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ABSTRACT

This thesis investigates the dynamics of cells in linear shear flow near a plane wall.

The first part of the thesis focuses on a two-dimensional model of a tethered cell, to

elucidate the effects of cell aspect ratio and cell internal viscosity on cell dynamics.

Over the parameter space examined, the cell initially elongates out into the flow, and

then slowly pivots towards the wall as the cell relaxes to a steady-state shape. The

region of the cell membrane that would come into contact with the wall corresponds

with a region of elevated shear stress. The effect of viscosity is found to be negligible

at low shear rates, but at high shear rates an increase in internal viscosity leads to

an increase in cell deformation and force on the tether. At low shear rates, cells with

higher aspect ratios experience less force and deformation. Conversely, at high shear

rates cells with higher aspect ratios experience greater force and deformation.

The second part of the thesis presents the results for a three-dimensional model

of a single cell moving in close proximity to a wall. The effect of cell height and cell

deformability on the dynamics of the cell is determined. The deformability of the

cell is controlled by the shear rate, area dilation parameter, and amount of membrane

prestress. The shear stress distribution on the vessel wall is described. The presence

of a cell has a marked effect on the shear stress distribution, with regions of elevated

shear stress apparent both upstream and downstream of the cell. A stiff cell moves

slower than a more deformable cell; allowing it to approach the wall more easily. A

more deformable cell presents a larger surface to the wall, and creates a larger region

of elevated shear stress on the wall immediately upstream.

The effect of the presence of multiple cells on cell dynamics is presented in the third

part of the thesis. Cells moving side-by-side have a tendency to move away from one

another. The presence of a downstream cell causes the upstream cell to move towards,

and below the downstream cell. The presence of a downstream cell also provides a larger

region of elevated shear stress on the vessel wall. The presence of multiple cells in the

flow increases the slip velocity of both cells markedly, independent of the configuration

of the cells.
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CHAPTER 1

INTRODUCTION

1.1 Project Aims

Blood circulates through the body in a closed system of interconnecting blood vessels.

Blood vessels range in size from capillaries of diameter 5µm, to arteries of diameter

10mm. The circulating blood contains different types of cells that perform vital func-

tions necessary to sustain life. The most abundant type of cell is the red blood cell,

which is primarily responsible for distributing oxygen and removing carbon dioxide

from body cells. Blood also contains a class of cells which are responsible for com-

batting disease, called leukocytes. The smallest cell present in blood, the platelet, is

responsible for maintaining the integrity of the vascular system through the arrest of

bleeding and the repair of damaged blood vessels.

In order to perform their roles, platelets and leukocytes are required to attach

themselves to the vessel wall. The process whereby these cells move from the free-

flowing blood to attachment on the vessel wall is called the cell adhesion process. Cell

adhesion is a complex, multi-step process, consisting of an interplay of different bonds

located on the vessel wall and cell surface. There is considerable evidence to suggest

that fluid dynamic forces play a critical role in controlling and influencing the activation

of these bonds, and determining when and how the cell approaches the vessel wall. It

is also apparent that the deformable nature of cells also plays a critical role in the

dynamics of cells and the cell adhesion process.

Numerical modelling can be utilised to provide further insight into the mechanics of

cell dynamics and adhesion, and to provide a quantitative and qualitative understanding

that cannot be achieved with present measurement techniques. Current models of cells

in the literature are highly idealised representations that lack physiological relevance.

Therefore, the first aim of this study is to develop a more physiologically consistent

1



1. INTRODUCTION

model of a cell.

Recent developments in experimental methods have revealed the existence of platelet

and leukocyte tethers that form during adhesion, both in vitro and in vivo. Of par-

ticular interest is the effect of the hydrodynamic forces of blood flow on the formation

and deformation of these tethers. Knowledge of the hydrodynamic forces acting on the

tethers will help to increase understanding of this complex physical and chemical phe-

nomenon. Current models of tethered cells consider the cell as non-deformable. Hence,

another aim of this study is to develop a model of a tethered deformable cell.

It is also apparent that current models of leukocytes and platelets in the literature

focus mainly on cells undergoing adhesion. The presence of a cell near a wall creates a

disturbance in the flow, which alters the hydrodynamic conditions in the flow. Another

aim of this study is to characterise the effect of the hydrodynamic conditions created

by the presence of a cell near a wall on the likelihood of adhesion occurring, and to

quantify the effect of cell deformation. Hydrodynamic conditions of interest include the

velocity of the cell, and the shear stress on the cell and on the vessel wall.

1.2 Thesis Outline

This thesis consists of seven chapters, including the present introduction. Chapter 2

contains a review of the literature relevant to blood cell dynamics and outlines the

hypotheses tested in subsequent chapters. Chapter 3 contains the methodology used

to obtain the results put forward in this thesis. The following three chapters contain

the results. Chapter 4 comprises an investigation of a two-dimensional tethered cell.

Chapter 5 presents the results obtained from a model of a three-dimensional cell moving

in close proximity to a wall. This model is extended in Chapter 6 to include the effect

of two cells moving in a flow near a wall. Finally, the conclusions of the study and the

scope for future work are outlined in Chapter 7.

2



CHAPTER 2

LITERATURE REVIEW

This chapter provides a summary of the current knowledge of cell dynamics and ad-

hesion from a fluid dynamics perspective. A critical analysis of the analytical and

numerical models used to shed light on cell dynamics and adhesion is also presented.

The first section of this chapter describes the different types of cells present in the circu-

lation system, and outlines some important physical properties of each cell. The second

section examines how cells have been modelled and the techniques used. The next sec-

tion looks at the adhesion process of leukocytes and platelets, and critically analyses the

models that have been used to study this phenomenon. The following section describes

the dynamics of deformable bodies in unbounded flow, flow bounded by a wall, and flow

through a vessel. A critical analysis of the models used to capture deformable body

dynamics is also presented. The last section of this chapter contains a summary of the

literature review, and presents the hypotheses to be tested in subsequent chapters.

2.1 Cells

Blood consists of a liquid, called plasma, and a suspension of cells that perform functions

vital for life. The cells occupy a volume of approximately 40− 45% of the total volume

of blood. This proportion is known as the haemocrit. There are three types of cells

circulating in the blood: red blood cells, leukocytes and platelets.

