flap oscillation proved little increase in
control over fixed flap scenarios.

Akilli & Sahin (2003) sought to induce vortex breakdown and alter the
turbulence characteristics by employing a coaxial wire aligned with the core
of a leading edge vortex. The wire used was of very small diameter (1%
of vortex core diameter) and a variety of wire lengths (measured from the

leading edge) were tested. They found that even short wires in the order
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of half the chord length have a dramatic effect on the location of vortex

breakdown spirals, however, not for higher angles of attack (> 35°).

2.3.2 Pipe Flows

A reasonable amount of control of the selected vortex breakdown state in a
pipe was achieved by Kurosaka et al. (2003) where azimuthal waveforms of
modes 0, 1, —1 were created by an array of oscillating pistons. Their results
show that axisymmetric disturbances (m = 0) at Strouhal frequencies St 2
0.22, caused spiral breakdown to form a bubble state and to move upstream.
For weak bubbles, disturbances of m = 41 (asymmetric azimuthal waves in
the same direction as the swirling flow), at 0.16 < St < 0.19 caused the
bubble breakdown to form a spiral. In both of these situations, the vortex
breakdown state remained permanently altered while the disturbances were
applied. Forcing frequencies outside of these parameters had more limited
effect, as did forcing of more vigorous breakdown states. The results show
that hydrodynamic instability plays a major role in vortex breakdown state
selection.

Sarpkaya (1971) conducted experiments to observe the response of vortex
breakdown bubbles to small changes to the upstream conditions. This was
achieved by varied methods including oscillation of one of the swirl vanes,
and varying the angle of all blades at once. Mainly Sarpkaya found that when
the blade angles were increased, and hence the overall swirl magnitude, the
vortex breakdown bubble moved downstream a distance of 0.2D,, (where D,
was the smaller diameter of the diverging tube). After a noticeable pause, the
breakdown moved rapidly upstream and overshooting before settling to the
new upstream location. The process was seen to be reversed for decrease in

swirl. Similar results were achieved by accelerating and decelerating the flow



CHAPTER 2. LITERATURE REVIEW 56

45 B o g

i -':'—lﬁull:li"!:'l I !

Figure 2.16: Results of upstream azimuthal waves on spiral and bubble vortex
breakdown. Left shows m=0 disturbance (axisymmetric) of a spiral form of
breakdown. Right shows m=+1 disturbance of a bubble type breakdown.
Reproduced from Kurosaka et al. (2003)
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by means of constriction or opening of the outlet. Increasing the constriction
created a greater adverse pressure gradient that led to the vortex breakdown

state settling further upstream.

2.3.3 Cylindrical Containers

Recently, Fujimura et al. (2004) examined the effect of rotating the normally
fixed bottom and side-walls in co-rotation and counter-rotation. They found
that for co-rotation the bubble was further from the rotating end-wall, and
closer for counter-rotating. Mununga et al.  (2004a,b) have shown that
vortex breakdown location could be significantly and permanently altered by
the rotation (co- and counter-) of a small disk at the opposite end of the
cylinder to the rotating disk impeller. The rotation also has a significant
effect on the critical Reynolds number for vortex breakdown.

Herrada (2003) showed that temperature gradients along the axis that
create a counter-flow have the effect of suppressing vortex breakdown. Con-
versely, co-flow enhances vortex breakdown size and unsteadiness that is local
to the axis area. Husain et al. (2003) used a rotating rod through the whole
axis of the cylinder employing co- and counter- rotation with the same effect
of suppressing size with the former and enhancing size (and unsteadiness)

with the latter.

2.4 Literature Summary

Despite the large body of studies focusing on the mechanism of vortex break-
down, little consensus has been reached. Support for a fundamental axisym-
metric mode is strong, with spiral forms being due to asymmetric pertur-

bation of the axisymmetric base form. Many simplifications of the Navier-
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Stokes equations have shown comparative vortex breakdown forms and full
three-dimensional studies have shown spiral forms of breakdown, as well as
axisymmetric forms.

Some studies have also attempted to develop a critical criterion for vor-
tex breakdown, leading to criteria based on local velocity angle, ratios of
velocities and ratios of conserved properties. However, these studies also
lack consensus about the universality of critical criteria, with application of
a criterion to a different experiment showing poor collapses.

This thesis will focus on the universality of vortex breakdown criteria,

using the promising analysis of Billant et al. (1998) as a starting point.



Chapter 3

Numerical Method

This chapter describes the general method used in the presented studies.
This includes a description of the physical model, the mathematical model
and the computational method used to solve the mathematical equations
on a discretised domain. Finally A discussion of the model validation is
given showing flow visualisations and a comparison of the critical swirl ratio

prediction with the experimental equivalent.

3.1 Physical Model

The initial aim of the present simulations was to replicate the unconfined
swirling jet experiments of Billant et al. (1998). Their experimental con-
figuration included a tank of otherwise stagnant fluid with a swirling jet
apparatus attached at the top (see figure 3.1). The tank was a square cylin-
der of dimension /R = 20 x y/R = 20 x z/R = 60, where R was the jet
nozzle radius. The tank included a honeycomb section to ensure the tank
outlet flow was purely axial. The swirling jet apparatus included a rotating

honeycomb section that imparted solid body rotation onto the through flow,
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Figure 3.1: The experimental rig of Billant et al. (1998) used as a physical

basis for the present simulations.

which was driven by a constant head reservoir set-up. After passing through
the honeycomb section of the swirl generator, the flow enters a contraction
and finally passes through the nozzle, and into the tank.

The physical model used in these experiments assumes the absence of
density variation throughout the fluid, hence gravity effects are negligible.
Axisymmetry of the flow is also assumed such that the tank is modelled as a
circular cylinder. The contraction region is ignored as the numerical method
allows the direct specification of velocity profiles at the nozzle outlet. The
outlet of the computational domain is physically positioned just before the
honeycomb at z/R = 56. The outlet boundary is assumed to have a constant
outflow with the same mass flux as the inlet. The outer wall of the cylindrical

tank is assumed to be at a great enough radial distance to have a negligible
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effect on the flow. In the case of the simulations presented here, this wall is
placed at /R = 10. The region adjacent to the nozzle is also assumed to
have negligible effect on the flow and therefore is modelled as a wall. Figure
3.2 shows the physical model used in these simulations.

The main flow parameters used to characterise the unconfined swirling
jet are the Reynolds number Re and the swirl ratio S. The Reynolds number
is used to non-dimensionalise the mass flow rate averaged axial velocity U

with the nozzle diameter D and the kinematic viscosity v

Re = —. (3.1)

The swirl ratio is used to non-dimensionalise the maximum azimuthal veloc-
ity Wy, with the centreline axial velocity Uy, both measured at the nozzle

outlet.

S=—— (3.2)

3.2 Mathematical Model

The mathematical model used to simulate the flow conditions in the physical
model are the governing equations of fluid flow commonly known collectively
as the Navier-Stokes equations. The Navier-Stokes equations consist of the
momentum equations and the continuity equation. In their general form they
are a formidable set of equations and they have only been analytically solved
for a limited set of cases involving many simplifications. The Navier-Stokes
equations are only valid for Newtonian fluids, that is fluids that have a linear
shear stress and shear strain relationship. In the present simulations the fluid

is assumed to be Newtonian and incompressible (constant density) in space
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experimental rig of Billant et al. (1998).
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and time. This assumption is appropriate for flows with a Mach number
Ma < 0.3, a limit for which the flows in these simulations are well within.

The non-dimensionalised vector form of the momentum equation of the
complete Navier-Stokes equations is
ou 1

EIV}H_Re

and the continuity equation is

(V?u) — (u- V)u, (3.3)

V-u=0, (3.4)

where u = u(z,y, z) = (U, V, W) is the normalised velocity field, p = P/p is
the normalised kinematic pressure and Re is the Reynolds number.
The momentum equation includes a pressure term, a diffusion term and

a non-linear advection term from left to right respectively.

3.3 Computational Model

This section describes the discretisation in space and time, the computa-
tional grid and the implementation of boundary conditions. The numerical
simulations presented in this thesis utilise an ‘in-house’ CFD code developed
by Mark Thompson and Kerry Hourigan (from the Department of Mechan-
ical Engineering, Monash University, Melbourne, Australia). This code has
been extensively validated for a variety of different relevant simulations (for
example Hourigan et al. (2001), Thompson et al. (2001), and the refer-
ences therein). The method is based on the Galerkin finite element method
in two dimensions with high-order Lagrangian interpolants used within each
element. The complete method is known as the spectral-element method as it

has convergence behaviour of global spectral methods. The main components
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of the method are the spatial discretisation and the three-step time-splitting
method (e.g. Karniadakis et al. , 1991). The spectral-element method is
described in detail in Karniadakis & Sherwin (1999). The present implemen-
tation of the method provides second-order temporal accuracy and high-order
spatial accuracy. Karniadakis & Sherwin (1999) have shown that the method
achieves exponential convergence for problems with ‘smooth’ solutions.
Discussion of the spatial discretisation and the time-splitting method will
now follow. The spatial derivatives in equations 3.3 are discretised using the
spectral element method (see §3.3.1) and the time derivatives are treated

with a three-step splitting scheme (see §3.3.2).

3.3.1 Spatial Discretisation

The computational code uses a well-documented spectral-element method
for the spatial discretisation of the derivatives in equations 3.3. A brief
description of the use of the integration used within each computational
element is given here. For more information see Blackburn & Lopez (2002)
and Tomboulides & Orszag (2000).

The axisymmetric computational domain is discretised with quadrilat-
eral elements. Gauss-Lobatto-Legendre quadrature is employed to integrate
within each element, giving spectral convergence characteristics. According
to Karniadakis & Sherwin (1999), the Gauss-Lobatto-Legendre quadrature

points are the roots of the equation

(1—E*P,(€) =0 where —1 < ¢ < 1. (3.5)

An expression for the Legendre polynomial P,, of order m is given using

Rodrigues’s formula (see Kreyszig, 1993) as
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(€ —1)™ where m =0, 1,2, ... (3.6)

The Gauss-Lobatto-Legendre quadrature weighting coefficients are given by

2 1
w; = 5 where j =0,1,2,...,m. (3.7)
m(m + 1) [P (z;)]

The weighting coefficients and the quadrature points allow the integrals given

by the method of weighted residuals to be accurately determined using the
Gauss-Lobatto-Legendre quadrature in two-dimensions.
Gauss-Lobatto-Legendre interpolants are also used for the elements along
the axis of symmetry, where to avoid singularities as r — 0 the singular terms
in the equations are set to zero. This condition uses the assumption that vari-
ables approach zero faster than r? as r — 0 (see Blackburn & Lopez, 2002),
retaining the efficiency and convergence characteristics in axisymmetric do-

mains.

3.3.2 The Time-Splitting Method

The three part time-splitting method splits the Navier-Stokes equations into
three separately solvable sub-steps: the non-linear convective step, pressure
correction step and the diffusion step. An overview of these steps, as adapted
from Karniadakis et al. (1991), will now be given. Details of time-splitting
methods can be found in Karniadakis et al. (1991).

For the following analysis, let the linear and non-linear terms in equation

3.3 be

L(u) = V*u (3.8)
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and

N(u) = —(u-V)u, (3.9)

respectively. The time-integration from ¢, to ¢, is defined as

tn+1 tn+1 tn+1
utt —u" = —/ Vpdt + u/ L(u)dt + N(u)dt (3.10)
tn tn

tn
The solution to the semi-discrete system described above is obtained by
splitting the above in relation to the time step, so that three sub-steps are

as follows:

e Step 1 - Integrate the non-linear term forward in time using a Adams-

Bashforth scheme

tn+1 Je—l
a—u" = N(u)dt ~ 6t - > a,N(u"™) (3.11)
q=0

tn
where o, are appropriately chosen weights and 1 is an intermediate

velocity field. At this step no boundary conditions are applied and @

is solved at each nodal point on the entire domain.

The weightings («,) of the Adams-Bashforth (and the Adams-Moulton
f3,) schemes are given in table 3.1 for variety of orders J. Typically the

third-order scheme is used.
e Step 2 - The pressure correction step, where the second intermediate

velocity field 1 is solved for using

—1u

ot

o>

= —Vpt! (3.12)

where p"*! is the scalar pressure field that ensures the final velocity is

incompressible at ¢, and is related to the pressure term through
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J ap (o %1 (0%) Bo B Bo
1 1

2| 3/2 | -1/2 1/2 | 1/2
3123/12 | -16/12 | 5/12 | 5/12 | 8/12 | -1/12

Table 3.1: Weighting factors of the Adams-Bashforth («) and the Adams-
Moulton () schemes (from Chapra & Canale (1998))

tn+1
/ Vpdt = 6tVp™! (3.13)
tn

The Poisson equation for the pressure term can be found by taking
the divergence of equation 3.12 and forcing continuity in the a velocity

field, giving

1
Zpntl — — LV 3.14
V<p 5 Vi ( )

Here the pressure boundary condition must be chosen to satisfy the
Navier-Stokes equations at the boundaries; Karniadakis et al. (1991)

suggested the following Neumann boundary condition

ap’nJrl j—1 1
. n—qy _ n—q
5, = n qzzoﬁq [N(u ) Rev xV xu onI' (3.15)

where I' is the boundary surface, n is the unit normal to the boundary

and (3, are the weightings of the Adams-Moulton scheme.

According to Karniadakis et al. (1991), the time-advancement scheme
can only be one order greater than the order used in the extrapolation
of the pressure boundary condition, and since the scheme requires at

least first-order accurate boundary conditions, this gives second-order
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accuracy in the velocity boundary conditions. Higher-order boundary
conditions can be used for the pressure fields, to the detriment of sta-
bility.

The Poisson equation for the pressure term and the Helmholtz equa-
tions for the viscous terms result in linear matrix problems. The ma-
trices can be inverted as a pre-processing step leaving the sub-steps to

be carried out through matrix-vector multiplications.

e Step 3 - Integrate the diffusion term in time using

ntl _ 4
% - éL(u) (3.16)
which is solved implicitly using the second-order Crank-Nicholson scheme
with the theta scheme modification to prevent short wavelength oscil-
lation, resulting in a Helmholtz equation that can be solved by matrix
inversion. The boundary conditions are imposed upon u™*! and since

n+1

1 is chosen to be divergence free, u""" is also divergence free.

3.3.3 The Computational Grid

The above numerical scheme is applied to all elements on the computational
grid that encompasses the axisymmetric geometry shown in the physical
model. A relatively simple computational domain was employed in the ma-
jority of the calculations; having no protruding nozzle and a simplified outlet
condition. The grid can be seen in figure 3.3. As the computational code
is set up to have the axis of symmetry in the same direction as spatially
horizontal x axis, the domain is rotated by 90° anticlockwise to the physical

model.
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The inlet is located at the bottom left of the computational domain, the
outlet at the right, the outer wall at the top and the axis of symmetry at
the bottom. The majority of the flow is left to right. The axis of symmetry
corresponds to the z coordinate axis at r/R = 0. The domain height is r/R =
10 (from the axis to the outer wall) and the length of the computational
domain is z/R = 56.

The grid features compression of the elements toward the shear layer
and the centreline of the jet, as well as compression towards the nozzle in
the radial and axial directions. For simplicity, no expansion elements were
used; hence there are elements with high aspect ratios (in excess of 7:1) in
non-critical flow areas.