2.1.1 Red Blood Cells

Red blood cells are non-nucleated, biconcave discs approximately 8µm in diameter,

with a thickness of 2µm (Eggleton & Popel 1998) (Figure 2.1). The primary function

of these cells is to carry oxygen from the lungs to the body cells, and to transport CO2

back from the cells to the lungs. The interior fluid of the red blood cell is called the

cytoplasm, and is enclosed by a lipid bi-layer membrane. Red blood cells are the most

3



2. LITERATURE REVIEW

Figure 2.1: Scanning electron micrograph of red blood cells (Byars 1999).

Surface Area 132 × 10−6m2 Fung et al. (1981)
Volume 96 × 10−6m3 Fung et al. (1981)
Reduced volume 0.68 Fung et al. (1981)
Shear elastic modulus 6 × 10−6 N/m Waugh & Evans (1979)
Area compressibility modulus 4 × 10−1 N/m Katnik & Waugh (1990)
Bending modulus 2 × 10−19 N.m Hwang & Waugh (1997)
Membrane thickness 7.8 × 10−9 m Hochmuth et al. (1983)
Cytoplasm viscosity (4 − 17) × 10−3 Pa.s Ross & Minton (1977)

Table 2.1: Mechanical properties of red blood cells.

common cell present in the circulation system, constituting approximately 40% of the

total volume.

Deformation of red blood cells is constrained by fixed surface area and fixed volume.

Red blood cells display very high resistance to area dilation, with the elastic energies of

bending, shear and compression in the ratio of 1 : 50 : 106 (Table 2.1). The biconcave

disc shape of the red blood cell means that the ratio of volume to surface area is

relatively low, thus maximising surface area for gas transport across the membrane. A

measure of this ratio is the reduced volume, defined in equation 2.6 in Section 2.5. A

reduced volume of much less than unity indicates that the red blood cell can undergo

marked deformation while maintaining a constant surface area.

2.1.2 Leukocytes

Leukocytes are nucleated cells that are formed from stem cells in the bone marrow, and

defend the body against infectious organisms and foreign agents. As a consequence,

leukocytes are able to adhere to the vessel wall, and pass through the vessel wall, in

order to protect the body from infection and disease. Leukocytes occupy less than 1% of

4



2.1. CELLS

Figure 2.2: Scanning electron micrograph of a leukocyte (Wetzel & Schaefer 1982).

Surface Area 465 × 10−6m2 Evans & Yeung (1989)
Volume 300 − 310 × 10−6m3 Ting-Beall et al. (1993)
Shear elastic modulus 2.4 × 10−6 N/m Yap & Kamm (2005)
Area compressibility modulus 4 × 10−4 N/m Needham & Hochmuth (1992)
Bending modulus 2 × 10−18 N.m Zhelev et al. (1994)
Membrane thickness 1 × 10−7 m Zhelev et al. (1994)
Cortical tension 2.4 × 10−5N/m Needham & Hochmuth (1992)
Cytoplasm viscosity 50 − 500 Pa.s Peterson & Bronzino (2008)

Table 2.2: Mechanical properties of leukocytes.

the blood’s volume. The most common type of leukocyte is the neutrophil, comprising

up to 40% of the total number of leukocytes present in the blood. Most of the literature

in this area focuses on neutrophils.

In the passive unstressed state, leukocytes are spherical with numerous membrane

folds (Figure 2.2). The membrane is highly deformable in shearing and bending, but

resists area expansion (Table 2.2). The membrane folds allow the cell to deform without

stretching of the cell membrane. Passive leukocytes exhibit viscoelastic properties, and

the viscosity of the cytoplasm varies with both deformation and shear rate.

The current understanding of the morphology of a resting leukocyte is that it con-

sists of a cortical shell with constant surface tension enclosing a cytoskeleton and a

nucleus immersed in a cytoplasmic non-Newtonian fluid (Kan et al. 1998, Tran-Son-

Tay et al. 1998). During adhesion however, leukocytes undergo an activation process

whereby the cytoskeleton rearranges its structure, and the mechanical properties of the

cell change (Yap & Kamm 2005).

2.1.3 Platelets

While circulating in the blood, platelets exist in what is called a resting state, the

shape of which can be closely approximated as an oblate spheroid with major radius

5



2. LITERATURE REVIEW

Figure 2.3: Scanning electron micrograph of a platelet (Maxwell et al. 2006).

Major Radius 1.5 × 10−6m Haga et al. (1998)
Minor Radius 0.25 × 10−6m Haga et al. (1998)
Shear elastic modulus 3 × 10−5 N/m Haga et al. (1998)
Membrane thickness 8 × 10−9m Crawford & Taylor (1977)

Table 2.3: Mechanical properties of platelets.

equal to 1.5µm and minor radius equal to 0.25µm (Haga et al. 1998) (Figure 2.3).

Platelets are responsible for repairing damage to the vessel walls. Circulating platelets

will adhere to the vessel wall and form an aggregation plug, called a thrombus, to

block the damaged wall section and prevent blood loss. A platelet consists of a plasma

membrane supported by a cytoskeleton, which acts as a molecular “strut and girder”

system to help maintain the integrity and shape of the resting platelet (Michelson 2002).

The cytoskeleton includes a spectrin-based membrane skeleton adherent to the inside of

the plasma membrane, a marginal microtubule band, and a sparse rigid actin filament

network in the interior of the cell.

The microtubule band resides just beneath the surface membrane of a platelet,

along the hemisphere of the disc. The reliance of a platelet on the microtubule band to

maintain its discoidal shape was demonstrated by White & Rao (1998). They achieved

this by chilling the platelets to 4◦C, which resulted in the disassembly of the microtubule

band and a corresponding shape change of the platelets to a sphere. When the chilled

platelets were rewarmed the microtubule band reassembled and the platelets regained

their discoidal shape. Platelets also undergo an activation process, with significant

changes in platelet shape and mechanical properties. Table 2.3 provides a summary of

the mechanical properties of human platelets.

6



2.2. CELL ADHESION

2.2 Cell Adhesion

A critical function of both leukocytes and platelets is their ability to adhere to the vessel

wall. The importance of leukocyte interaction with the vessel wall was first noted by

Rudolph Wagner in 1839, as a consequence of the development of intravital microscopy

early in the 19th century (Wagner & Frenette 2008). The first evidence of platelet

interaction with the vessel wall came later in the 19th century, when the formation

of thrombi was observed (Jackson 2007). The adhesion of individual platelets to the

endothelium was only documented in 1970 by Begent & Born, due to the relatively

small size of the platelet.