The computational boundaries are set as follows: At the nozzle (the com-
putational inlet), the velocity components are specified. The radial velocity
component is always set to zero. Along the centreline, the azimuthal and
radial components, and the normal derivative of the axial velocity, are set to
zero. The no-slip condition is imposed at the adjacent wall boundary, and
the slip condition at the outer-wall. At the outlet, the normal derivative of

the velocity is set to zero.



Figure 3.3: Computational mesh used in the simulations showing macro mesh elements and the location of the

boundary types.
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3.4 Model Validation

This section presents the model validation, including the mesh resolution
and time-step independence studies, followed by boundary condition inde-

pendence for the adjacent wall, the outer wall and the viscous sponge region.

3.4.1 Independence of Grid Resolution

A numerical simulation should have sufficient resolution to limit the dis-
cretisation errors to an acceptable level. When the grid is fine enough such
that the discretisation error falls below a maximum allowable tolerance, then
the solution is deemed to be grid independent. Grid independence is tested
in practice by performing the same simulation at increasingly higher mesh
resolutions and comparing the results.

Here, the independence of the solution to grid resolution will be demon-
strated at Re ~ 350, S = 1.50 with an increasing number of interpolation
nodes for a single grid as seen in §3.3.3. Since the spectral element method
shows spectral convergence characteristics, this method of increasing the grid
resolution should yield a converged solution for increasing interpolation nodes
(n). Six grid resolutions (y/n =4, 5, 6, 7 & 8) were tested for the effect on
the axial and azimuthal velocities at selected points.

Figure 3.4 shows contours of azimuthal velocity for a large bubble simu-
lated at the flow parameter Re ~ 350 and S = 1.50. The black boxes (H)
show the locations of two data probe locations at z/R = 0.4 & r/R = 0.37,
and z/R = 1.7 & r/R = 0.37. These locations were chosen such that they
were nodes of the macro-grid and therefore common for different internal el-
ement resolutions. Figure 3.5 shows the axial U and azimuthal W velocities

at the two probe locations as a function of the interpolation order y/n for the
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Interp. Nodes (1/n)

4 5 | 6 | 7|8
2/R=04,r/R=037|018 | 0.33 | 0.03 | 0.02 | 0.03
z/R=17r/R=037(3.33|1.02|0.04 007 | 0.05

72

Table 3.2: % Difference in the axial velocity (U) for two probe locations

relative to the velocity for the /n = 9 solution. This data are also plotted

in figure 3.5.
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Figure 3.4: Contours of azimuthal vorticity (red and blue indicate positive

and negative respectively) for a large bubble breakdown at Re ~ 350, S =

1.50. The boxes (M) indicate the two probe locations with coordinates z/R =

04, r/R=0.37and z/R = 1.7, r/R = 0.37 from left to right respectively.
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Figure 3.5: Axial (U) and Azimuthal (W) velocities at 7 = 20 for a series
of increasing interpolation nodes n used to alter the grid resolution. The
simulations are at Re =~ 350 and S = 1.50. The top graph gives the velocities
at the location z/R = 0.4, r/R = 0.37 and the bottom graph gives the
velocities at z/R = 1.7, r/R = 0.37 as shown in figure 3.4.
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two probe locations (upper and lower). Here, as the grid resolution increases,
the velocity at each probe location asymptotes to a grid independent value.
Table 3.2 gives the percentage difference in the axial velocity at the two probe
locations for the /n = 4,5,6,7 & 8 resolutions as calculated relative to the
v/n =9 case. Here, it is clear that the axial velocities at both probe locations
are within 1% of the final converged case after the resolution increases past
\/n > 6, indicating that the \/n = 6 resolution is sufficiently grid indepen-
dent for accurate simulations. Henceforth, the number of interpolation nodes

used in each simulation will be n = 36.

3.4.2 Independence of Time-Step

It is important to show that any simulations of time-dependent flows are
independent of the temporal discretisation. Therefore, a time-step indepen-
dence test is required. This is more important where the dynamics of the
fluid flow are important but less so when using time-dependent simulations
to capture a time-independent phenomena, as is the case in this thesis; the
critical swirl ratio is reasonably independent of the unsteady behaviour of
the swirling jet. However, note that even for steady state calculations there
is an associated splitting error, dependent on the time-step.

Figure 3.6 shows the results of the time-step independence test, the top
graph showing axial velocities and the bottom showing radial velocities. Each
graph contains raw velocity data for two time-steps and three probe locations
(see 3.7). The two time-steps tested were 6t = 0.0005 and §t = 0.00025, the
former being the time-step used in the simulations, and the latter is a more
accurate time step. The simulations were performed for the initial 40 time
units of a simulation of an unsteady cone type vortex breakdown. As can be

seen from the two graphs, the halving of the time-step to 6t = 0.00025 has
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caused no graphical variation in the solution. The time-step of 6t = 0.0005 is

therefore deemed to be sufficient to temporally resolve the simulated flows.

3.4.3 Treatment of Outlet

Preliminary simulations revealed a significant technical problem with nu-
merically modelling jets; the problem of how to define the outlet boundary
conditions to give a stable solution. When a jet is impulsively started, a
vortex ring is propagated downstream. When this vortex ring reaches the
outlet, the strong vorticity causes fluid to re-enter the domain. Since only
simple Neumann boundary conditions are implemented in the current code
(du/dn = 0), only flows out of the domain are possible. Recirculation causes
the problem to be ill-posed and numerically unstable.

An effective solution is to include a region before the outlet as a viscous
sponge. A viscous sponge is the numerical equivalent to a perforated plate or
a sponge, in an experimental rig. It has the effect of ‘smoothing’ out velocity
gradients and creating a constant flow across the domain. This is achieved
numerically through the use of a region near the outlet where the effective
Reynolds number Res is decreased significantly.

Firstly, the effective Reynolds number (Res) of the viscous sponge must
be chosen such that it performs the required role. Figure 3.8 shows the results
of the effective Reynolds number in the viscous sponge region on the velocity
at the outlet of the computational domain. Three Reynolds numbers were
tested, all at least a factor of 10 times smaller than the Reynolds number
of the base flow. The base flow was a jet with no azimuthal velocity and
the simulation was allowed to run until after the starting vortex had reached
the outlet. For the Res = 50 and Re, = 25 cases, the velocity profiles show

the flow reversal at the outlet that causes numerical divergence problems.
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Figure 3.6: Results of time-step check for two time-steps 0t = 0.0005 and ot =
0.00025 showing that the solution for 6t = 0.0005 is time-step independent.
Axial velocities (top) and radial velocities (bottom), as a function of time for

three probe locations as shown in figure 3.7.
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Figure 3.7: The three probe locations (marked as B) used in the time-step
independence test. Contours of azimuthal vorticity shows the vortex break-
down cone at t = 10 (red is positive and the contours are at 31 intervals

between —10 < wy < 10).
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Figure 3.8: Axial velocity profiles at the computational domain showing the

effect of decreasing the effective Reynolds number within the viscous sponge

region.

However, the velocity profile at the outlet for each simulation shows that
the velocity magnitudes are decreasing. The Rey = 5 case show that the
velocity through the outlet is positive for all . Based on this evidence, the
simulations henceforth use a viscosity of five times this value, i.e. Re, = 1.
A better visualisation of the effect of adding the viscous sponge is shown in
figure 3.9, where the strong positive axial velocities (red contours) are quickly
spread and dissipated upon entering the viscous region at z/R = 32.
Simulations from hereon utilise a viscous sponge region in the last 3

macro-element columns with an effective Reynolds number of Re = 1.
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Figure 3.9: The diffusive effect that the viscous sponge has on the axial
velocity shown here in contours. Rapid spreading of the axial velocity radially

can be seen when the jet passes the point z/R = 32.
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Figure 3.10: The mesh used to test the effect of the boundaries on the critical

swirl ratio for vortex breakdown.

3.4.4 Independence of Boundary Location

The current simulations are ideally modelling a swirling jet as it emerges
into a stagnant region of unbounded dimensions. However, for economy
of computational time, we would like to limit the domain size. These limits
should be located where they cause little different. Here, a boundary location
independence test is presented. The grid used in this study is widely different
to that which is used throughout the simulations. There is a nozzle of length
z/R = 20, the outer wall has been moved to a radial location of r/R = 40
and the outlet has been moved downstream to z/R = 93. The grid is shown
in figure 3.10.

The result of a comparative study on the critical swirl ratio for vortex
breakdown in this grid and in the grid used throughout the simulations (see
3.3) gives a critical swirl ratio for vortex breakdown difference of 45, =~
3%. This is an acceptable difference considering the significant reduction
in computational time and memory required to compute the solutions on

the more confined grid. Figure 3.11 shows a vortex breakdown bubble at
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Figure 3.11: A comparison of the solution of an unsteady bubble type vortex
breakdown at Re ~ 590, S = 1.38 within the large mesh tested here and the
normal mesh used throughout the simulations. The respective computational

geometries are shown as black lines.

Re =~ 590, S = 1.38 as simulated on the larger mesh and the smaller mesh
(shown beneath the centreline). The computational domains are included as

solid black lines to give some idea of the difference in scale of the two cases.
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3.4.5 Comparison to Experimental studies

This section presents some comparisons between the experimental flows as
measured and visualised by Billant et al. (1998) and the simulated flows
presented herein. There are two major differences between the simulations
and the experiments: the assumption of axisymmetry imposed on the math-
ematical model, and the differences in flow behaviour at particular Re, S
pairs. Despite the absence of three-dimensionality, the axisymmetric model
shows excellent agreement, but not necessarily at the same Re, S pairs. More
details regarding the flow states achieved in the Re, S parameter space are
given in §6.

A comparison of axial and azimuthal velocity contours is given in figure
3.12, with the axial velocity contours in the upper image and the azimuthal
in the lower. In each image are the experimental contours from Billant et al.
(1998) given above the centreline — which runs through the centre of each
image — and the simulated contours given below the centreline. The experi-
mental parameters were Re = 687 & S = 1.4, while the numerical parameters
needed to achieve this flow were Re ~ 400 & S = 1.4. The contours have
been matched according to the location of the forward stagnation point. Note
that in the present simulations, the stagnation point location consistently sat
closer to the nozzle outlet than seen in the experimental studies of Billant et
al.

The majority of the flow structures seen in the experiments are also seen
in the simulations. In the contours of axial velocity given in the upper image,
there is a region of recirculation — seen as reversed flows and hence dashed
contour lines — and a region near the centreline where the velocity switches
once again to positive, albeit smaller and slower in the simulations. The

contours of azimuthal vorticity also show remarkable similarity apart from
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Figure 3.12: Axial (above) and azimuthal (below) velocity contours as mea-
sured by Billant et al. (1998) at Re = 687, S = 1.4 (upper half), and
compared to contours from simulations at Re = 400, S = 1.4 (lower half).
The flow direction is left to right and the dashed lines represent contours of
negative velocity. The contours of Billant et al. are time averaged, whereas

the contours of the simulations are instantaneous.
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the slightly more elongated shape in the simulated contours.

The major difference between the simulation of the bubble and the ex-
perimental bubble is the presence of the rear stagnation point. The exper-
imental contours show this stagnation point just behind the bubble on the
centreline. The simulations however have no such point but a core region
of reversed flow. Figure 3.13 shows one situation where there is also the
absence of a stagnation point in the experimental flow. Here, an instanta-
neous image of fluorescein dye visualisation of a bubble from Billant et al.
(1998) is compared to contours of azimuthal vorticity and streamlines of a
similar simulation. Blue, white and red contours indicate positive, zero and
negative levels of instantaneous vorticity. Comparing the flow fields in the
experimental and numerical flows shows remarkable similarity between the
open wake structure. The asymmetry of the full experimental bubble (not
shown here) means that only one side of the bubble may be open, while the
opposite side may be closed.

A comparison of the cone state of breakdown shows strong similarity de-
spite the lack of asymmetry in the numerical simulations. Billant et al. gave
a series of fluorescein dye visualisations roughly outlining a full period of
oscillation in the shear layers of the cone type (figure 3.14 upper). When
considering only the upper halves of each image — from the centreline of
the nozzle and up — then we can compare this flow with an axisymmetric
simulation. Figure 3.14 (lower) shows a series of images from a simulation
that show similarity in the oscillation of the conical wake. Some of the main
differences between the experiments and the simulations (excluding the lack
of three-dimensionality) are as follows. The placing of the stagnation point
in the simulations is within z/R = 2 of the nozzle outlet, whereas in the

experiments it can be placed further downstream. Also the shear layer of
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Figure 3.13: Comparison of bubble breakdown using experimental fluorescein
dye visualisations (from Billant et al. , 1998) and simulated contours of
azimuthal vorticity (lower left), where blue, white and red indicate positive,
zero and negative vorticity levels respectively. The lower right half shows
streamlines of the simulated bubble. Both the experiment and the simulation

are at Re =~ 600 and the swirl ratios are S = 1.42 and S = 1.32 respectively.
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the cone tends to travel further from the centreline before rolling up into
coherent vortex rings — this effect may be due to the enforced axisymmetry.
The swirl ratio at which conical vortex breakdown is achieved is generally
higher than that of the bubble at most Reynolds numbers. This discrepancy
is expanded on in §6.

A more detailed comparison of the shedding of the cone is shown in figure
3.15. Here, the top half of the third image of figure 3.14 upper (see numerals
on each image) has been compared to contours of azimuthal vorticity of an
unsteady cone at Re ~ 600 & S = 1.45, shown below the centreline. The
comparison shows remarkable similarity in all but the location of the stag-
nation point relative to the nozzle outlet; here the stagnation point locations
are matched. The contours of azimuthal vorticity are given in blue, white and
red indicating positive, zero and negative vorticity respectively. The replica-
tion between the shear-layer shedding behaviour is simulated well, but also
the internal dynamics of the cone are captured; The dye layer beneath the
main ring vortex is evident in the simulation by a region of negative (red)
vorticity.

Figure 3.16 shows another comparison of the current simulations to the
experimental results of Billant et al. (1998). The lower half of the third
image of figure 3.14 upper is shown here compared to in-plane velocity vec-
tors (left) and streamlines (right). In this case, the simulations predict a
large recirculation region as the main vortex ring, which may be seen in the
fluorescein dye visualisation but is unclear. More interesting is the similar-
ity seen in the dye visualisations and the streamlines where small internal
recirculation picked out by the manually placed streamlines are reflected as

regions of low dye concentrations.
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Figure 3.14: The set of images given in the upper image show approxi-
mately one period of dynamic behaviour of a cone type vortex breakdown
at Re = 626 & S = 1.31. The nozzle can be seen at the left and the flow
is visualised with fluorescein and a diametric laser sheet. Reproduced from
Billant et al. (1998). The image below are a series of oscillations observed
in the simulations of a cone Re ~ 1000 & S = 1.45. The flow is from left to

right.



CHAPTER 3. NUMERICAL METHOD 88

Figure 3.15: Comparison of cone breakdown using experimental dye visual-
isations (from Billant et al. |, 1998) and simulated contours of azimuthal
vorticity (lower half), where blue, white and red indicate positive, zero and
negative vorticity levels respectively. Both the experiment and the simulation

are at Re =~ 600 and the swirl ratios are S = 1.31 and S = 1.45 respectively.
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Figure 3.16: Comparison of cone breakdown using in-plane velocity vectors
(left) and manually placed streamlines (right) mirrored with fluorescein dye

visualisation of an experiment.



Chapter 4

Observations and Visualisation

The term wvortex breakdown describes a wide variety of breakdown types,
ranging from the near-symmetric large bubbles observed in closed cylinders
with rotating lids, to highly asymmetric spiral types observed in pipe and
delta wing flows. The present simulations show that, independent of the
exact type of vortex breakdown seen, there are some common dynamics. All
forms of vortex breakdown are characterised by some sort of strong disruption
to the axial flow (usually culminating in the formation of a stagnation point
on the centreline), expansion of the vortex core away from the centreline and
some form of recirculation or reversed flow region.

In this Section, each type of vortex breakdown observed in the simu-
lated unconfined swirling jet, is described. The two main types of vortex
breakdown seen were the bubble and the cone; both axisymmetric due to the
modelling assumptions (see §3.1). However, there were interesting combina-
tions of the two, dubbed here as ‘hybrid’. Depending on the flow parameters,
quasi-steady and unsteady variants of the bubble and cone states were ob-
served.

Initially, some explanation of the dynamics of the swirling jet preceding

90
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vortex breakdown is necessary.

4.1 Pre-Breakdown Dynamics

Vortex breakdown occurs reasonably suddenly in a vortex core, often with
little or no warning signs. Perhaps the best way of determining the state
of a vortex core with respect to breakdown, is to observe the axial veloc-
ity. Vortex breakdown is usually preceded by significant deficit of the axial
velocity, near the vortex centreline. A deficit usually becomes stronger at
near critical swirl levels. This effect is shown in figure 4.1, where a sim-
ulated swirling jet at Re = 175 is shown with four different swirl ratios
S =140, 1.42, 1.44 & 1.46, from top to bottom respectively. Here, contours
of axial velocity show positive, zero and negative velocities in red, white and
blue respectively. The nozzle of the jet is located at z/R = 0 and spans the
radial domain of 0 < r/R < 1 and the flow is from left to right.

All images show the effects of spreading and widening of the shear layer
with downstream distance. In the S = 1.40 case, the beginnings of a velocity
defect on the centreline are evident as a decrease in velocity at z/R =~ 5.
This is the first sign of the build up of a strong adverse pressure gradient
leading to vortex breakdown. In the absence of swirl, the axial velocity of an
idealised jet will always be greatest on the centreline. The stagnation on the
centreline of the axial velocity is also observed as a switch of the azimuthal
vorticity from positive to negative in the core region; a well known effect
prior to vortex breakdown (see Ozgéren et al. , 2002).

With further increase in the swirl ratio from S = 1.40 to S = 1.44, the
velocity defect increases relatively slowly, evident by the slight progression

of the contour lines toward the nozzle. For the S = 1.46 case, the defect has
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Figure 4.1: Contours of axial velocity for simulations at Re = 175 showing
(from top to bottom) S = 1.40, 1.42, 1.44 & 1.46. The contours show 30
equispaced levels from —1 < U < 1 where red, white and blue are positive,

zero and negative respectively. The flow is from left to right.
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Figure 4.2: Profiles of axial and azimuthal velocity drawn above and below
the axis (r/R = 0) respectively, for four preliminary states to vortex break-
down at Re = 175. The velocity profiles are given for a variety of downstream
axial locations indicated by the vertical dashed lines. The flow is from left

to right.

jumped in size to become a complete stagnation (represented by the white
contour level) and a slight recirculation (blue contours). Further increase in
the swirl ratio leads to the growth of the stagnation and recirculation region
into a recognisable vortex breakdown state. The swirl ratio at which the
vortex breakdown state first occurs is referred to as the critical swirl ratio
(Se)-

Figure 4.2 shows the rapid increase in the velocity defect at near-critical
swirl ratios more clearly. Axial velocity profiles (above the axis) and az-
imuthal velocity profiles (below the axis) are shown for a variety of down-
stream locations (vertical dashed lines). The flow is from left to right and

the nozzle is located at —1 < r/R < 1. The velocity profiles are of the flows
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shown in figure 4.1. The rapid increase in the axial velocity deficit, occurring
between S = 1.44 and S = 1.46, can be seen clearly at z/R > 3. For swirl
ratios up to S = 1.44, the velocity profiles change very little with increases

in swirl ratio.

4.2 The Small Bubble

Small bubbles are defined here as vortex breakdown bubbles that have a
maximum expansion of r/R ~ 2, and are characterised by a single celled
recirculation region. That is, there is only one ring vortex within the recir-
culation region. There are is usually only one real stagnation point located
at the forward point of the bubble, however, due to its small size, the rear
section often displays near stagnation point also. Due to the relatively small
size of the recirculation region and the high velocities in the surrounding
shear layer, the small bubble maintains reasonably high internal velocities.

Figure 4.3 shows four different parameters for the one example of a small
bubble as predicted at the parameters Re = 175 & S = 1.50. Here, in-plane
velocity vectors have been included below the centreline. Above the centre-
line are contours of azimuthal vorticity where red, white and blue indicate
positive, zero and negative respectively. The swirling jet emerges from the
nozzle located at z/R=0& —1 <r/R < 1.

The vorticity contours at the nozzle exit show a region (0 < r/R < 0.6)
with positive vorticity. In the case of a top-hat axial velocity profile, the
vorticity in this region would be nearly zero. The vorticity present here is a
result of the inclusion of the peak in the centreline velocity, resulting from
the matching of the S = 1.33 axial velocity profile from Billant et al. (1998).

The profile shape can be observed in the velocity vectors emerging from the
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Figure 4.3: An example of a small bubble at Re = 175 & S = 1.50. For
the upper image, contours of azimuthal vorticity with red, white and blue
indicating positive, zero and negative vorticity respectively. Mirrored are
the in-plane velocity vectors. For the lower image, contours of azimuthal
velocity (W) are shown above the axis, with 16 equispaced levels from 0 <
W < 1 where red indicates positive azimuthal velocities. Mirrored are the

streamlines placed to describe the flow topology best.
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nozzle.

The axial velocity near the centreline slows quickly due to the strong
adverse pressure gradient associated with vortex breakdown. This causes the
peak to be flattened rapidly and the vorticity becomes zero at z/R ~ 1.0.
After this point, the velocity is rapidly slowing on the centreline, leading to
the switch in positive vorticity to negative (blue). Following the stagnation
zone is a region of reversed flow surrounded by strong axial flow giving rise to
more negative vorticity (see also §4.1). There is a region within the bubble
near the centreline that has little or no azimuthal velocity due to nearly
uniform reversed flow.

Most simulations of vortex breakdown presented in this thesis have showed
a permanent open wake. That is, there is reversed flow on the axis and the
absence of a rear stagnation point. The small bubble is the only case that
has a near-stagnation point at the rear. In this case, there is a stagnation
ring of very small radius located at z/R = 3.4,7/R = 0.1, however, the
amount of fluid exchange occurring between the outside of the bubble and
the bubble is negligible, such that the stagnation ring can be approximated
as a stagnation point. The presence of a very small stagnation line at the
rear of the bubble contributes to the dynamics of the small bubble, which
tends to be quasi-steady; suffering less from rapid expansions, contractions
and oscillations along the axis. These effects are linked to changes in volume
of the bubble.

The lower image of figure 4.3 shows two alternative parameters; contours
of azimuthal velocity (upper half) and streamlines mirrored below the axis.
The contours of azimuthal velocity show the characteristic kink within the
bubble region corresponding to the low azimuthal velocities within the bubble

region. The streamlines show the small single celled recirculation region more
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clearly, as well as the stagnation ring at the rear of the bubble.

Another example of a small bubble is given in figure 4.4 where the flow
parameters are Re = 350 & S = 1.36. The upper image shows contours of
azimuthal vorticity with the same contour levels as those shown in figure 4.3,
with manually placed streamlines mirrored below the centreline. The lower
image shows contours of azimuthal velocity (also the same contour levels
as before), with contours of relative pressure mirrored below the centreline.
Here, we can see that this bubble is slightly larger, and has an internal re-
gion near the forward stagnation point where there is very little azimuthal
vorticity. The contours of pressure show the strong adverse pressure gradient
leading up to the stagnation point (progression from deep blue to light blue)
followed by internal flow with slightly lower pressure than the far field pres-
sure. The fact that the stagnation pressure is lower than the far field pressure
reflects the assumptions made in the analysis by (see §5.1 and Billant et al.
, 1998). There is a region of lower pressure at the rear of the bubble due to

the strong velocities in the vortex ring.

4.3 Unsteady Behaviour in Bubbles

For some cases (usually those with higher Reynolds number), the bubble
state becomes unstable. An example of an unstable bubble type break-
down is shown in figure 4.5, where three instantaneous flow fields at ¢ =
100, 110, & 130 are shown using contours of azimuthal vorticity — red, white
and blue contours represent positive, zero and negative vorticity respectively.
Here, the wake of a small bubble is shedding vortices, probably due to a sim-
ilar instability to the Kelvin-Helmholtz shear layer instability. Surprisingly,

the strong instability in the wake has little effect on the size or location of
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the vortex breakdown bubble (for more details see §6).

4.4 The Large Bubble and Hybrid Bubble-
Cone

Large bubbles and hybrid bubbles-cones are defined as vortex breakdown
bubbles that have expansion r/R > 2.0 and that still contract back to the
centreline to form a weak trailing vortex. They are characterised by more
complex internal velocity fields and the absence of an approximate stagnation
point in the wake. The large bubble is defined as the state where the flow is
quasi-steady, whereas the hybrid bubble-cone case is a transient state seen
in the oscillations of a vortex breakdown region between a classic conical
breakdown (e.g. §4.5) and a more bubble like breakdown. The two are
defined separately because their dynamical behaviour is quite different. As
an instantaneous flow field, the two cases are practically the same, hence
the discussion from hereon will refer to them as such unless the dynamics is
being described

Figure 4.6 and 4.7 show two examples of the large bubble breakdown. In
the upper images of each, contours of azimuthal vorticity are given above
the centreline with red, white and blue corresponding to positive, zero and
negative values respectively. The in-plane velocity vectors are mirrored below
the centreline. There is a significant axisymmetric expansion of the vortex
core around a region of reversed flow and a contraction at z/R ~ 4 back
towards the axis, closing the wake to form the bubble. These types of bubbles
have a much larger and more complex recirculation region than the small
bubble and have no distinguishable rear stagnation point on the axis. Instead,

the large bubble has an open wake with a stagnation line around a core of
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Figure 4.5: A time series showing unsteady oscillations similar to those
produced by the Kelvin-Helmholtz instability in the wake of a bubble at
Re = 585, S = 1.38. Each image is showing the axisymmetric plane of the
simulations, the times shown are t = 100, 110 & 130 and the contours are
of azimuthal vorticity where red, white and blue represent positive, zero and

negative contours.
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Figure 4.6: A large bubble breakdown at Re = 475 & S = 1.50. The

upper image gives contours of azimuthal vorticity with red, white and blue

indicating positive, zero and negative respectively. Mirrored are the in-plane

velocity vectors. The lower image gives contours of azimuthal velocity; red

and white indicating positive and zero respectively. Mirrored in this image

are manually place streamlines.
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reversed flow that extends downstream. This reversed flow enters the bubble
and eventually is expelled from the bubble at the outer of the main internal
vortex in the same process observed by Sarpkaya (1971) in experiments of
bubbles in divergent pipes.

Large bubbles have two distinct internal regions occupying the front half
and rear half almost equally. The front half of the bubble has a region of
almost stagnant flow and often a very small and weak recirculation region
rotating in the opposite sense to the main recirculation region. The presence
of this stagnant zone and its weak vortex ring can usually be identified by the
weak positive azimuthal vorticity (red) forming in front of the large negative
vorticity zone (blue). The rear section is made up of a large recirculation with
negative vorticity (blue). The presence of this recirculation is an indicator
that the vortex breakdown state is a bubble as it is representative of the
convergence of the flow back to the centreline.

The lower halves of figure 4.6 and 4.7 show two alternative visualisations
of the flows. Above the centreline of each image are contours of azimuthal
velocity with 16 levels in the range 0 < W < 1 where red is positive and
white is zero. Mirrored are streamlines chosen manually to best represent the
topology of the flow. The internal flow of the large bubbles shows that the
stagnant region in the front portion of the breakdown bubble is stagnant in
the azimuthal flow also, while the rear portion has relatively high azimuthal
velocity near to the centreline. In figure 4.7, an almost conical expansion
of the front of the bubble may be indicative of the beginning of the forma-
tion of a cone type. The dual recirculation is visualised more clearly in the
streamlines of the upper image where the forward recirculation zone is seen
as a small ovoid in front of the main recirculation. This recirculation is also

seen in the streamlines of figure 4.8 upper. This case shows a strong forward
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Figure 4.7: A large bubble breakdown at Re = 585 & S = 1.44. The

upper image gives contours of azimuthal vorticity with red, white and blue

indicating positive, zero and negative respectively. Mirrored are the in-plane

velocity vectors. The lower image gives contours of azimuthal velocity; red

and white indicating positive and zero respectively. Mirrored in this image

are manually place streamlines.
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Figure 4.8: A large bubble breakdown at Re = 467 & S = 1.42. The
upper image shows contours of azimuthal vorticity, where red, white and
blue indicate positive, zero and negative vorticity respectively, mirrored with
manually placed streamlines. The lower image shows contours of azimuthal
velocity with 16 equispaced levels from 0 < W < 1, mirrored with contours

of relative pressure, where blue contours represent negative pressures.
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vortex ring that also has significantly stronger azimuthal velocity (figure 4.8
lower). The pressure contours shown mirrored in the lower image of figure
4.8 shows alternating pressure at the boundary of the bubble, possibly indi-
cating the onset of a Kelvin-Helmholtz like shear layer instability at the outer
radius. Some evidence of this can be seen as a slight kink in the azimuthal
vorticity and streamlines (upper image).

The hybrid bubble-cone type is separated from the large bubble in its
dynamics. The hybrid bubble-cone is defined as a state of vortex break-
down where there is quasi-periodic oscillation between a bubble and a cone
state. Due to the unsteady behaviour of the wake, it usually sheds vor-
ticity downstream as a bluff body might. In figure 4.9 a time series of a
hybrid bubble-cone is shown for ¢ = 205, 215, 225, 230, 235, & 240 using
contours of azimuthal vorticity (contour levels as previous). When in the
bubble stage, such as that shown at t = 205, it has the same characteristic
as a large bubble, however, this case shows vortex shedding in it wake. The
hybrid bubble-cone opens out into a cone state, but does not remain steady
like the steady cone (see below). The shear layers begin to converge back to

the centreline, reforming a large bubble.

4.5 Steady Cones

Under favourable flow parameters, the steady cone state was found to be
present. The steady cone is defined as being a conical expansion state that
does not change to a bubble in time, that is, it is steady in as much that
the state does not change. The shear layer of the cone expands rapidly and
can experiences roll-up and shedding to some extent; however, the majority

of the movement is weak and far enough away from the axis that it does not
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Figure 4.9: The evolution of a hybrid bubble-cone type vortex breakdown
for t = 205, 215, 225, 230, 235, & 240, from top left to bottom right
respectively. Contours of azimuthal vorticity are shown, where red, white

and blue represent positive, zero and negative vorticity.
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affect the dynamics of the near axis region (r/R < 5 — 8). The steady cone
is characterised by a rapid linear expansion away from the centreline at an
included angle of approximately 90°. The area behind the stagnation point
is completely open to the near-stagnant surrounding fluid and has very little
velocity.