The cell adhesion process is extremely complex, and is critically dependent on the

shear stress at the vascular wall. For a Newtonian fluid the shear stress is proportional

to the shear rate, defined as the velocity gradient of the fluid flow. The shear stress is

related to the shear rate by the relation:

τ = −µγ (2.1)

where τ is the shear stress, µ is the viscosity and γ is the shear rate. Typical physiolog-

ical wall shear rates range from 20s−1 in veins to 800s−1 in large arteries. Pathological

shear rates, caused by vessel blockages called stenoses, can get as high as 10,000s−1 in

stenotic vessels (Kroll et al. 1996).

Circulating cells detect damage to vascular walls via surface receptors that recognise

exposed sub-endothelial cells. A range of specialised adhesive receptors are inherent in

platelets and leukocytes, enabling adhesion to ligands present in damaged vessel walls

over a wide range of shear rates. These receptors are responsible for activating cells

and for adhering to walls or other cells. Platelets and leukocytes both undergo a similar

complex adhesion process, although with different ligand-receptor pairs.

2.2.1 Leukocyte Adhesion Process

Lawrence & Springer (1991) showed that the multistep process by which leukocytes

adhere to the vessel wall is initiated by the expression of selectin receptors on the

endothelial cells (Figure 2.4). These selectin receptors are characterised by high bond

formation rates, resulting in the capture, or initial bond formation, of a leukocyte

from the free-flowing blood. These bonds also have high bond rupture rates and as

a consequence are short-lived. As a result, the leukocyte “rolls” along the surface,

7



2. LITERATURE REVIEW

Figure 2.4: The leukocyte adhesion process consists of multiple sequential steps
involving different ligand-receptor pairs (Wagner & Frenette 2008). The initial cap-
ture of leukocytes is mediated by selectins expressed by the endothelial cells. As the
leukocyte rolling velocity decreases, integrin receptors are activated and firm adhe-
sion results. Secondary leukocyte recruitment and cell transmigration through the
vessel wall are mediated by other receptor-ligand pairs.

continually forming and breaking bonds, but moving much more slowly than free-flowing

cells. Leukocyte rolling velocities have been measured to be in the range of 10 −
40µm/s, and has been found to increase with increasing receptor densities (Lawrence &

Springer 1991). Leukocyte adherence decreases with increasing shear rate, with optimal

adherence in the shear rate range of 80 − 350 s−1.

Rolling leukocytes have been observed to detach when the flow is stopped, suggesting

that selectin bonds require shear stress to support cell adhesion (Finger et al. 1996,

Lawrence et al. 1997). This observation can be attributed to the catch bond behaviour

of selectins, in which the lifetime of the bond increases with increasing shear stress

(Marshall et al. 2003). This catch bond behaviour allows the leukocyte to bond in

regions of high shear, but to move through regions of low shear such as a capillary and

thus avoid getting stuck in the smaller vessel.

Firm adhesion of leukocytes is mediated by integrin receptors which are activated

during the rolling stage (Lawrence & Springer 1991, Berlin et al. 1995). Integrin

receptors are characterised by low bond formation and rupture rates. Once the rolling

cell has decreased its speed sufficiently, integrin bonds begin to form, and the cell comes

to a stable arrest. Integrin-mediated adhesion has been shown to be effective only at

shear rates < 80 s−1 (Lawrence & Springer 1991).

Membrane tethers have been observed to occur during leukocyte translocation, at

shear rates between 50s−1 and 800s−1 (Schmidtke & Diamond 2000, Ramachandran
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et al. 2004) (Figure 2.5). Tethers are long structures that form during adhesion, and

appear to involve a significant change to the structure of the cell. Tethers have been

observed to last in the order of minutes, and the length and width are significant when

compared to the size of the cell. Schmidtke & Diamond (2000) observed tethers of mean

length 6µm in the shear rate range 100−250s−1. Ramachandran et al. (2004), observed

tethers of length 7− 12µm and width 2µm at a higher shear rate of 800s−1. The study

demonstrated that tether formation coincided with slower, more uniform cell rolling

velocities. Larger, more complex tethers formed after longer rolling periods, suggesting

that repeated formation and breakage of tethers changes the mechanical properties of

the cell.

Heinrich et al. (2005) and King et al. (2005) used a bio-membrane force probe to

extract tethers from leukocytes. Two regimes were found during tether extraction.

The initial stages of tether extraction involved a linear elastic extension of the cell

membrane. This was followed by a viscous membrane-pulling regime, in which the

resistive force of the tether was found to depend on the pulling speed. The transition

between the regimes was postulated to be caused by the dissociation of the bond from

the cell cytoskeleton.

2.2.2 Platelet Adhesion Process

Savage et al. (1996) demonstrated that there are two distinct mechanisms whereby

platelets adhere to the endothelial wall (Figure 2.6). At low wall shear rates the ad-

hesion process is governed by the integrin αIIbβ3 on the platelet surface binding to

fibrinogen on the endothelial wall. This process is effective at wall shear rates below

600−900s−1 and is immediately irreversible, leading to the conclusion that these bonds

have slow bonding kinetics. At higher shear rates, up to 6000s−1, adhesion is critically

dependent on the glycoprotein Ibα (GPIbα) binding to von Willebrand Factor (vWF).

This interaction is insufficient to firmly adhere the platelets, but allows them to move

along the matrix at velocities much slower than bulk flow. The GPIbα-vWF bond acts

to slow down the platelet sufficiently so that the αIIbβ3-fibrinogen bond can form and

stably adhere the platelet. An important characteristic of the GPIbα-vWF bond is

its rapid formation and dissociation rates, meaning that the platelet moves across the

surface as old bonds break and new bonds form. This slow movement across the surface

is termed translocation, and is very similar to the rolling of leukocytes observed in ex-

9



2. LITERATURE REVIEW

a) b)

c) d)

e) f)

Figure 2.5: Leukocytes observed by Ramachandran et al. (2004) undergoing tethering
whilst rolling on a P-selectin-infused cover-slip. The leukocytes were rolled for a) < 1
minute at 200s−1, b) > 4 minutes at 200s−1, c) < 1 minute at 800s−1, b) > 4 minutes
at 800s−1. The mean length and width of at least 90 tethers formed at 200s−1 are
shown in e) and f).
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Figure 2.6: The platelet adhesion process is also dependent on multiple sequential
steps (Wagner & Frenette 2008). The initial capture of platelets is mediated by vWF
receptors expressed by the endothelial cells. Firm adhesion of the platelet is mediated
by the αIIbβ3-fibrinogen bond.

periments both in vivo and in vitro (Lawrence & Springer 1991). When in the passive

state, platelets have been observed to flip, rather than roll, along the endothelium.