The upper image of figure 4.10 shows a steady cone breakdown at Re =
585, S = 1.50, with contours of azimuthal vorticity above the centreline
where red, white and blue represent positive, zero and negative vorticity re-
spectively. The in-plane velocity vectors are mirrored below the centreline.
The vortex core is seen to stagnate at z/R ~ 1, then open out into a axisym-
metric conical rotating shear layer. Usually a steady cone has an included
angle of approximately 90°. The vectors show that the velocities within the
cone are small.

The lower image of figure 4.10 shows contours of azimuthal velocity with
16 equispaced contours in the range of 0 < W < 1, where red and white
indicate positive and zero levels respectively. Manually placed streamlines are
given below the centreline to show the main flow features. The streamlines
show the slight movement of the internal fluid due to the entrainment of
the internal fluid into the shear layer. The azimuthal velocity shows the low
levels of swirl associated with the flow outside of the near-nozzle region of
the shear layer.

The shear layer of the steady cone type has a tendency to attach to the
outer wall (usually at /R = 10) such that the roll-up of the shear layer
is stopped. This can be a problem for simulations where the dynamics of
the cone shear layer is important, however an independence of boundary
conditions study (see §3.4.4) shows that this does not affect the swirl ratio

for vortex breakdown inception. When simulations with the outer wall at
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Figure 4.10: An example of a steady cone type at Re = 585, S = 1.50. In the
upper image, contours of azimuthal vorticity are given above the centreline
where red, white and blue contours represent positive, zero and negative
vorticity respectively. Mirrored are the in-plane velocity vectors. The lower
image gives contours of azimuthal velocity where there are 16 equispaced
contours in the range 0 < W < 1, with red and white indicating positive and

zero respectively. Manually placed streamlines are mirrored.
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r/R > 20 are performed, the cone breakdown shows rolling up of the shear
layer due to a shear layer instability. A time series of the dynamics of the
steady cone is given in figure 4.11. Here, a cone with Re = 585 & S = 1.45
is visualised using contours of azimuthal vorticity (contours as previous) and
manually placed streamlines. Here, the quasi-steady behaviour is shown as

the shear layer shows no sign of reforming a bubble type breakdown.
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Figure 4.11: A series of images in time showing the shedding of the steady
cone at Re = 585, S = 1.45 for t = 165, 175,185,195, 205, 215 from top left
to bottom right. The upper half of each image shows contours of azimuthal
vorticity, where red, white and blue are positive, zero and negative respec-
tively. Mirrored on each image are manually placed streamlines showing the

major flow features.



Chapter 5

Universality of the Critical
Swirl Ratio

This chapter presents an attempt to find a more universal critical param-
eter for the prediction of the onset of vortex breakdown. To begin with,
the analysis used to formulate the swirl ratio, proposed by Billant et al.
(1998), is reviewed. Some preliminary results concerning the universality of
the parameter are presented. A modified critical parameter is then devel-
oped using integrated velocities, leading to improved universality over the
parameter proposed by Billant et al. . Finally, using simulation results, the
usefulness of both swirl ratios as universal criteria is discussed, supported by

simulation results.

5.1 The Critical Swirl Ratio Developed by
Billant et al. (1998)

Billant et al. (1998) offers an analysis of a swirling core which experiences

a cone or bubble vortex breakdown state a short distance downstream of

111
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the nozzle. The analysis applies Bernoulli’s equation along a streamline that
lies on the centreline of the jet. Figure 5.1 shows the physical model that
Billant et al. used in their analysis , including the vortex before the break-
down, which occurs at an axial location z = z; (based on the location of
the stagnation point). The diagram shows a full diametric slice through a
three-dimensional cone-type vortex breakdown with a cylindrical co-ordinate
system, such that z denotes the axial distance, r the radial distance and 6 the
azimuthal angle. The velocity profiles shown are assumed to be axisymmet-
ric and include the axial velocity U and the out of plane azimuthal velocity
W at the location z = zp; the radial velocity at this location is assumed to
be zero. The far field pressure is denoted by Pys, and the pressures at z = 2
and z = z; are Fy and Py, respectively.

The total head along a streamline in an inviscid, incompressible flow is de-

scribed by the Bernoulli equation

P 1
H:_+§(U2+V2+W2), (5.1)
p
Conservation of head along the streamline at the axis of the vortex, such that
it passes through the stagnation point, gives the balance

Fy

1, P,

z=z9) 0

The pressure at the upstream centreline can be expressed as a balance be-

(5.2)

tween the far field pressure and the centrifugal force

> Wi,
PO = Pff — / pi_OdT. (53)
0

r

Assuming that the velocities within the recirculation zone (behind the stag-

nation point) are negligible and that the cone type vortex breakdown is open
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Figure 5.1: The physical model as used in the analysis of a swirling jet with

a vortex breakdown cone state.
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to the far field pressure, we can assume that P, = Pys. Substituting this and

equation 5.3 into equation 5.2 gives

Wimsg)

o C=lqr
b 5 = . (5.4)
UO(z:zo) 2

Assuming a Rankine vortex, where there is solid body rotation in the ‘core’

region, surrounded by irrotational flow, given by

Qr : 0<r<R,
W = , (5.5)

QOR%?/r . R.<r<oo
where R, is the radius of the core of the vortex, allows equation 5.4 to reduce

to

SVem) - (5.6)

where Wy = QR,., the maximum azimuthal velocity.

A similar analysis can be completed for a bubble state, however, matching
of the pressure at the centreline with the far field pressure does not hold. The
weaker inequality P, < Py can be used to give

f ©© W(szzo) dr
0 T >
U2 -

0(z=20)

1
7 (5.7)
Using the above analysis, Billant et al. proposed a swirl ratio that can

be used to assess the criticality of a swirling jet as it emerges from the nozzle

of a swirl generator into quiescent fluid. The swirl ratio S is defined as

: (5.8)

where W(g/a,-,) is the azimuthal velocity at half the nozzle radius (roughly

the maximum azimuthal velocity) and U, is the axial velocity on the
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Figure 5.2: Onset of vortex breakdown for the swirl ratio S as measured by

Billant et al. (1998).

centreline of the jet. Given this definition of swirl ratio, vortex breakdown of
the cone type is predicted to occur at S, = v/2 and at S, > v/2 for the bubble
type. Figure 5.2 shows the onset of vortex breakdown against the parameter
S, giving a critical swirl ratio for vortex breakdown of 1.22 < S, < 1.42 for
both the bubble and the cone types. Their findings show that the swirl ratio
S predicts the onset of vortex breakdown in a swirling jet reasonably well.
Additionally, the bubble type was observed at higher swirl ratios than the
cone, as suggested by their analysis.

An example of the velocity profiles measured by Billant et al. is repro-
duced in figure 5.3, which shows azimuthal (above) and axial (below) velocity
profiles for a variety of increasing swirl ratios. The experimental rig used by
Billant et al. has a strong contraction before the nozzle outlet that gives
an unusual axial velocity profile. The increase in swirl ratio is reflected in

the increasing magnitude of the azimuthal component, but also in the devel-
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opment of a peak in the axial velocity profile on the centreline. The axial
velocity profile with zero swirl has a normal top-hat profile, while there is a
strong divergence to a more triangular shape for increasing swirl ratios. To
explain this, Billant et al. identifies the strong increase in azimuthal velocity
through the nozzle contraction (designed for non-swirling flow), arguing that
this yields a positive pressure gradient along the centreline inside the nozzle.

While the results show an excellent agreement with the theory, it is not
evident that the analysis holds for different velocity profiles and for flows
with lower Reynolds numbers. There are a variety of velocity profiles seen
in the different scenarios where vortex breakdown exists, such as pipe flow
(Faler & Leibovich, 1977; Briicker, 2002; Snyder & Spall, 2000), container
flows (Herrada, 2003), jets (Panda & McLaughlin, 1994), wakes (Kalkhoran
et al. , 1998) and delta wings (Menke & Gursul, 1997). Additionally, if the
jet is analysed as a viscous flow, the peak in the velocity profile will degrade
with downstream distance and the flow will gradually lose this peak. Indeed,
a simulation at the swirl ratio S = 0.9 and Reynolds number Re ~ 350 (see
figure 5.22), demonstrates that this is the case. Here, the axial (above the
centreline) and azimuthal (below the centreline) velocity profiles are plotted
at a series of downstream locations. The peak in the axial velocity profile
has vanished after reaching the downstream location of z/R = 6.

The theoretical observations of Wang & Rusak (1997b), demonstrates
that the small viscosity at near-critical swirl level can cause large-amplitude
disturbances. Similarly, Krause (1985) shows that, in the approximation
used, the adverse pressure gradient is solely produced by viscous effects.
Based on these observations, it is expected that in low Reynolds number
flows, the overall structure of the velocity profile is also important in charac-

terising a vortex. With these studies in mind, it is hypthosised that criteria
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Figure 5.3: Azimuthal (above) and axial velocity profiles of the swirling jet

as measured by Billant et al. (1998).
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using non-integrated parameters lack the ability to universally describe the
critical condition of swirling jets with a range of velocity profiles.

The aim of the present research is to quantify the universality of the swirl
ratio S for a variety of axial velocity profiles and to attempt to improve it

using an adjusted swirl ratio.

5.2 Preliminary Investigation

As a first exploration of the universality of the swirl ratio (5), it was decided
to test a variety of velocity profiles and to record the critical swirl ratio S,
for vortex breakdown inception. An axial velocity profile formulation was
used to allow the profile shape to be changed while the centreline velocity

remains constant. Using this formulation, the axial velocity is given by

U(r) = U1~ (5)), (5.9)

where Uj is the centreline velocity, R is the nozzle radius and N is the
exponent. The velocity profiles tested are shown in figure 5.4 and correspond
to N =1,2,3,...,10. As can be seen, the profile starts as a triangular shape
for N = 1, then quickly passes through parabolic and as N — 10, the
profile resembles a more typical ‘top-hat’ profile. These profiles will have
widely different axial flow rates and axial momenta, however they are all
constructed to have the same centreline axial velocity. If the swirl ratio S is
universal and profile independent (as is implied in the analysis above), then,
all of these velocity profiles should demonstrate the same critical swirl ratio.

The azimuthal velocity profiles were defined by

W (r) = Wysin(r/Rr), (5.10)
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Figure 5.4: Axisymmetric axial velocity profiles as for N = 1,2, 3,...10 used

in the preliminary examination.

where W, is the maximum azimuthal velocity. This profile was chosen as
an approximation to the azimuthal velocity variation observed in the exper-
iments of Billant et al. (1998).

A series of simulations with increasing swirl ratios were effected by start-
ing the jet from zero initial conditions with a particular parameter pair Re, S.
Control of the swirl ratio was achieved by varying the maximum azimuthal
velocity Wy, while the maximum axial velocity Uy was held constant. As the
parameter N is increased, the average axial velocity U also increases. This
also manifests as an increase in the simulation Reynolds number. The result
of altering the Reynolds number with N has the effect of reducing the critical
swirl ratio — the swirl ratio needed to cause vortex breakdown (see §4). The
results of these tests are shown in figure 5.5, which shows the critical swirl
ratios for vortex breakdown, plotted as a function of the parameter N.

As can be seen, the critical swirl ratio is highly dependent on the shape
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Figure 5.5: Dependence of critical swirl (Sc) number on velocity profile, as

varied using the parameter 'N’.

of the axial velocity profile. Changing the profile shape from triangular
to top-hat results in a 56% increase in the critical swirl ratio required for
vortex breakdown, despite the Reynolds number increase (and corresponding
decrease in swirl ratio magnitude needed for breakdown). This is not wholly
unexpected since the vortex core is not completely described by its centreline
velocity alone. In these cases, increasing the parameter N causes the jet to
a have significantly greater flow rate and momentum; therefore, it is not
surprising that an increase in the parameter W is necessary to cause such a
jet to undergo breakdown.

Furthermore, these tests show that for a realistic top-hat profile (N = 10),
the critical swirl ratio is S, ~ 1.95 as measured at the nozzle outlet; an
increase in S, of nearly 40% over the theoretically predicted S. in Billant
et al. (1998).
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5.3 Detailed Investigative Method

To more clearly explore the effect of the axial velocity profile on the critical
swirl ratio, it was decided a set of tests of greater detail were needed. Five
different velocity profiles were chosen to be tested over a broad range of
Reynolds numbers. This section deals with the description of the five different

test cases used. These cases are named Profile A, B, C, D, and E.

5.3.1 Profile A

Profile A uses the axial velocity profile formulation given in equation 5.9.
However, this profile has been matched to the S = 1.33 case in Billant et
al. based on the momentum flow rate. The following analysis shows the
method used to match the chosen velocity profile formulation with that of

Billant et al. (1998).

Momentum Flow Rate Matching

An axisymmetric jet with a velocity profile U(r) given by equation 5.9, where

7 is the radial variable, has an axial momentum inflow rate M, described by

MZ:/Udm, (5.11)
A

where U is the axial velocity as a function of radius, and m is the mass flow

rate through the area A. The incremental mass flow rate can be rewritten as

drm = pUdA = pU2nrdr, (5.12)

where p is the fluid density and dA = 27rdr is the area element. If the fluid

is assumed to be incompressible, M, is given by
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R
M, = 27Tp/ U?rdr, (5.13)
0
where R is the nozzle radius. Substituting equation 5.9 for U gives

M, = 27Tp/0 (Us(1 — (%)N)Qrdr, (5.14)

where Uy is the centreline axial velocity and N is the profile exponent. M,

can be simplified to

R FNHL 2N+
M, = QWpUg/ r + dr (5.15)
0

-2 RN R2N

Following some algebra, this reduces to

. 1 4
N = mpUR B2 (1 + e N+2)’ (5.16)

and can be further simplified to

. N?
_ 2 P2
M. = mpUs (N2+3N+2)' (5.17)

By equating the momentum flow rate of the S = 1.33 profile measured in
Billant et al. with a top-hat velocity profile that has the same momentum

flow rate, we obtain the following relation

/ Udm = mU,,, (5.18)
A

where U, is the top-hat velocity needed to achieve the momentum flow rate
dictated by the LHS, and 71 is the mass flow rate based on a uniform velocity
U,.. The profile can now easily be matched through equating the average
(top-hat) properties of the jet in Billant et al. , and the momentum flow rate

of the new jet, as described in equation 5.17, shown as follows
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_ N?

Substituting 1 = pr R?U,, and cancelling gives

—2

U, N?
o = <N2+3N+2). (5.20)

Now let C' = (%)2; after some re-arranging, this yields

N*(C —1)+3CN +2C =0, (5.21)

which can be solved for N using the quadratic formula to give N = 2.37 for
the Profile A case.

Numerical integration of the S = 1.33 profile given in Billant et al. (1998)
(shown using green squares in figure 5.3), was achieved through the use of the
trapezoidal rule with the original data (relatively coarse measurements) and
a spline fit with much finer resolution. The two integrations were performed
in the style of equation 5.18 using a non-dimensionalised form of the velocity
profile. The integration using the raw data and the spline fit gave values of
U,, = 0.014192 and U,,, = 0.014199 respectively, corresponding to a difference
of only 0.05%. Table 5.1 shows the parameters used in the quadratic equation
and the solution to N for the Profile A case.