As the platelet translocates the cytoskeleton undergoes a transformation called ac-

tivation. Yuan et al. (1999) demonstrated that platelets translocating on vWF undergo

cytoskeleton reorganisation that includes the extension of multiple filopodia. These

filopodia are dynamic structures that extend from the platelet surface, forming adhe-

sive contacts with the substrate.

Maxwell et al. (2006) tested the hypothesis that shape change is the dominant factor

in influencing platelet translocation behaviour. It was shown that these morphologi-

cal changes are critically dependent on the shear rate. At low shear rates the initial

shape change involved the extension of tethers and filopodia from the surface of the

platelet. At higher shear rates the platelets are spherical and exhibit rolling transloca-

tion behaviour similar to leukocytes. An interesting observation of the study was the

occurrence of platelet sphereing at very high shear rates in the presence of activation

inhibitors, possibly caused by hydrodynamic-induced deformation.

A recent observation in the platelet adhesion process is the presence of membrane

tethers being pulled from the surface of the cell (Dopheide et al. 2002) (Figure 2.7).

11



2. LITERATURE REVIEW

Figure 2.7: Scanning electron micrographs taken by Dopheide et al. (2002) of a
platelet tether being pulled from the surface of a translocating platelet perfused over
a vWF cover-slip at 150s−1.

Dopheide et al. (2002) demonstrated that tether formation is an important factor reg-

ulating the dynamics of platelet adhesion. A major finding of the study was that the

formation rate, growth rate, size and lifetime of a tether are highly dependent on the

shear rate. At a shear rate of 150s−1 platelets adhered for longer than 10 seconds and

a single extension was formed at the trailing edge of the cell, aligned in the direction

of the the flow. Less than 5% of platelets formed tethers at 150s−1, whereas increasing

shear rate to 10,000s−1 resulted in nearly all platelets developing tethers. The authors

hypothesise that tethering may not be so important at venous shear rates, but could

be a critical component of platelet adhesion at high rates of shear.

An important finding of the Dopheide et al. (2002) study is that the GPIbα-vWF

interaction can support prolonged stationary adhesion through the formation of mem-

brane tethers, despite the inherent rapid kinetics of the bond. Dopheide et al. (2002)

also established that the platelet tethers were independent of the actin and microtubu-

lar parts of the cytoskeleton. They achieved this by treating the platelets with an actin

inhibitor, which had only a minimal effect on the formation of tethers.

Nesbitt et al. (2009) demonstrated that platelet aggregation is directly regulated by

the hydrodynamics of the blood flow. The authors observed that local shear gradients,

caused by stenoses or existing thrombii, leads to the development of platelet aggregates.

When the platelets were prevented from activating the aggregates continued to form,

suggesting that the process is governed primarily by hydrodynamic factors.
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2.3 Cell Model Definitions

Models of cells can increase the understanding of cell dynamics whilst circulating or

undergoing adhesion. It has been demonstrated in the previous section that the cell

adhesion process is an extremely complex multi-step process. It has also been shown

that cells consist of complex membranes and, in the case of platelets and leukocytes, an

internal structure immersed in a non-Newtonian cytoplasmic fluid. As a consequence,

it is necessary to make assumptions in order to numerically model cells. Numerous

models, both experimental and numerical, have been used to study cell behaviour.

Because the models are so varied, a precise definition of the terms used in the literature

is necessary to avoid confusion.

In its simplest form, researchers have considered cells as a rigid body. Researchers

have also modelled cells as a drop, a small volume of liquid bounded by a free sur-

face. Drops exhibit isotropic surface tension, and are prone to breakup under excessive

stretching and deformation. Another common cell analogue is a capsule. A capsule

consists of a body of fluid enclosed in a two-dimensional elastic membrane. In con-

trast to liquid drops, tensions in an elastic membrane depend on the local strain, not

on the local curvature. The tangential stresses present in elastic membranes tend to

stabilise the membrane, and breakup is due to mechanical failure. In numerical simula-

tions, the membrane properties are specified using a constitutive strain energy function,

which is capable of describing purely elastic, strain hardening, or area incompressible

membranes. Skalak et al. (1973) defined the strain energy function of a red blood cell

based on experimental observations. The elastic tensions in a deformed capsule are

formulated by comparing the deformed shape to a reference shape. Typically capsules

exhibit minimal resistance to bending. A special type of capsule often studied is the

vesicle, characterised by an area incompressible membrane, and negligible shear resis-

tance. Vesicles display resistance only to bending. In contrast to capsules, the elastic

tensions in the membrane of a vesicle are defined by energy minimisation in numerical

simulations. Vesicles are often used to study cell dynamics numerically because of their

simple structure and experimentally because of their ease of manufacture.

Analytic models of capsules, vesicles and drops abound in the literature, but are only

able to be derived in the small deformation and inertial limits (Leal 1980). Unbounded

flow is usually considered, although first order corrections to account for the presence

13



2. LITERATURE REVIEW

of a wall are possible. More complicated geometries and large deformations can only

be modelled numerically.

Finite element methods and finite volume methods have been used previously to

model cell dynamics. Both of these methods can be used with a Navier-Stokes for-

mulation where the fluid is treated as a continuum, or with a particle-based method

such as the lattice Boltzmann method. Capturing cell dynamics numerically can be

very complex since in many cases the boundaries are deformable and move through the

computational domain. The cell interface can be tracked implicitly, using a volume of

fluid or a level set method, or explicitly, using an immersed boundary method. It is

optimal to consider the deformation of a cell with an explicit definition of the exact

physical characteristics of the membrane. A major drawback of implicit interface track-

ing methods is that the interface is not defined, and properties such as curvature and

tensions are not able to be extracted. Although the immersed boundary method offers

the advantage of an explicit definition of the cell surface, the transferral of properties

between the Eulerian and Lagrangian meshes is only accurate to first-order.

The numerical methods outlined above require an Eulerian mesh to describe the

computational domain enclosing the cells. Boundary element methods, derived from

the solution of the Stokes equations, only require the boundaries of the flow to be

meshed to determine the motion of the cell. Boundary element methods offer increased

computational efficiency because an Eulerian mesh is not necessary. The major draw-

back of this method is that the effects of inertia are neglected in this method.

Numerical models of cells commonly include either discrete triangulation schemes,

structured meshes, or global spectral methods to approximate the cell surface. An

unstructured mesh requires averaging over adjacent elements to approximate higher-

order quantities such as gradients of tension and curvature. This may lead to smoothing

out of any potential instabilities. Structured meshes ensure smoother shapes and stabler

computations, however large, singular cell deformations cannot be captured.