Therefore, from the above reasoning, the profile defined by equation 5.9
with an exponent of N = 2.37 has the same overall momentum flow rate as
the S = 1.33 profile given in Billant et al. (1998). Figure 5.6 shows the
S = 1.33 profile of Billant et al. (1998) superimposed upon the axial velocity
profile of the Profile A case.

This profile fulfills the purpose of testing the effect of small changes in

profile shape on the critical swirl ratio for vortex breakdown.
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Figure 5.6: The S = 1.33 profile of Billant et al. (1998) superimposed upon
the profile as described by equation 5.9 with an exponent N = 2.37.

U,, | 0.0142
Us | 0.023
C | 0.381
N | 2.37

Table 5.1: Parameters and result of profile matching for Profile A.
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Figure 5.7: A comparison of the Profiles B and C with respect to profile A.

All three have the same momentum flow rate, but different shapes.

5.3.2 Profile B and Profile C

The purpose of these two profiles is to test the effect of altering the centreline
velocity, without altering the overall momentum flow rate. They are also
based on the formulation given in equation 5.9 and have their momentum
flow rate matched using the method shown above. Both have been chosen to
have a centreline axial velocity of 0.8 xUy and 1.2 x Uy respectively. Therefore,
these two velocity profiles are significantly different in shape from Profile A,
but maintain the same momentum flow rate. Figure 5.7 shows Profile B and
Profile C superimposed upon Profile A.

Table 5.2 shows the parameters used to calculate the exponents N for the
Profile B and C cases. As is shown, the average velocity U, is fixed as the
descriptor of the overall momentum flow rate in both the S = 1.33 profile
from Billant et al. (1998), and the Profile A case. The centreline velocities

Uy are both a factor of 0.8 and 1.2, respectively, of the centreline velocity of
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Profile B | Profile C
U, | 0.0142 0.0142
Uy | 00184 | 0.0276
C | 0.596 0.265
N 5.01 1.55

Table 5.2: Parameters and result of profile matching for Profiles B and C

Profile A.

5.3.3 Profile D

Profile D differs from the three previous profiles in that it does not seek to
match the momentum flow rate of the jet presented in Billant et al. (1998).
Instead, this case is used to investigate the role of the ability of the centreline
velocity to describe the jet. Based on the preliminary investigation (in §5.2),
this case is expected to be a ‘worst case scenario’. The Profile D case has
the same centreline axial velocity as the Profile A case, but is of a top hat
profile.

Figure 5.8 shows Profile D as compared to the S = 1.33 profile of Billant
et al. . As can be seen, the momentum flow rate in the Profile D jet will be
much greater than in the S = 1.33 jet. The profile shape is also based on the
equation 5.9 with an exponent of N = 10°, therefore there is only a slight

tapering off at r = R as is evident in figure 5.8.



CHAPTER 5. UNIVERSALITY OF THE CRITICAL SWIRL RATIO 127

1.2 T T T T T - T
Profile D
11} [ | S=1.33 Billant

LOB——
09 | =
08 |
07 -

U/Ug 06 " g
05

03 |

02 T

01f
O 1 1 1 1 ! .
0 0.2 0.4 0.6 0.8 1.0 12 14

r’'R

Figure 5.8: The S = 1.33 profile of Billant et al. (1998) superimposed upon

the profile as described by equation 5.9 with an exponent N = 10000.

5.3.4 Azimuthal Velocity Profile for the Profile A,B,C
and D Cases

Profile cases A, B, C and D all have the same formulation for the azimuthal

velocity profile. Their azimuthal profiles are described by the equation

W(r) =W, sin(%r),

where Wy is the maximum azimuthal velocity, located at r = R/2. This

(5.22)

profile shape bears close similarity to those azimuthal velocities shown in
5.3 and also is a reasonable approximation of the Rankine vortex. This
formulation allows the increase in swirl ratio necessary for the simulations to

be achieved through increasing the parameter Wj.
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Figure 5.9: Azimuthal velocity formulation as compared to that measured

by Billant ef al. (1998).

5.3.5 Profile E

Profile E is aimed at providing the closest comparison to the experiments of
Billant et al. . This profile is also included to validate the simulated results
against their results. The profiles for the axial and azimuthal velocities are
created by fitting splines to the normalised data for the S = 1.33 U and W
profiles. Figure 5.10 shows the Profile E case axial (U) and azimuthal (W)
velocity profiles compared to the data from the S = 1.33 profiles from Billant
et al. (1998).



CHAPTER 5. UNIVERSALITY OF THE CRITICAL SWIRL RATIO 129
5.4 Results: Critical Swirl Ratios for
Profiles A—E

A series of simulations using the profiles described above were run such that
the critical swirl ratios could be ascertained. This involved many simulations
with progressively increased swirl ratios for a variety of Reynolds numbers.
The state of the vortex with respect to vortex breakdown was observed after
sufficient time was allowed for the flow to become steady or quasi-steady.
Swirl ratios were chosen such that the resolution in the swirl ratio was in-
creased near the critical swirl ratio. This was achieved by running one set
at a resolution of 4S5 = 0.05, observing the results and running a second set
of simulations at S = 0.01 or S = 0.02 for the region where vortex break-
down occurs. This guarantees an error in the measurement of 65 < £0.02.
The mapping of the critical swirl ratio was performed for a range of Reynolds
numbers which overlap the experimental measurements made by Billant et al.

(1998).

5.4.1 Results Overview

Figure 5.11 shows the resulting critical swirl ratios for vortex breakdown in
the Profile A—E cases. The critical swirl ratios measured by Billant et al. are
also included as a comparison of the simulation results (solid green squares).
Each set of results has been fitted with a curve to clarify the trend of the

data. Each curve is of the form

y=a/yx+Db, (5.23)

where the constants a and b are determined using the least squares method.

This form was chosen to best represent the behaviour of the data.
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Figure 5.10: Profile E axial and azimuthal velocities (U,W) compared to the
S = 1.33 data of Billant et al. (1998) (green squares).
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The critical swirl ratios measured by Billant et al. (solid green squares),
show decreased spread above Re =~ 600. At lower Reynolds numbers, the
results are less conclusive with the spread of critical swirl ratios spanning
0S = 0.3. In comparison, the simulated data have a spread of 65 = 0.9 for all
Reynolds numbers. Each set of data appears to asymptote towards a constant
critical swirl ratio with increasing Re. At low Reynolds numbers Re < 400,
all simulated cases show increases in swirl ratio from the asymptotic value.
This effect gives some indication of the increased influence of viscosity in
these low Reynolds number flows. The increased spread seen in the results
of Billant et al. could be explained by increased viscous effects that are not
accounted for in their analysis.

As the Reynolds number is increased, most simulated cases show a sec-
ondary asymptote of the critical swirl ratio. This effect can be more clearly
seen in the data for the Profile A case, where at Re = 600, this asymptote
ends and there is a rapid drop to a lower asymptotic value. This effect could
be a reflection of the analysis and results given in Billant et al. (see figure
5.2), where cone vortex breakdown is consistently realised for lower swirl ra-
tios than the bubble type. The results of a meta-stability study presented
later in §6 will show that in a simulated flow, the cone type is only experi-
enced as the first vortex breakdown state when the Reynolds number is high
(Re > 700—800). At lower Reynolds numbers, swirl ratios must be increased
to achieve a cone type breakdown. The curve in Re, S parameter space that
describes the onset of cone type breakdown, intercepts the lower and flatter
bubble-type breakdown curve at the location where the second drop in swirl
ratio is experienced. Perhaps this explains the second asymptote in critical

swirl ratios at higher Reynolds numbers.
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Figure 5.12: The secondary asymptotes for the Profile A & D cases, specu-
lated to be caused by the lower swirl ratio onset of the cone type of vortex

breakdown at high Reynolds numbers.

5.4.2 Profile E Case Results

The results for the Profile E case (where the velocity profiles are matched
with the S = 1.33 profiles) show an excellent comparison with the critical
swirl ratios of Billant et al. . Figure 5.13 shows the data from Billant et al. in
solid green squares, and the data for Profile E in hollow magenta squares.
Each set is fitted with a curve using the formulation given in equation 5.23.
For 400 < Re < 800 the data shows good similarity and the regression lines

show excellent agreement.

5.4.3 Profile A, B and C Case Results

The critical swirl ratios for profile A show close resemblance to those of
Billant et al. and those of Profile E reflect the accuracy of the momentum

flow rate matching method. There is some separation at lower Reynolds
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Figure 5.13: Comparison between the Profile E case and the data from Billant
et al. (1998) showing excellent agreement between simulated and experimen-

tal results for a range of Reynolds numbers.
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numbers such that Profile A case records slightly higher S. than Profile E.
These results indicate that using a similar shaped profile yields similar critical
swirl ratios to those measured by the experiments. The slight discrepancy
may be described by the differences in shape of the experimental profile and
that of Profile A; Profile A has more momentum flow rate at r/R < 1/2,
whereas the experimental profiles have more at r/R 2 1/2. It is probable
that greater momentum flow rate near the centreline delays the inception of
vortex breakdown.

The critical swirl ratio curves for the Profile B and C cases show a sig-
nificant shift from that of the Profile A case, despite having the same mo-
mentum flow rate. Profile B shows a significant increase in the critical swirl
ratio necessary for vortex breakdown and Profile C shows a less drastic but
still significant decrease in critical swirl ratio. These profiles have different
centreline velocities and hence, it seems reasonable to hypothesise that it is
the centreline velocity that is causing the drastically different critical swirl
ratios in the two cases.

Considering the formulation of S (see equation 5.8), we can see that
for both Profile B and C, the denominator of the equation has changed
by +£20%. If we assume that the jet is better described by some bulk or
integrated measure (at least at low Reynolds numbers), we could conclude
that the same overall swirl is needed to cause vortex breakdown. Therefore,
our numerator used to construct the swirl ratio is unchanged. For a profile
that has the same momentum flow rate, but smaller centreline velocity we
would expect the swirl ratio to be higher. The inverse applies for a narrower
profile such as that of the Profile C case.

The results of Profiles B and C show that the profile shape for a mo-

mentum flow rate matched jet, can have a large effect on the critical swirl
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ratio for vortex breakdown and that characterisation with the swirl ratio S

gives a variety of critical swirl ratios that vary widely from the prediction of

S =~ /2.

5.4.4 Profile D Case Results

The Profile D case has much higher momentum flow rate than Profiles A,
B, C and E. It is of ‘top-hat’ form and shares the centreline velocity of the
Profiles A and E cases. The critical swirl ratios shown using this case are
approximately 50% higher than those of the Profile A case. Considering that
this case has the same centreline axial velocity, the increased critical swirl
ratio must be indicative of the role of momentum flow rate, or some other

bulk property of the jet.

5.4.5 Interpretation using S;

Billant et al. marginally increased the accuracy of their critical swirl ratios
by avoiding the assumption of the Rankine vortex and using the partially

integrated criterion S;, described by

1

(1 Sy
S, = g , (5.24)
(O,Zo)

where the presence of a stagnation point in the vortex requires that S; = -2

Sl

for a cone and S; > % for a bubble.

Figure 5.14 shows the result of interpreting the critical swirl ratio with
the use of the azimuthal velocity profile integrated criterion S;. As can be
seen, the prediction over a range of velocity profiles has not improved. In the
Profile B and D cases, the closer the velocity profile comes toward a top-hat

profile, the greater the deviation in the predicted critical swirl ratios.
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Figure 5.14: The critical swirl ratios for the tested profiles as interpreted using the criterion S; shown in equation

5.24.

LETOILLVY THIMS TVOILLIHO HHI AO ALI'TVSHHAINN ¢ HHLAVHO



CHAPTER 5. UNIVERSALITY OF THE CRITICAL SWIRL RATIO138

From these results, it is clear that integration of the azimuthal velocity
profile alone is insufficient to describe the state of the vortex core with respect
to criticality. This confirms the hypothesis that the centreline velocity does
not sufficiently describe the axial component of the vortex core to be able to
predict the onset of vortex breakdown. §5.5.4 will describe how a combination
of axial and azimuthal integration leads to greatly improved universality of

critical swirl ratios.

5.5 A Universal Criterion

Given the analysis of the results shown in the previous section and the for-
mation of a hypothesis based on these, an attempt has been made here to
increase the universality of the swirl ratio using integrated parameters. Fol-
lowing the hypothesis that the centreline axial velocity is not sufficient to
describe the vortex core, an integrated axial velocity is used in the denom-
inator of an adjusted swirl ratio S,. Finding that this parameter does not
improve the collapse of critical swirl ratios, a swirl ratio based on both in-
tegrated axial and azimuthal components is described. This parameter S,
shows a much improved collapse and universality of critical swirl ratios not
only for different velocity profiles, but also for locations downstream of the

nozzle.

5.5.1 An Adjusted Swirl Ratio

Maintaining the form of the critical swirl ratio S, as defined by Billant et
al. , as consisting of a ratio of azimuthal and axial velocity, a new parameter
S, is described. This new parameter includes the mass flow rate averaged

axial velocity U as a replacement for the centreline velocity in the swirl ratio
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Figure 5.15: The equivalent velocity U for a top-hat velocity profile with the

same mass flow rate as the variable profile.

denominator. This yielded the adjusted swirl ratio S, which is described by

2WiR/2,20)
U )

where U is the mass flow rate averaged axial velocity. A graphical represen-

S, = (5.25)

tation of the concept is shown in figure 5.15 where the axial velocity profile
is made equivalent to a jet with the same mass flow rate but with a top-hat

profile.
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5.5.2 Defining U

The axial mass flow rate m of the non-uniform axial velocity U(r) in a ax-

isymmetric and incompressible jet can be expressed as

m = p/ UdA, (5.26)
0
where dA is the incremental area of the annular differential element and is

given by

dA = 2nrdr. (5.27)

The equivalent mass flow rate m, of a velocity profile with constant velocity
U over the domain 0 < r < R can be expressed as

me = prR*U. (5.28)

Equating the mass flow rates (m. = m) gives

prR*U = 2p7r/ Urdr, (5.29)
0

and hence, U is given by

2 o
— Urdr. (5.30)

]
I

5.5.3 Results using S5,

The results of the Profile A-E cases and the data from Billant et al. reinter-
preted using the swirl ratio S, show that the introduction of an integrated
axial velocity does not improve the collapse of the profiles to a single crit-

ical swirl ratio S,. (see figure 5.16). Using this swirl ratio has led to the
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amplification of the Reynolds number dependency of the results, which is
problematic in the Profile B case.

Encouragingly, the data from Billant et al. coincides with that of the top-
hat Profile D at S,. ~ 2. This could give some indication that the use of U is
removing the effect of the velocity profile in the data of Billant et al. . This
is however not supported by the other velocity profiles tested. The critical
swirl ratio of the Profile A case shows a significantly increased discrepancy
and the Profile C case has increased dramatically to ~ 50% greater than the
data of Billant et al. (1998).

The movement of these critical swirl ratios can be explained by observing
the difference between the individual Uy and U pairs. The Profile C case,
being the furthest from the top-hat profile, has a centreline velocity Uy ~ 2.8,
while its averaged velocity is U =~ 1.2. Such a large discrepancy leads to
dramatically increased critical swirl ratios, when interpreted with S,. For
the cases where the velocity profile is nearer to a top-hat profile, the critical

swirl ratios increase only slightly.