2.4 Cell Adhesion Models

The cell adhesion process is still not fully understood. As a consequence it is a very in-

tense area of research. Modelling of the cell adhesion process for leukocytes or platelets

can be very useful in determining the primary factors responsible for mediating cell

adhesion.
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2.4.1 Leukocyte Adhesion Models

Fixed to Surface

The most basic computational studies of leukocyte adhesion examined the drag on

bodies fixed to a wall in shear flow. Chapman & Cokelet (1996, 1997, 1998) developed

a three-dimensional model to study flow past single and multiple leukocytes adhered

to a vessel wall. The studies demonstrated that flow resistance is dependent on the

cell to vessel diameter ratio and the number of adherent cells, and that the fluid drag

on an individual cell increased as the number of adhered cells increased. Gaver &

Kute (1998) calculated the drag on a two-dimensional rigid hemisphere, and showed

that drag increased with decreasing vessel size. The models that assume leukocytes are

fixed to the wall lack biological relevance due to the dynamic nature of cell adhesion,

and neglect the importance of cell deformability.

Adhesion Models

One of the earliest attempts to model a cell, the fluid mosaic model, was proposed by

Singer & Nicolson (1972). They modelled the cell membrane as consisting of a phospho-

lipid bilayer containing two classes of proteins. The first type, termed integral proteins,

is attached to the underlying cytoskeleton. The second type, termed peripheral pro-

teins, is more loosely attached to the cell. Bell (1978) built upon the fluid mosaic model

to provide a means of estimating the rate of bond formation and breakage of bonds be-

tween specific molecules. This was the first study to attempt to quantitatively assess

the role of specific bonds in mediating cell adhesion. In the study Bell separated the

reaction of the ligand and the receptor into two steps. The first step is known as the

encounter step, where the ligand and receptor diffuse within bond-forming distance of

each other. The second step is termed the reaction step, where a bond forms between

the receptor and the ligand.

Dembo et al. (1988) extended the work of Bell to develop a model of the physics

of cell membrane attachment and reattachment to a surface. Their approach involved

coupling the equations of the deformation of an elastic membrane with the bond density

kinetic equations developed by Bell. An interesting corollary arising from their model

is the existence of catch bonds, which are bonds that do not separate under increasing

tension. Catch bonds were validated experimentally by Marshall et al. (2003) who

showed, using atomic force microscopy, that increasing the force on P-selection bonds
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prolonged their lifetime.

A major flaw of the cell adhesion models outlined above is that they are determin-

istic. This means that a bond is always formed if the distance between the receptor

and the ligand is within a specified separation distance. However it is apparent from

experimental results that single bond adhesion events are stochastic in nature (Zhu

2000). Receptor-ligand binding has been described as a key-to-lock interaction (Zhu

2000). If the receptor and ligand are not orientated in the correct position no bond will

be formed, independent of the distance between the two. Capture of the characteristic

“stop and go” cell rolling pattern is not possible using deterministic descriptions of

receptor-ligand binding.

A stochastic framework for cell adhesion was first proposed by Cozens-Roberts

et al. (1990) in an attempt to account for the experimentally observed deviations in

deterministic behaviour. In the model the number of bonds formed is described by a

discrete, time-varying, random variable which is used to solve a master equation. For

simplicity it was assumed that the stresses were distributed evenly over the cell, which

leads to the erroneous conclusion that any single bond can keep the cell adhered to the

surface regardless of its position along the cell.

An alternative probabilistic model for leukocyte adhesion was used by Hammer &

Apte (1992). The leukocyte was modelled as a three-dimensional rigid sphere covered

with cylindrical microvilli. The motion of the cell was determined by balancing the

hydrodynamic, bonding and colloidal forces and torques at each time step. A Monte

Carlo method was used to model the bonds formed between the cell and the vessel

wall. Monte Carlo methods allow a system to be sampled in a number of random

configurations, which can then be used to describe the system as a whole. An advantage

of the Monte Carlo method is that it is easy to implement compared with the master

equation method developed by Cozens-Roberts et al. (1990), and can be coupled with

hydrodynamic equations to provide a more accurate description of cell adhesion. The

stochastic method used enabled the model to successfully simulate the experimentally

observed jerky motion of rolling cells.

Chang et al. (2000) added to the model of Hammer & Apte (1992) to examine

the effect of dissociation rate and bond interaction length on the adhesion of a single

leukocyte. The study characterised the effect of adhesion biophysical properties on the

adhesive dynamics of the cell. The model has also been further developed to include
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microvilli deformation (Caputo & Hammer 2005), multiple types of receptors (Bhatia

et al. 2003), and full spatial resolution of the receptor-ligand bonds (Korn & Schwarz

2008). Caputo et al. (2007) examined the shear threshold effect of catch bonds on

leukocytes adhering to a surface, and observed the rolling of cells at a shear rate near

the threshold of ∼ 100s−1. With the shear rate below the threshold, cells were observed

to detach and move more quickly

King et al. (2005) augmented the model in an attempt to capture the dynamics

of leukocyte tethering. A tether was assumed to consist initially of an elastic spring,

which then transitioned to a viscoelastic element to simulate cytoskeletal dissociation

of the bond. The model was able to capture tether lengths of ∼ 1.5µm. Yu & Shao

(2007) included the effect of tether extraction from the vessel wall by considering two

linear springs in series.

King et al. (2001) and King & Hammer (2001a,b) extended the work of Hammer &

Apte (1992) to examine the hydrodynamic interactions of multiple rolling leukocytes.

Slower, more uniform cell rolling became prominent with increasing cell concentration

and also decreasing distance between cells.

The adhesion models presented above have been used mainly in an inverse approach

to determine single bond parameters from experimental data. Though they are able to

replicate many features of cell adhesion, these models fail to capture the deformation

of the cell membrane, which has been shown experimentally to play a large roll in cell

adhesion.

Deformable Models

Numerous models have been formulated to capture leukocyte morphology. In an at-

tempt to elucidate the dynamics of micropipette aspiration, the leukocyte has been

modelled as a Newtonian drop with constant surface tension (Yeung & Evans 1989).

Although simple, this model captures some characteristic behaviours of leukocytes un-

dergoing micropipette aspiration (Drury & Dembo 1999). Other models of leukocytes

undergoing micropipette aspiration have attempted to capture elastic cytoplasm be-

haviour using Maxwell fluids or standard linear solid models (Schmid-Schönbein et al.