Figure 5.16: Critical swirl ratios for all profiles tested and for the data of Billant et al.
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In light of these results and maintaining the core hypothesis, it may be
interpreted that a variation in axial velocity may cause more far reaching
effects than previously thought. It is possible that the axial velocity profile
shape has a dramatic effect on the azimuthal properties also. One parameter
in particular is affected by the axial velocity variation is the azimuthal ve-
locity. This leads to an adjustment of the original hypothesis such that the
azimuthal velocity profile perhaps should also be integrated to account for
the axial profile effects within itself.

In the following section, the parameter W is developed based on the

angular momentum, in a manner similar to that presented above.

5.5.4 Introducing Azimuthal Bulk Properties

In this section, the variable azimuthal velocity profile is represented by the
constant representative velocity W. The problem related to the coupling of
the axial velocity within the azimuthal flow is treated through integrating
the axial and azimuthal velocity profiles together, with respect to angular
momentum flow rate My. Figure 5.17 shows a graphical representation of
the concept. The azimuthal velocity is represented by the constant velocity
W and, as before, the axial velocity is represented by the constant velocity
U.

The equivalent azimuthal velocity W is derived as follows. The angular

momentum flow rate My of a non-uniform azimuthal velocity profile W (r) in

an axisymmetric and incompressible jet is given by

My = / Wrdr, (5.31)
0

where dr is the mass flow rate increment, represented by
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Figure 5.17: The equivalent constant velocities U & W for the same axial

mass flow rate and the angular momentum flow rate, respectively.
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dr = pU2mrdr, (5.32)

giving

My = 2pm / UWr2dr. (5.33)
0

Assuming that there are equivalent uniform axial U and azimuthal W veloc-

ities over the domain 0 < r < R with an angular momentum flow rate given

by

. 9 o
M. = gpﬂzi"’UW. (5.34)
Equating the angular momentum (Mp, = Mj) gives

2 o 0
gpr?’UW = 2pm / UWr2dr (5.35)
0

and hence W is described by

_ 3 o0
W=—— UWrdr. 5.36

Now using a similar formulation to the criterion proposed by Billant et
al. , a new swirl ratio S, is proposed where the axial and azimuthal velocity

components of S are replaced by the integrated parameters U and W, as

defined here

_ow
U

Given that the parameters U and W describe the equivalent axial and

S. (5.37)

azimuthal velocities, then the critical swirl ratio should remain the same

as that in the analysis of Billant et al. , such that the critical swirl ratio

S, /2.
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5.5.5 Results using S,

Recalculation of the swirl ratios based on the parameter S, reveals a remark-
able collapse for all cases except the Profile D case (see figure 5.18). For
the Profile A,B,C and E cases the critical swirl ratios lie within a spread of
05, < £10%. Additionally, the data from Billant et al. also collapses to the
same critical swirl ratio. Upon closer analysis of this data, it is apparent that
the ratios of averaged to maximum velocities are approximately the same for

both the axial and the azimuthal velocities, as follows

(Ugo ~ %)Biuant (5.38)
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This property of the S = 1.33 velocity profile measured by Billant et
al. means that both the swirl ratio S and the swirl ratio S, give approxi-
mately the same critical value. The question that this poses is: in the absence
of the peak on the centreline of the axial velocity, how well will the swirl ratio
S represent the critical swirl ratio derived in the analysis?

The profile D case lies at §S ~ 15% greater than the other cases. This
result may be due to the strong outer flow of the jet helping to keep the
centreline velocity from stagnation. Some evidence to suggest that this may
be the case is shown in figure 5.19. Here, axial and azimuthal velocity profiles
are given above and below the centreline, respectively. The profiles are shown
for a variety of downstream locations of a jet at Re ~ 350 and a swirl ratio
of § = 0.9. After the jet leaves the nozzle, a velocity defect begins on the
centreline. Immediately adjacent to the centreline is a large flux of high
velocity fluid that causes a net shear stress on the flow at the centreline,
such that the velocity defect is suppressed. The result of this may be that
the swirl ratio for vortex breakdown for this case needs to be stronger to
overcome the bulk flow.

The Profile B case has a slightly higher critical swirl ratio in the low
Reynolds number range. This may be indicative of the same effect that can
be seen in the Profile D case. In this case however, the centreline velocity
is smaller and the overall momentum flow rate is smaller than the Profile D
case, which suggests that the increase in swirl ratio is only a low Reynolds
number effect, where the shear stresses are higher.

In total, the Profile A, C and E cases show a remarkable collapse with
the data of Billant et al. , perhaps indicating that for a range of profiles
with similar characteristics, the swirl ratio S, is much closer to a universal

classification parameter.



CHAPTER 5. UNIVERSALITY OF THE CRITICAL SWIRL RATIO 149

Figure 5.19: Axial (above r/R = 0 centreline) and azimuthal velocity (below
centreline) profiles for a variety of downstream locations for a swirling jet at

Re =~ 350, S = 1.1 with the velocity profiles of the Profile D case.
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5.5.6 Application of S, to Alternative Experimental
Profiles

Farokhi et al. (1989) suggest a swirl ratio based on total angular momentum
and total momentum flow rate, including the turbulent stresses within the
integrands (see §2.2.4). They applied this criterion to two turbulent swirling
jets that had the same swirl ratio but markedly different azimuthal velocity
profiles. Their results show that although both jets have the same swirl ratio,
one experienced vortex breakdown while the second did not. They went on
to argue that integrated swirl ratios are insufficient to describe the condition
of a vortex with respect to vortex breakdown.

Time averaged axial and Azimuthal velocity profiles for the two cases are
published in Farokhi et al. (1989), for a variety of axial locations down-
stream. These profiles indeed show that one jet experiences no breakdown,
while the other has a strong velocity defect on the centreline of the axial
velocity profiles, becoming approximately stagnant at z/D = 4 downstream
of the nozzle.

Application of the swirl ratio S, to the two jets, allows a different con-
clusion to that reached by Farokhi et al. (1989). The swirl ratio for the
two cases is calculated using the trapezoidal rule over the data extracted
from the published profiles, giving S, = 1.27 and S, = 1.37 for the non-
breakdown case and the breakdown case respectively. This result explains
the presence of breakdown in one jet but not the other. The case that dis-
plays no breakdown has an integrated swirl ratio less than, but close to that
at which breakdown is measured in the previous section (§5.5.5), while the
case that displays breakdown has an integrated swirl ratio that is within the

range where breakdown is measured.
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5.5.7 The Swirl Ratio as a Local Parameter

In order to better understand the relevance of swirl ratios to swirling jets
and their potential to describe the criticality of a swirling jet, a series of
simulations with increasing swirl ratio were performed. The swirl ratios
simulated were S = 0.0, 0.1, 0.2, ..., 1.4 for the one Reynolds number
Re ~ 350. The velocity profiles used in the simulations were the same as
those used in the Profile E case, which gives a critical swirl ratio for vortex
breakdown of S = 1.40. Hence, all cases tested, except with S = 1.40,
had swirl ratios less than the critical swirl ratio for vortex breakdown. The
final breakdown location — defined as the location of the upstream stagnation
point — for this case is z/R = 1.5. In the case of the S = 1.4 simulation,
a velocity field where the vortex breakdown region is swept downstream is
chosen.

Figures 5.20 and 5.21 show a series of contour plots of some of the
simulated velocity fields used in these tests. The swirl ratios shown are
S = 0.0, 0.5, 0.9, 1.2, 1.3 & 1.4 consecutively. Only the S = 1.3 and
S = 1.4 contours show a slight reversal of flow at the outer boundary indi-
cated by the blue contours at the /R = 10 level; the reversal of flow becomes
important in the integrations needed to obtain the parameter S,. The con-
tours for the S = 0.0 and S = 0.5 cases show that at no point downstream
does the centreline velocity decrease below U = 1.0. The S = 0.9 case shows
that the velocity defect is starting to reach further upstream; a decrease in
the centreline axial velocity to less than U = 1.0 is evident after z/R = 16.
The contours for S = 1.2 show more signs of the effect of swirl on the cen-
treline velocity, with a strong stagnation building on the centreline. Further
increases in swirl to S = 1.3 and S = 1.4 show strong deceleration on the

centreline and in the case of S = 1.4, the velocity has stagnated and reversed
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Figure 5.20: Contours of constant axial velocity for three swirling jets at
Re =~ 350, with swirl ratios S = 0.0,0.5,0.9 from top to bottom. Here the
contours cover the range —1.0 < U < 1.0 and there are 20 levels with red
indicating positive velocity, white indicating zero velocity and blue indicating

negative velocity.



CHAPTER 5. UNIVERSALITY OF THE CRITICAL SWIRL RATIO153

[
-

r/R
O o A O 0

U
e}

r/R

o R~ O 0 OO0 D B~ O

[

r/R

Figure 5.21: Contours of constant axial velocity for three swirling jets at
Re =~ 350, with swirl ratios S = 1.2,1.3,1.4 from top to bottom. Here the
contours cover the range —1.0 < U < 1.0 and there are 20 levels with red
indicating positive velocity, white indicating zero velocity and blue indicating

negative velocity.



CHAPTER 5. UNIVERSALITY OF THE CRITICAL SWIRL RATIO 154

after z/R = 12.

Each simulation, except the S = 1.4 case, was run to a steady state;
this was assumed to be reached once the velocity profiles downstream were
unchanging. A selection of velocity profiles were then extracted from each
steady velocity field at distances from the nozzle of z/R ~ 0, 1, 2, 4, 6, 8, 12,
16, & 20. Each velocity profile extends radially across the entire computa-
tional domain and contains axial U and azimuthal W velocity data. Figure
5.22 shows an example of the profiles collated from the data. The veloc-
ity profiles are given for each location stated above, as the jet progresses
downstream. At r/R = 0, the centreline is represented by a broken black
line and perpendicular to this line are broken black lines indicating the lo-
cation that each profile was taken. Associated with each location is an axial
velocity profile (green line) which is drawn above the centreline, and an az-
imuthal velocity profile (blue line) drawn below. The swirl ratio for this case
is S = 0.9, which can be verified by measuring the peak velocities U, and
Wy of the profile at the nozzle outlet z/R = 0. A scale is not given for the
velocities, however each profile is drawn using the same scale.

Evident from these velocity profiles is a normal process of diffusion of
the axial velocity profile in the radial direction, necessitating a reduction
in the maximum velocity as the jet moves downstream. As the velocity
profile used in these simulations was obtained using a spline fit of the velocity
profiles published in Billant et al. , they therefore include a small peak in
the centreline axial velocity. This peak is evident up until z/R = 6, beyond
which the velocity profile has been affected by the viscous effect, such that
the idiosyncrasies of the initial velocity profile are now negligible. Similarly
with the azimuthal velocity profile, the diffusion effects cause a spreading of

the profile and a reduction of the maximum azimuthal velocity.
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Figure 5.22: Axial (U) and azimuthal (W) velocity profiles given at a variety
of distances downstream of the nozzle (z/R = 0) for a simulation of a jet

with the parameters Re ~ 350 and S = 0.9.
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The diffusion and subsequent reduction in axial and azimuthal maximum
velocities will affect the swirl ratio. Billant et al. (1998) analysed a vortex
just before a stagnation point and concluded that for a stagnation point to
occur, there must be a swirl ratio of S > /2 upstream . We are therefore
able able to observe a swirling flow at any location downstream and be sure
that if the swirl ratio locally is greater than this condition, then there must
form a stagnation point closely downstream.

In this section the swirl ratios S and S, are discussed as local parameters.
The swirl ratios were previously only applied at the nozzle outlet, and from
now, on will be referred to as the initial swirl ratio and represented by the
symbols S and S,. The initial values of swirl are thought to be able to
characterise the flow for all downstream locations (based on the analysis by
Billant et al. (1998)). A local version of each of these, referred to as S; and
S., are also used throughout the section. This local parameter denotes the
use of the swirl ratio, measured at each downstream location, to characterise
the flow; whereas, the parameters S and S, are generally applied at or near
the nozzle. In the case of the initial swirl ratios S and the local swirl ratio
S;, maximum velocity measurements are obtained from the extracted data
at the pertinent locations. In the case of the initial swirl ratio S, and the
local swirl ratio S,;, the complete velocity profiles are integrated using the
trapezoidal rule.

Figure 5.23 shows the results of calculating a local swirl ratio (as defined
by Billant et al. and referred to here as S;) for each jet simulation. Note
that the local swirl ratio at the nozzle exit corresponds to the initial swirl
ratio S. Hence, at z/R = 0, the swirl ratio increases from S = 0.0 to S = 1.4
in steps of S = 0.1. Immediately obvious is a trend at initial swirl ratios

S < 1.0 for the local swirl ratio to monotonically decrease as a function
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of downstream distance. An explanation for this can be seen in figure 5.22
where the maximum azimuthal velocity component decreases at a greater
rate than that of the axial velocity, such that at z/R = 20 there is a large
discrepancy and therefore a much lower swirl ratio than that measured close
to the nozzle. The effect becomes more pronounced with increasing outlet
swirl ratio, such that for an initial swirl ratio of S = 1.0, the local swirl ratio

at z/R = 20 is approximately 50% smaller.
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Another effect seen in the local swirl ratio S; is the change in gradient at
the near-nozzle region (0 < z/R < 4). For initial swirl ratios of S < 1.1, the
local swirl ratio is always decreasing with downstream distance. However,
for S > 1.2 the local swirl ratio increases in the near-nozzle region, up to a
maximum value, after which there is a turning point and the local swirl ratio
once again decreases. For the critical swirl ratio case (S = 1.4), where there
is a stagnation and reversed flow zone at z/R = 12, the local swirl ratio varies
widely with downstream distance. That is, the initial swirl ratio is S = 1.4,
while the local swirl ratio at z/R = 4 is S; ~ 1.55 and the local swirl ratio
at z/R = 20 is S; ~ 0.4. Applying the criterion of Billant et al. at each of
these locations gives a different story. At least, with a maximum swirl ratio
of S = 1.55, the vortex should be experiencing a strong breakdown at the
near nozzle region. In this case however, there is only a transient breakdown
state downstream at z/R = 12.

The results of this analysis show that the swirl ratio as defined by Bil-
lant et al. lacks consistency when applied locally. Additionally, it is widely
observed that vortex breakdown occurs downstream of the nozzle and propa-
gates upstream due to the imposition of a stronger adverse pressure gradient
on the vortex core by the stagnation point itself. The result of applying
the swirl ratio S at downstream locations shows that swirl ratios are almost
always smaller than the required critical condition of S ~ v/2, as defined
by Billant et al. (1998). Indeed, in the case of the S = 1.4 simulation,
a transient and unsteady stagnation (or strong deficit) is seen to occur at
z/R > 12. Slightly upstream of this point, the local swirl ratio is not much
more than S; = 1.0.
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Using the integrated parameter S, to describe the vortex core for a variety
of downstream distances yields a much better description of the vortex core
that is more consistent with the critical state theory. Figure 5.24 shows the
results of the simulations as interpreted using the swirl ratio S, as calculated
locally. Immediately noticeable is the constant swirl ratio behaviour for all
downstream locations measured. The constant behaviour breaks only at the
near-breakdown swirl ratios of S, ~ 1.15 and S, =~ 1.25, probably due to
the introduction of reversed flow into the integrations (see figure 5.21). The
consistency of the swirl ratio with downstream distance may be expected
since it is determined using velocities calculated as a result of integrals of
mass flow rate and angular momentum flow rate — both being conserved
properties for flows without external forces.