1981, Dong & Skalak 1992).

Models of deformable leukocytes undergoing adhesion include the studies of Dong

et al. (1999), Dong & Lei (2000) and Lei et al. (1999), who modelled the leukocyte as
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a two-dimensional viscous liquid drop enclosed in an elastic ring. They demonstrated

that as cell deformation increased, drag decreased. Non-physical constraints imposed

on the adhesion parameters and initial cell shape limited the effectiveness of this model.

Kan et al. (1998, 1999a,b), Tran-Son-Tay et al. (1998), N’Dri et al. (2003) and Liu

& Wang (2004) studied the effect of the nucleus on deformation using a two-dimensional

immersed boundary model of a compound liquid drop. The leukocyte was modelled as

a compound drop, with a surface tension interface rather than an elastic membrane.

Because of this un-physical simplification the cell shape predictions at large deforma-

tions showed poor agreement with experimental results. Yu & Shao (2007) investigated

the effect of tether formation on leukocyte adhesion, using a two-dimensional numerical

model. The adhesion kinetics used in these models were deterministic, and not able to

capture the characteristic “stop and go”nature of the cell rolling pattern.

Three-dimensional deformable models of leukocytes include the work of Jadhav

et al. (2005), who developed an immersed boundary method simulating a leukocyte as

a three-dimensional elastic capsule with stochastic receptor-ligand interaction. It was

found that as the cell membrane stiffness increases, the cell-wall contact area decreases,

leading to faster and less smooth cell rolling. The model also showed that as membrane

stiffness increases, on average fewer bonds per cell form.

Khismatullin & Truskey (2004, 2005) used a volume-of-fluid method with deter-

ministic receptor-ligand interaction to characterise the effects of cell deformability, vis-

coelasticity and chamber size on leukocyte adhesion, modelling the cell as a compound

liquid drop. They compared the results of a Newtonian drop to a viscoelastic drop and

showed that without viscoelasticity the cell produced tethers whilst adhering, suggest-

ing that tethers may form due to a failure of the cytoskeleton. Pawar et al. (2008)

used a three-dimensional model to determine relative importance of cell deformabil-

ity, microvilli deformability and bonding kinetics on leukocyte recruitment on a sur-

face, finding that more compliant cells rolled at a slower rate compared to stiffer cells.

Pappu et al. (2008) and Pappu & Bagchi (2008) investigated O(10) leukocytes rolling

in parabolic flow in a microchannel using an immersed boundary method, with stochas-

tic receptor-ligand interaction, observing that the cell rolling velocity decreases with

separation distance, independent of cell deformability.
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2.4.2 Platelet Adhesion Models

Population-type studies of platelets are abundant in the literature, however there is a

paucity of models of individual platelets. The first effort at modelling an individual

platelet was attempted by Mody et al. (2005), who developed a two-dimensional analyt-

ical model to describe the flipping motion of a tethered platelet under linear shear flow.

They achieved this by decomposing the flipping action into two separate problems: a

stationary, rigid inclined fence subjected to shear flow and a flat rigid plate rotating

towards a surface in quiescent fluid.

Mody et al. (2005) developed an analytical two-dimensional model to determine

the motion of a tethered platelet. The platelet was modelled as a thin plate hinged at

one end. Good agreement was obtained between the analytical model and experimen-

tal results. The authors also implemented a correction factor based on hydrodynamic

arguments to account for the slow rotation of the platelet observed to occur near a

wall relative to the theoretical results of Jeffery (1922) for an ellipsoidal particle in

unbounded shear flow. Pozrikidis (2006) investigated flipping of a platelet modelled as

a rigid oblate spheroid along a surface using the boundary element method, demon-

strating that the effect of the wall is not as significant as that suggested by Mody et al.

(2005). The study showed that wall effects alone were not able to explain the slow ro-

tation of platelets observed experimentally, and postulated that a torque arising from

cell adhesion to the vessel wall may explain the discrepancy.

2.5 Cell Dynamics

The study of cell dynamics is an extremely active area of research. Rigid particles,

drops, capsules, vesicles and cells all display complex behaviour when flowing in un-

bounded shear flow, or in the presence of boundaries such as walls and channels. The

dynamics of drops, capsules and vesicles are governed by the viscosity ratio λ, defined

as

λ =
µ2

µ1
, (2.2)
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where µ1 is the viscosity of the exterior fluid, and µ2 is the viscosity of the interior

fluid. The dynamics also depend upon the capillary number

CaD = µ1U
σ , (2.3)

CaC = µ1U
E , (2.4)

CaV = µ1UL2

κ , (2.5)

where U is the characteristic velocity, L is the characteristic length, σ is the surface

tension of the drop, E is the shear modulus of the capsule, and κ is the bending

rigidity of the vesicle. The subscripts D, C, and V refer to drop, capsule, and vesicle

respectively. The capillary number gives the ratio between the characteristic relaxation

time of the body to the time scale of the imposed flow. When the body is not spherical,

an extra parameter called the reduced volume ν also governs the dynamics. The reduced

volume is defined as

ν =
(4π)3/2

4π/3

V

S3/2
, (2.6)

where V is the volume of the body and S is the surface area of the body. The reduced

volume of a sphere is equal to one. Any shape other than a sphere has a reduced volume

of less than one.

2.5.1 Unbounded Flow

Jeffery (1922) solved the Stokes equations to determine the motion of a rigid ellipsoid

suspended in unbounded shear flow. The resulting particle motion is periodic in nature,

and is known as a Jeffery orbit. A Jeffery orbit is characterised by particle rotation

about the axis parallel to the vorticity vector. The nature of the Jeffery orbit depends

entirely on the initial orientation, the aspect ratio of the particle, and the shear rate.

Red blood cells, vesicles and capsules exhibit rich dynamical behaviour in shear flow.

Two types of motion dominate, depending on the ratio of the viscosity of the interior

and exterior fluids. It has been shown experimentally that a deformable body with a

viscosity ratio of unity suspended in shear flow inclines at a steady angle to the flow,

with the membrane rotating about the interior fluid (de Haas et al. 1997, Kantsler

& Steinberg 2005, 2006). This type of motion is termed tank-treading, and has been

widely observed experimentally (Schmid-Schönbein & Wells 1969, Chang & Olbricht

1993, Walter et al. 2001). For very low viscosity ratios the capsule bursts at high shear

rates (Chang & Olbricht 1993). The burst point is located at the high curvature tip
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of the capsule. As the interior fluid becomes more viscous the body begins to tumble,

similar to the motion of a rigid body in shear flow described by Jeffery (1922).