The consistency of the swirl ratio S, with downstream distance is an
important result. It indicates that this parameter can be applied anywhere
along a vortex before a recirculation region with the result of giving the same
swirl ratio. The loss of consistency with larger swirl ratios may be useful as
a predictive measure. That is, if measurements can be taken at two axial
locations on a vortex and the swirl ratio S, is measured to be different at
these locations, then vortex breakdown may be incipient or actually present
further downstream. This property may prove to be useful in flows with
different flow geometries that may not have the same critical swirl ratio as

found in swirling jets.
Prediction of the Swirl Ratio for Breakdown Using Centreline Ve-
locity Measurements at Varying Swirl Ratios

At each axial location, the centreline velocity can be extracted, allowing the

tracking of the velocity defect for increasing swirl ratio. Figure 5.25 shows the
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results of increasing the initial swirl ratio S and the same result as interpreted
using the local swirl ratio S; (upper and lower respectively). Each line shows
the centreline axial velocity magnitude as it varies with swirl ratio, at a
particular downstream location. The general trend of each curve confirms
that as the swirl ratio increases, the centreline velocity at each downstream
location decreases. If the trend of the velocity defect with increasing swirl
ratio can be extrapolated to velocity stagnation (Uy = 0), then the swirl
ratio needed to cause stagnation can be estimated. The data for each initial
swirl ratio S are included, however, recognising that the data for the S = 1.4
case are marred by the presence of a transient stagnation point at z/R = 12,
these points are not included in the extrapolations.

The curve for z/R = 0 is constant for all swirl ratios, reflecting the im-
posed velocity at the nozzle outlet. Increases in distance from the nozzle
outlet shows a general velocity decrease due to dissipation — evident in the
positioning of each of the curves progressively lower with downstream dis-
tance. For each progressive increase in swirl ratio, the defect in centreline
velocity increases in magnitude, resulting in the dip in each curve to the lower
axis. For the upper graph, where the centreline velocity Uj is plotted as a
function of the initial swirl ratio S, the trend in the curves for z/R = 1,2,4
show a behaviour that suggests there is a vertical asymptote, suggesting the
use of a rational function fit. These three curves have been extrapolated
using a rational function approximation. Note that for some locations along
the curve, the rational function approximation does not converge, giving dis-
continuities in the curve; generally, the method converges and gives a good
fit to the data.

The extrapolations show that for z/R = 1 increasing to z/R = 4, the

swirl ratio required to locally cause a stagnation point on the centreline
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decreases from S = 1.92 to S =~ 1.68. This behaviour may indicate that
increasing distances downstream require lower swirl ratios to cause vortex
breakdown. The corollary of this is that vortex breakdown starts downstream
and propagates upstream, similar to visualisations in §4.1.

The z/R > 6 data show, however, that the behaviour becomes more linear
with increasing swirl ratio, after an initial parabolic region (0 < S < 0.8).
Interpretation of these centreline velocities becomes more difficult, hence, no
extrapolation is included. There is however a noticeable drop in the centreline
velocities for z/R > 12 at S = 1.4; however, due to this region having a
very strong stagnation, interpretation is more difficult. This behaviour may
suggest a rapid stagnation occurrence, however, it is inconclusive.

Interestingly, interpretation using the local swirl ratio of the downstream
centreline velocities causes the behaviour of these curves to become almost
always linear with increasing swirl ratio, after the initial parabolic region.
This behaviour leads to a linear extrapolation regime that essentially moves
the incipience of breakdown much further downstream. In fact, at z/R = 20,
the predicted swirl ratio for stagnation is S 2 1.5. This implies that the
local swirl ratio must be greater than S = 1.5 for the core to stagnate. This
result shows clear inconsistency with the results of the simulations, where
vortex breakdown is incipient at a location of z/R = 12 and a swirl ratio of
S = 1.4. Additionally, vortex breakdown occurs in this flow at a location of
z/R = 1.5 and a swirl ratio S = 1.40. This graph shows that for stagnation
at this location, the local swirl ratio needs to be S; 2 3.

Performing a similar analysis but using the swirl ratio initially and locally
as described by S, gives the two graphs in figure 5.26. Immediately noticeable
is the smaller swirl ratios predicted to create a stagnation at the downstream

locations of z/R = 1,2,4, however this is mainly due to the slightly smaller
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Figure 5.25: The centreline axial velocities as a function of increasing swirl
ratio S (upper) and S; (lower). Here, the curves describing the defect of the
axial velocity at z/R =1, 2, & 4 are extrapolated to predict stagnation.
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swirl ratios given by the S, parameter. In this case, the stagnation swirl
ratios are predicted to be S, ~ 1.62,1.58,1.48 respectively for the distances
z/R =1,2,4. This shows that for z/R = 4 the predicted swirl ratio for vortex
breakdown is S, = 1.48. Similarly to the plots using S and .5;, the curves
further downstream do not indicate an asymptotic behaviour. However, they
do show a rapid stagnation for the last point (referring to the S = 1.4 case)
at the centreline for the z/R > 12 locations.

More importantly, due to the conservative nature of the integrations used
in the S, calculation and the constant behaviour of the local swirl ratio for
all downstream locations, the corresponding set of curves (the lower graph of
figure 5.26) shows the same behaviour as the initial set, in all but the S = 1.4
case. Here, the influence of the flow reversal along the outer boundary causes
these points to show a different swirl ratio. This comes directly from the drop

in swirl ratios seen at the S = 1.3, 1.4 cases of figure 5.24.

5.6 Conclusions

The importance of the use of a swirl ratio that uses integrated parameters
is shown here, where the swirl ratio S, is capable of describing the swirling
jet’s criticality for a variety of swirl ratios within a spread of 05, ~ +10%.
Comparitively, the swirl ratio S gives a swirl ratio spread of 05 ~ +25%.
The new swirl ratio provides an experimentally determined, asymptotic crit-
ical swirl ratio criterion of S, > 1.2, aligning somewhat with the criterion
developed by Billant et al. (1998).

The swirl ratio S, was shown to describe the discrepancy in the exper-
iment of Farokhi et al. (1989). Two jets with different azimuthal velocity

profile formulations were seen to include breakdown in one case and no break-
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down in the other. Both jets were calculated to have a swirl ratio Sy = 0.48,
as defined in Farokhi et al. (1989). Recalculation of the swirl ratio gave
S, =127 and S, = 1.37, for the jet without breakdown and with breakdown,
respectively. The result shows that the jet without breakdown had a swirl
ratio that is at the lower end of the range for vortex breakdown, determined
here.

Additionally, the proposed swirl ratio S, describes the vortex for all down-
stream locations. The parameter allows the same swirl ratio to be deduced
from measurements at any location on a swirling jet. The swirl ratio S
provides limited accuracy in its critical swirl ratios for a variety of axial ve-
locity profiles. It generally decreases as the jet proceeds downstream. The
decreases in swirl ratio downstream causes some difficulty in understanding
how a vortex breakdown bubble can begin at a downstream location, where

the swirl ratio is lower than the critical condition prescribes.



Chapter 6

Vortex Breakdown

Meta-Stability

Research in the field of vortex breakdown has often been focused on explain-
ing why a particular vortex breakdown state is selected. Benjamin (1962)
suggested that the essential mechanism of vortex breakdown is steady and
axisymmetric and that the spiral type was created through a build up of
asymmetric disturbances. This hypothesis has been supported in the studies
of Grabowski & Berger (1976) and Ruith et al. (2003), where axisymmet-
ric numerical simulations capture the main flow topologies. Experiments by
Kurosaka et al. (2003) used a device to create azimuthally propagating dis-
turbances that effected a change to the vortex breakdown state from bubble
to spiral and vice versa, linking azimuthal disturbances with the spiral state.
Full three-dimensional simulations of the time dependent Navier-Stokes equa-
tions for an unconfined vortex were seen to proceed from an axisymmetric
bubble state to a spiral state after a build up of asymmetric perturbation
in the wake of the bubble (Spall, 1996). Further details regarding vortex

breakdown state selection can be read in §2.2.1.
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Figure 6.1: Critical swirl ratios for the bubble and cone types of vortex

breakdown obtained from the experiments of Billant et al. (1998).
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Previous studies of vortex breakdown in unconfined swirling jets by Bil-
lant et al. (1998) have shown that both the bubble- and cone-type of vortex
breakdown can occur over a range of Reynolds numbers. Figure 6.1 shows
the critical swirl ratios for vortex breakdown for the bubble- and cone-types
independently as collated from their figure 4. In this image the occurrence
of both the bubble- and cone-types of vortex breakdown across a range of
Reynolds numbers is evident. The results show that the critical swirl ratio
of the cone-type vortex breakdown is nearly constant with Reynolds num-
ber, whereas the bubble-type vortex breakdown shows increased critical swirl
ratios at lower Re. This is not to say that bubble breakdown occurs after
a cone breakdown, merely that cone breakdown is observed at breakdown
inception for slightly lower swirl ratios. Despite the slight discrepancy be-
tween the critical swirl ratios for the bubble and the cone, the two breakdown
states roughly co-exist for the same parameter range. This co-existence, or
bi-stability, poses the question of how the vortex breakdown state is selected.

Billant et al.  (1998) further investigated the stability of the bubble
and cone vortex breakdown states by a series of investigations at swirl ratios
slightly greater than the critical swirl ratio S.. Their tests involved increasing
the swirl ratio until a form of breakdown persists, then applying a pertur-
bation to the axial velocity. The results of these tests showed that weak
bubble and cone states were destroyed by the perturbation. In the case of
the destroyed bubble, the application of more favourable perturbation lead
to reformation of the bubble state. Alternatively, in the case of the destroyed
cone, the cone was never seen to reappear as a vortex breakdown state; the
favourable perturbations did produce a bubble vortex breakdown in some
cases. These results suggest that the cone vortex breakdown can occur in

a swirling jet with favourable conditions, but bubble breakdown is the pre-
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ferred and more stable state. Perhaps the occurrence of the cone is reflective
of a particular initial condition of the jet.

In this study, state selection in the simulated axisymmetric swirling jet is
explored. A map in Reynolds number versus swirl ratio space, of the vortex
breakdown states observed in the jet, is presented based on simulations where
the jet is impulsively initiated at a particular Re, S pair. The resulting map
describes a well defined region of Reynolds numbers where the initial vortex
breakdown state was a bubble, followed by conical breakdown at higher swirl
ratios. A second Reynolds number region exists where only a cone state was
achieved at the critical swirl ratio; the bubble did not occur at Reynolds
numbers above this region. The stability of a bubble to increases in swirl
ratio and Reynolds number into the cone-type dominated regions was then

explored showing a bubble with strong hysteresis.

6.1 Inlet Boundary Condition

For the tests presented in this chapter, a simplified fit of the S = 1.33 veloc-
ity profiles, as given in figure 4 of Billant et al. (1998) is used as the velocity
inlet. Their profile data was normalised with the nozzle radius and the max-
imum axial and azimuthal velocities respectively. These normalised profiles
were then fitted with polynomials using the method of least squares to min-
imise the error; eighth order and sixth order polynomials providing the best
fits respectively. These profiles were cropped at r = R for simplicity. The
nodal values of velocity at the inlet boundary condition are interpolated from
these polynomials. Figure 6.2 shows the velocity profiles used as compared
to those from Billant et al. (solid green squares and circles).

The following tests will use the formulation of swirl ratio S as given by
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Type Categorisation
small bubble bubble
large bubble bubble

hybrid bubble-cone cone
steady cone cone

Table 6.1: Method of categorisation of the observed vortex breakdown states.

Billant et al. (1998) and defined in equation 5.8.

6.2 State Selection for an Impulsively

Initiated Jet

Here a full map of the Reynolds number versus swirl ratio space is devel-
oped. The tests used in this section were performed by starting the jet from
zero initial conditions at a particular Re, S pair and observing the break-
down state achieved. Each Re, S pair is categorized into either the bubble
or the cone. This categorisation is somewhat qualitative as many flow states
present examples of both the cone and the bubble. In the case where there
the breakdown state is steady (of any size), the recorded state was simple,
however, the hybrid bubble-cone state shows examples of bubble and cone
behaviour. The hybrid bubble-cone was categorised as a cone since the be-
haviour shows that the majority of its life is spent in a cone state. Table 6.1
shows how each state is categorised, using the descriptions of the breakdown
types as given in §4.

As explained above, the simulation for each Re, S pair was started from
zero initial conditions, which necessitated running each simulation for up to

t = 200-300 to obtain the quasi-steady solution. As each simulation is time-
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dependent, care must be taken to accurately describe the vortex breakdown
state achieved. Some parameters pairs lead to variable vortex breakdown
states, while some can be inherently stable. In cases where the vortex break-
down state is an unstable bubble, the bubble may be periodically swept
downstream at initial formation stages of the simulation. Generally, the vor-
tex breakdown state becomes more stable for ¢ > 200, after which the vortex
breakdown state becomes evident.

Figure 6.3 shows the resulting vortex breakdown state map in Re versus
S space. The simulations were performed such that the interval between
respective swirl ratios becomes smaller at the transition between each state.
Transitions from no-breakdown to bubble breakdown, and bubble to cone
breakdown were resolved to within the error of AS = 40.01. The only
exception to this being the low Reynolds number (Re < 300) transition
from bubble to cone breakdown. For these particular Reynolds numbers, the
transition from bubble to cone is partially unresolved. The bubble dominates
until very large swirl ratios S > 2 and the transition to the cone state causes
the jet to attach to the nearby wall. This attachment stabilises the jet and
makes resolving the exact transition difficult. Here it is assumed that the
opening of the cone results in the attachment.

The map shows that below a critical swirl ratio S., that is partially
Reynolds number dependent, the swirling jet experiences no vortex break-
down. This result is reliable, repeatable and based on the definition of vortex
breakdown used here; that there must be a flow stagnation point and a re-
circulation region of limited axial extent (Leibovich, 1978). This critical
transition line shows none of the bi-stability that is seen in the results of Bil-
lant et al. . For Reynolds numbers below Re ~ 750, the vortex breakdown

type developed at the critical swirl ratio is always the bubble type. Above
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Figure 6.3: Results of a full parametric study of unconfined swirling jet vortex
breakdown showing no-breakdown (OJ), bubble (x) and cone (A) states, and

the lines that approximately describe the transitions.
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Figure 6.4: A reproduction of the transition data and lines from figure 6.3
superimposed upon the experimental critical swirl ratios of Billant et al.

(1998). Note that bubble-type breakdown was not observed above Re & 850.

Re =~ 750, the preference switches to the cone type and the bubble type
was nearly always absent from these flow, except as a transient state due to
oscillations of the cone.

Figure 6.4 shows the transition data and lines from figure 6.4 superim-
posed upon the experimental critical swirl ratios of Billant et al. (1998). This
comparison shows interesting similarities and differences between the present
simulations and the experiments, and yields some more insight into the state
selection question. There is a noticeable similarity between the absence of
bubble vortex breakdown at higher Reynolds numbers. The experimental
results reproduced here, show that the bubble type was not observed above

Re =~ 850, corresponding well with the results of the simulations.
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There is also some branching of the experimentally observed vortex break-
down states at Re < 850, however, this is not to say that we are observing a
similar phenomenon in the simulations. The simulations show that the cone
type appears at higher swirl ratios than the bubble. The bubble is always
the first type seen (for lower Reynolds numbers). This result is contrary
to the experimental observations, where the cone is generally seen at lower
swirl ratios than the bubble. These results are unsurprising considering that
the experiments used an incremental increase in swirl ratio up to the critical
point, whereas the simulations used impulsive initiation of the jet.