Analytic Non-Deformable Models

Keller & Skalak (1982) developed an analytical theory (KS theory) able to explain the

tank-treading and tumbling motions of an ellipsoidal deformable body. The body is

assumed to be shape-preserving with semi-major and minor axes lengths L and B, and

the membrane is assumed to be area incompressible. The authors predict that the

time dependent angle θ(t) between the major axis of the body and the flow direction

is governed by the differential equation

θ̇ = −k

2
− 2LB

L2 + B2
φ̇ +

k

2

L2 − B2

L2 + B2
cos(2θ) (2.7)

where φ̇ is the tank-treading frequency, given by

φ̇ =
kf3

f2 − λf1
cos(2θ) (2.8)

where f1, f2, and f3 are constants dependent on the ratio L/B. The solution of equation

2.7 predicts tank-treading motion below a critical viscosity ratio λc. Above λc the tank-

treading frequency is zero and the body tumbles. Although able to predict transition

from tank treading to tumbling, KS theory is limited by the neglect of shear rate and

of cell deformation. KS theory does not capture the transition from tank-treading to

tumbling with decreasing shear rate at constant viscosity ratio observed in experiments.

Analytic Deformable Models

Although KS theory provides an accurate description of tank-treading and tumbling at

low shear rates, it is less useful when the shear rate is sufficient enough to induce large

deformations of the body. At these shear rates, large deformations have been observed

experimentally for red blood cells, vesicles and capsules (Abkarian et al. 2007). In an

attempt to account for the effect of deformation in KS theory, Skotheim & Secomb

(2007) introduced an additional term to equation 2.8 representing the effect of the

elasticity of the membrane. The model captures the shear-rate transition from tank-

treading to tumbling, but is still not able to account for significant deformations of the

body.

To account for the effect of the deformation of the body on cell dynamics, many

different methods have been used. Researchers have considered analytical models of
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small deformations of nearly spherical capsules (Barthés-Biesel 1980, Barthés-Biesel &

Rallison 1981). However these analytical models are restricted to small deformations.

To capture large deformations, numerical models need to be implemented.

Numerical Models

Capsules undergoing large deformation were initially modelled axisymetrically, using

boundary element methods (Li et al. 1988, Pozrikidis 1990). These methods were im-

proved upon by extension to three-dimensional boundary-element models, first devel-

oped by Pozrikidis (1995) and Zhou & Pozrikidis (1995), and extended by Ramanujan

& Pozrikidis (1998). The effect of bending stiffness was included in the boundary el-

ement method of Pozrikidis (2001a). Pozrikidis (2003b) improved the method using

numerical smoothing on the capsule surface. Lac et al. (2007) and Lac & Barthés-Biesel

(2008) used a boundary element method to investigate the collision of two elastic cap-

sules in shear flow. Eggleton & Popel (1998) used an immersed boundary method to

model spherical, oblate ellipsoidal and biconcave discoidal elastic and Skalak capsules

in linear shear flow. The use of an immersed boundary method allowed the authors to

include the effects of inertia on the capsule dynamics.

A spectral boundary element method was implemented by Kessler et al. (2008)

to characterise the orbits of an elastic capsule with bending resistance over a range

of viscosity ratios. Tank-treading and tumbling of the cell was observed for different

values of shear rate and viscosity ratio. The model was able to predict a transition

from tumbling to an oscillatory motion as the shear rate increases sufficiently enough

to cause large deformations of the body, previously observed experimentally by Misbah

(2006) and Kantsler & Steinberg (2006). This oscillatory motion, sometimes referred to

as trembling or vacillating motion, consists of oscillations in the shape and inclination

angle of the body.

Lac et al. (2004) demonstrated that at low shear rates a buckling instability can be

observed in elastic capsules, due to compressive stress acting on the membrane. This

instability has not been observed experimentally, suggesting that it may be a direct

consequence of neglecting bending resistance. Lac & Barthés-Biesel (2005) managed to

suppress this instability by prestressing the capsule membrane, analogous to a pressure

difference between the interior and exterior of the capsule. Diaz et al. (2000) and

Barthés-Biesel et al. (2002) compared the effects of different strain energy functions on
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the deformation of a capsule in shear flow.

2.5.2 Bounded Flow

The models and observations of cell dynamics outlined above have considered cells in

the absence of any boundaries in the flow. To capture more physiologically relevant

phenomena, it is necessary to characterise the effect of boundaries on cell dynamics. In

arteries, the size of cells is much less than the size of the vessel, and it is sufficient to

consider the effect of a single wall on the cell dynamics. In smaller vessels however, it

is imperative to study the cell inside an enclosed vessel.

Bodies convected in a flow create a disturbance, which has an effect on the velocity of

the body relative to any boundaries present. If inertial effects are considered negligible,

it is known that the lateral position, or the distance above a surface, of a solid sphere

or a spherical drop does not change (Bretherton 1962). However, the asymmetric

deformation of a drop or capsule induced by the flow leads to lateral migration of the

drop or capsule even at zero Reynolds number. Both solid and deformable bodies move

at a different translational speed relative to boundaries compared to the undisturbed

fluid flow. This difference in velocity is defined in the literature as the slip velocity

Uslip, given by

Uslip = u∞ − Ubody, (2.9)

where u∞ is the undisturbed fluid flow parallel to the boundary, and Ubody is the velocity

of the body parallel to the body.

Presence of a wall

An analytical solution for the slip velocity Uslip of a sphere freely suspended in shear

flow near a wall was developed by Goldman et al. (1967). The solution is given by

Uslip

ka
=

5

16

(a

h

)2
, (2.10)

where k is the shear rate, h is the height above the wall, and a is the radius of the sphere.

Pozrikidis (2005c) characterised the orbits of freely suspended spheroids suspended in

shear flow above a plane wall using a boundary element method. Mody & King (2005)

characterised the trajectories of a platelet shaped particle near a wall using a boundary

element method, showing that at small particle-wall distances the full orbital motion is

suppressed, causing the particle axis to move parallel to the wall. Three distinct regimes
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were observed. Platelets further than 1.2 radii from the wall exhibited modified Jeffery

orbits. Platelets at heights between 0.75 and 1.1 radii from the wall exhibited flipping

behaviour, where the platelet rotated and came into contact with the wall. Platelets

at heights below 0.5 radii move in a periodic fashion with the flipping suppressed. The

authors found that any initial tilt of the platelet about the flow axis leads to transition

to flipping behaviour. The model was extended to investigate the effect of Brownian

motion on platelet motion above a wall (Mody & King 2007). Mody & King (2008a,b)

enhanced the model further to investigate the effect of a plane wall on cell-cell collisions,

using two ellipsoidal particles. They demonstrated that the presence of a wall in close

proximity increases the collision frequency by 25%.