The absence of the cone at low swirl ratios may be explained in refer-
ence to the different experimental methods. In the case of the simulations,
the Re, S parameters were set at the onset of the simulations, leading to a
transient vortex breakdown state at near-critical swirl ratios. That is, the
vortex breakdown would appear and be swept downstream several times be-
fore becoming permanent. The periods where the bubble is absent allow the
jet to fully develop and may allow any perturbations (such as the starting
vortex) to be swept downstream. The absence of strong perturbation in the
nozzle region may explain the absence of the cone. Billant et al. identi-
fied a possible mechanism in slight temperature differences between the jet
and the surrounding fluid causing slight buoyancy effects comparable to the
difference in pressure at the stagnation point between the cone and the bub-
ble. An alternative explanation may be given by examining the experimental
method of Billant et al. ; they used incremental increases in azimuthal veloc-
ity to approach the critical swirl ratio. It is also possible that the azimuthal
perturbation at near-critical swirl ratios is responsible for transition to cone
breakdown.

The transition to the cone state in the present simulations (at least for
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those in the range 0 < Re < 750) is most likely an artifact of the strong
starting vortex. The starting vortex is a common phenomena for any jet that
is started abruptly, where vorticity at the jet—quiescent fluid boundary, rolls
into a large toroidal vortex. This vortex then spreads axially and radially.
Observations of the initial stages of the cone vortex breakdown formation
shows that the jet attaches to this starting vortex and quickly opens out into
a cone.

Although the direct comparison of the experimental results and the sim-
ulated results is impossible, it may be that the critical swirl ratios are com-
parable and independent of the initial conditions. The collapse of a vortex
breakdown and its subsequent downstream disappearance yields a jet-like
flow field that is independent of the initial conditions, and may just as easily
have been created by the incremental increase in swirl. In fact, the ex-
perimental and simulated critical swirl ratios show remarkable similarity in

magnitude and in its relative independence of the Reynolds number.

6.3 Metastability Tests

In order to test for metastability of the vortex breakdown state, a set of
simulations were devised such that cone breakdown transition is approached
starting from a stable bubble state. Five Re, S pairs were chosen from the
previous parametric study to be the starting cases (see table 6.2). From
these five states, two paths of increasing Reynolds number, and three paths
of increasing swirl ratio were chosen. Simulations were restarted from a
velocity field for each bubble at t = 200, then increased in a stepwise pattern
in either Reynolds number or swirl ratio. The list of these five tests and their

pertinent parameters is given in table 6.2.
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Test Number | Starting Parameters | Incremented Parameter Values

1 Re =234,5=2.0 S = 2.00,2.25,2.30,2.35,2.40, 2.50

2.60

S =1.60,1.65,1.70,1.75,1.80, 1.90
2 Re =409,5 =1.6

2.00,2.20
3 Re =536,5=1.4 S =1.40,1.45,1.50,1.55,1.60,1.70

Re = 234,292, 322,351, 380, 409, 438
4 Re =234,5 =2.0

497,556,614, 643, 702, 760, 819

Re = 234,292, 322,336, 351, 380, 409
5 Re =234,5=1.8

438,468, 526, 585, 643, 702, 760, 819

Table 6.2: Description of the five metastability tests giving the initial starting

parameters, and the increments of the test parameter.
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Figure 6.5 shows the results of the five metastability tests. Tests 1-3
are represented by a series of vertical blue arrows beginning at the start-
ing parameter of the test and running with constant Reynolds number and
increasing swirl ratio, to the highest swirl ratio tested. Tests 4-6 are rep-
resented similarly with red arrows that run horizontally with constant swirl
ratio and increasing Reynolds number. Each step of test 1-3 is represented
by a solid square that is colour coded with relation to the vortex breakdown
state attained during each step. In the case of tests 1-3, blue denotes a bubble
vortex breakdown and green denotes a cone. For tests 4-6, the bubble vortex
breakdown state is described by a hollow red square. Hollow green squares
were to be used to denote cone vortex breakdown for these tests. The test
results are superimposed upon the transitional values and lines taken from
the previous results, using the same symbols (see figure 6.3).

The result of all tests demonstrate that the bubble vortex breakdown
state, once it is achieved, is inherently stable. All bar one simulation failed
to gain the cone vortex breakdown state when their flow parameters were
increased to within the region of cone vortex breakdown, as defined in the
parameter mapping study shown previously. Test 1 showed an expansion
into a cone state only upon increasing the swirl ratio to S = 2.6 which
corresponds to a swirl ratio 13% larger than the previously recorded. Test 2
demonstrated even more dramatic suppression of the cone vortex breakdown
state with increases of swirl ratio up to 33% higher than previous results
failing to produce a cone breakdown state. Similarly, in test 3, increases in
the swirl ratio of 13% above the cone transition line, caused little change to
the vortex breakdown bubble other than a slight enlargement. Tests 4 and 5
also presented profound steadiness of the vortex breakdown bubble state once

fully developed, with increases in swirl ratios of 54% and 38% respectively
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Figure 6.5: Results of metastability tests. The maintenance of the bubble
state is represented by solid blue squares for tests 1-3 and hollow red squares
for tests 4-5. Note that the single solid green square relates to the only case

when the bubble state was destroyed.

demonstrating no change in state.

Considering that the Reynolds number and swirl ratio were increased in
a stepwise fashion, the bubbles of each simulation were considerably per-
turbed at parameter pairs within the cone breakdown region. Surprisingly,
for most simulations within this region, these perturbations showed little sign
of permanently changing the bubble to a cone. Only at the extremities of
the simulations could transitory cones be observed, quickly collapsing back
to the bubble state. Examples of this behaviour is shown in figures 6.6 and
6.7. On the left-hand side of both of these images shows the flow at 6t = 10

time units after the last parameter increase. Most cases show that there
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is significant distortion of the vortex breakdown bubble. Within dt = 30,
the disturbance was completely gone leaving a steady bubble state (see the
right-hand side of each image).

In tests 4 and 5, the bubble extends into a region of reasonably high
Reynolds number. In this region, large oscillations of the wake of the bub-
ble were observed. These oscillations resemble those that are formed by the
Kelvin-Helmholtz shear layer instability. In the present simulations, the bub-
ble state shows no sign of being affected by the oscillations apart from an
increase in unsteady behaviour. This result indicates that vortex breakdown
bubbles at these parameters can be extremely stable to external disturbances.
Comparatively, as shown in §4.4, the conical shear layers of cone-type vor-
tex breakdown can be highly unstable to shedding, sometimes reforming as
vortex breakdown bubbles.

The key parameter for the strength of bubble type vortex breakdown may
be the internal pressure. One of the main differences between the cone and
the bubble type is the magnitude of the internal velocities. Bubbles tending
toward having higher internal velocities and therefore lower pressures. This
internal pressure may stabilise any tendency for the wake to open out into

the cone state.

6.4 Conclusions

The results presented here are in agreement with the tentative conclusion of
the research of Billant et al. . The bubble vortex breakdown state is indeed
the preferred vortex breakdown state and is inherently stable to reasonable
perturbations. The cone state achieved in the present simulations at higher

swirl ratios is probably caused by the starting vortex and is a direct effect
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(b) Test 2, S = 2.20, 6t = 30

(c) Test 3, S =1.70, t = 10

(d) Test 3, S = 1.70, 6t = 30
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Figure 6.6: Flow field in the near nozzle region ten time units (left) and

thirty time units (right) after the last increase in swirl ratio (S = 2.20 and

S = 1.70 respectively). The contours show positive (blue) and negative (red)

azimuthal vorticity from —10 < wy < 10 and streamlines are also given for a

variety of locations.
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(c) Test 5, Re = 819, 6t =10 (d) Test 5, Re = 819, 6t = 30

Figure 6.7: Flow field in the near nozzle region ten time units (left) and
thirty time units (right) after the last increase in swirl ratio (Re = 819 for
both cases). The contours show positive (blue) and negative (red) azimuthal
vorticity from —10 < wy < 10 and streamlines are also given for a variety of

locations.
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of the simulation method. Alternatively, the simulation method supplies
suitable conditions to correctly simulate the critical swirl ratio.

Simulations with increasing swirl ratio and Reynolds number, from the
bubble state, show that the cone-transition line does not relate to simulations
where the parameters are increased in small steps and that the bubble is
the preferred state at high Reynolds numbers and swirl numbers once it is
attained. Evidence of meta-stability in the bubble and cone states is shown
clearly here. Both the bubble and the cone can be reliably maintained as
the flow state for the same parameter ranges. The state selection is clearly
affected by the initial conditions.

Further research may observe the Re, S parameter space as obtained using
ramped increases in swirl ratio (or Reynolds number) and the behaviour of
the bubble state when the swirl ratio is decreased. Similarly, the same set of

experiments can be performed on a cone-type breakdown.



Chapter 7

Conclusions

The research presented herein used an in-house spectral-element code to nu-
merically solve the incompressible, axisymmetric, Navier-Stokes equations
for an unconfined swirling jet displaying vortex breakdown. The resulting
simulations gave good agreement with the equivalent experimental flows de-
scribed in Billant et al.  (1998). Comparison of the main parameter used
throughout the study (the critical swirl ratio S.) gave excellent agreement
with the experimentally measured values (05, < 3%) over a range of Reynolds
numbers.

The study focused on the universality of a leading swirl ratio used as
vortex breakdown prediction tool and also gives a limited study of vortex
breakdown meta-stability. The following sections deal with each study sep-

arately.

7.1 Universality of the Critical Swirl Ratio

The criterion for vortex breakdown in swirling jets developed by Billant et al.

(1998) shows promise in its ability to describe the criticality of the vortex

186
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core. However, investigations presented here (see §5.2) show that the swirl
ratio parameter developed by Billant et al. () is not universal for different
axial velocity profiles, yielding up to 45% variation in the predicted critical
swirl ratio for vortex breakdown. The measurements of the critical ratio
Billant et al. are also based on an unusual axial velocity profile due to the
contraction geometry used to create the swirling jet, leading to the question
of whether the proposed swirl ratio S criterion will naturally extend to a
variety of different axial velocity profiles.

In this thesis, the question of the universality of the critical swirl ratio S
to a variety of velocity profiles is addressed. The profile dependency of the
swirl ratio S is determined through a study of five different velocity profiles.
The study examined the critical swirl ratio of vortex breakdown for a range
of Reynolds numbers (150 < Re < 1000) and showed that the swirl ratio
S provided a variation in the critical swirl ratio of §S = +0.35, represent-
ing a spread of approximately 50% from the proposed critical swirl ratio of
S. &~ 1.44. This provided the impetus to investigate two other modified for-
mulations of the swirl ratio, S; and S,, based on integrated azimuthal and
integrated axial profiles, respectively; however, these were shown to have
similarly large spreads in the critical swirl ratio.

An alternative parameter was developed using representative velocities,
obtained through the integration of both the axial and azimuthal velocity
profiles with respect to mass flow rate and angular momentum, respectively.
The new swirl parameter S, shows greatly improved universality in the crit-
ical swirl ratio prediction. The spread in critical swirl ratios was reduced to
0S, = %0.15, representing a maximum of 20% variation, including the re-
processed experimental critical swirl ratios from Billant et al. (1998). The

criterion identified from this data shows that vortex breakdown occurs for
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S, 2 1.2,

Further support for the new parameter S, was provided when it was
applied to another experimental study; Farokhi et al. (1989), whose exper-
iments in turbulent swirling jets demonstrated that one type of jet demon-
strated breakdown while another (with a different azimuthal velocity profile
formulation) did not, despite both having the same swirl ratio, as calculated
using the Sy parameter in §2.2.4. Application of the new swirl ratio S, to
these experimental velocity profiles shows that the swirl ratio in the two jets
were indeed different. In fact, the jet that did not display breakdown had a
swirl ratio S, = 1.27 while the jet with vortex breakdown had S, = 1.37. As
the swirl ratio S, = 1.27 lies at the very lower limit of the critical swirl ratios
examined in the results in §5.5.5, it is consistent that this jet could not con-
tain a breakdown region. However, a swirl ratio of S, = 1.37 is well within
the region shown to include breakdown for a variety of velocity profiles.

Additionally, simulations of increasing swirl ratio in the range 0 < S, <
Sie, show that the parameter S, is constant for all downstream locations.
Similar application of the swirl ratio S gives widely varying swirl ratio as
a function of downstream distance. The swirl ratio S generally decreased
for all downstream distances. Hence the swirl ratio developed here gives a
more consistent description of the criticality of a swirling jet, independent of
the location of the velocity measurements used to predict vortex breakdown
further downstream.

Future research in this area could focus on providing a strong theoreti-
cal basis to a swirl parameter based on the use of fully integrated velocity
parameters such as angular momentum and mass flow rate. Application of
this parameter to a wider range of experimentally observed velocity profiles

could also give more insight into such a critical parameter.



CHAPTER 7. CONCLUSIONS 189

7.2 Vortex Breakdown State Selection

The discovery of a conical form of vortex breakdown may be attributed to
Khoo et al.  (1997), whose experiments of a tornado-like flow showed a
conical expansion of the swirling jet around the centreline. A more thor-
ough study of a conical form of breakdown was performed by Billant et al.
(1998), where experiments of a swirling jet showed a steady conical and lam-
inar form of vortex breakdown. Their study also observed the axisymmetric
bubble seen in most vortex breakdown scenarios. The cone-type of vortex
breakdown co-exists with the bubble form over the Reynolds number range
tested. Their study also indicated the cone state as being dependent on the
initial conditions or possibly due to azimuthal velocity perturbation, based
on experiments where the axial velocity was perturbed causing the cone to
disappear, to be replaced only by a bubble for favourable perturbations.

A parameter map was developed based on the procedure of starting the jet
at the final Reynolds number and swirl ratio pair, from zero initial conditions.
The resulting map shows that at critical swirl ratios and Reynolds numbers
below Re < 750, the bubble-type is favoured. For Re = 750 the cone-type
dominates. Within the bubble dominated Reynolds number range, the cone
can be observed only with greatly increased swirl ratios. The increase in swirl
ratio needed to observe a cone decreased with increasing Reynolds number.
Although the experiments did not start their jet at the final swirl ratio and
Reynolds number, this approach numerically provided good comparison with
critical swirl ratios. Observations of the flow show transience in vortex break-
down at near-critical parameters allowing the flow to fully develop before a
vortex breakdown state becomes permanent.

From the parameter map developed as described above, five stable bubble

states were selected for testing the transition to the cone state. From the five
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bubbles, three paths with increasing swirl ratio and two paths with increasing
Reynolds number were chosen such that the parameters crossed into the cone-
type dominated region. For four of the tests, slow increases in swirl ratio and
Reynolds number produced significant transient perturbations to the bubble,
but failed to produce a cone-type breakdown, despite traversing deeply into
the cone dominated region. This result shows that the cone state is easily
formed in simulations when the jet is impulsively initiated, but more difficult
to achieve when attempting to form a cone from a bubble state.

Possibly the formation of a cone at high swirl ratios seen in the parameter
map is an artifact of the imposed initial conditions of the jet. Experiments
generally observed the cone state at lower swirl ratios than the bubble. Fur-
ther research in this area should map the Re, S space using ramped increases
in the swirl ratio from the pre-breakdown state and also observe the effect of
decreasing the swirl ratio from a bubble state. Further research could also

document the effect of approaching the bubble state from a cone state.
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