Chaffey et al. (1967) determined analytically that the lateral migration Umigr of a

drop undergoing small deformation decreases inversely with the square of the distance

from the wall. Chan & Leal (1979) extended this work to consider drops of arbitrary

viscosity ratio. The solution was found to be

Umigr

ka
= CaD

(a

h

)2 3(16 + 19λ)(54λ2 + 97λ + 54)

280(16 + 16λ)(1 + λ)2
, (2.11)

The slip velocity of a drop undergoing small deformation near a wall was also shown

to depend inversely on the square of the distance from the wall (Chan & Leal 1979,

Shapira & Haber 1990). The solution is given by

Uslip

ka
=
(a

h

)2 1 + 1.5λ

8(1 + λ)
, (2.12)

Uijttewaal et al. (1993) and Uijttewaal & Nijhof (1995) used a boundary element

method to determine the behaviour of drops undergoing large deformation near a plane

wall. They found that at large shear rates, and at close drop-wall distances, the lateral

and translational velocities of the drops differ significantly from the analytical predic-

tions.

Olla (1997b,a) developed an analytical model of a vesicle near a wall in shear flow,

and showed that the lateral velocity of the vesicle is of the same form as for a liquid

drop. The solution was found to be

Umigr

ka
= C(ν)

(a

h

)2
, (2.13)

where C is a constant that depends on the reduced volume of the vesicle. Numerical

and experimental studies have confirmed this hypothesis (Sukumaran & Seifert 2001,

Abkarian & Viallat 2005). The slip velocity of an elastic body has not been considered

in the literature.
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Flow in a vessel

Goldsmith & Mason (1962) observed that neutrally buoyant drops suspended in Poiseuille

flow through a circular tube rapidly migrated towards the vessel centreline, whereas no

migration of rigid spherical particles was observed under the same flow conditions. The

existence of lateral migration at very low Reynolds number has also been observed

in pulsatile flow (Goldsmith & Mason 1967). There are multiple mechanisms for the

lateral migration of a deformable body in a channel, one is due to the hydrodynamic

interaction between the body and the wall, another due to interaction between the de-

formation of the body and the shear rate gradients of the flow (Leal 1980). If the body

is not neutrally buoyant then sedimentation also becomes important in determining

the rate of body migration. When inertial effects become important, lateral migration

of rigid particles has been observed to occur. Segre & Silberberg (1962a,b) demon-

strated that a neutrally buoyant sphere suspended in Poiseuille flow will migrate to an

equilibrium position located at 60% of the distance from the centreline to the wall.

When blood flows through vessels less than ∼ 300µm in diameter, complex rheolog-

ical behaviour has been observed in experiments (F̊ahræus 1929, F̊ahræus & Lindqvist

1931, Skalak et al. 1989). Red blood cells migrate to the centre of the vessel, and con-

sequently move at a higher mean velocity than the mean velocity of the blood (Figure

2.8). This means that the concentration of red blood cells is lower in the vessel than

in a larger vessel. This phenomenon is known as the F̊ahræus effect (F̊ahræus 1929).

The distribution of the red blood cells in vessels less than 300µm in diameter causes

a cell-free region of fluid to develop next to the vessel wall. This reduces the local

viscosity in the region, reducing the resistance to flow (Figure 2.9). This phenomenon

is known as the F̊ahræus-Lindqvist effect, and has been observed both in vivo and in

vitro (F̊ahræus 1929, Goldsmith et al. 1989). As the vessel diameter decreases, the

apparent viscosity and the cell concentration decrease until the cell diameter and vessel

diameter become comparable. As the vessel diameter decreases further, the apparent

viscosity and the cell concentration rise due to the occlusion of the vessel by the cells

(Secomb 1992). In capillaries, the diameter of a red blood cell or leukocyte is equal

to or larger than the diameter of the capillary. Cells are observed to travel in single

file through such vessels, with significant deformation from their resting shape (Skalak

et al. 1989). As the diameter of the vessel widens, the red blood cells form multiple

files in the centre of the vessel.
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Diameter (µm)

HT /HD

Figure 2.8: F̊ahræus effect for red blood cells (Goldsmith et al. 1989). HT is the
vessel haemocrit of the cells (percentage of volume occupied by the cells), and HD is
the discharge haemocrit of the cells. The shaded region includes all literature data
gathered by Goldsmith et al. (1989), and the points indicate the original data of
F̊ahræus (1929). The critical diameter (∼ 3µm) is that of the smallest cylindrical
vessel through which a red blood cell can flow.

Cells in vessels are not isolated in the fluid, and as such cell-cell interactions play

a major role in cell dynamics. The mechanism by which cells approach the vessel

wall is caused by the interaction between different cells (Figure 2.10). The presence

of red blood cells in the flow push leukocytes and platelets towards the vessel wall,

and enhance cell contact with the wall and cell adhesion (Melder et al. 2000). This

phenomenon is known as margination. Schmid-Schönbein et al. (1980) observed 94%

margination in a rabbit post-capillary venule of diameter 54 µm. Phibbs (1966) also

observed the phenomenon in a much larger vessel of diameter ∼ 1mm.

Secomb et al. (1986) modelled an axisymmetric cell moving through a capillary using

the lubrication approximation of the Navier-Stokes equations. Hsu & Secomb (1989)

developed a model of a three-dimensional cell in a capillary using the lubrication approx-

imation. The shape and motion of the cell were prescribed, limiting the effectiveness

of the model. A three-dimensional boundary element model of drops moving through

a tube was developed by Coulliette & Pozrikidis (1998). Pozrikidis (2005,a,b) inves-

tigated the motion of capsules through capillaries using a three-dimensional boundary
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Diameter (µm)

µe/µm

Figure 2.9: F̊ahræus-Lindqvist effect for red blood cells (Goldsmith et al. 1989). µe

is the effective viscosity of the suspension, and µm is the viscosity of the suspending
medium. The shaded region includes all literature data gathered by Goldsmith et al.

(1989), and the points indicate the original data of F̊ahræus & Lindqvist (1931). The
critical diameter (∼ 3µm) is that of the smallest cylindrical vessel through which a
red blood cell can flow.

element method. Spherical, oblate ellipsoidal and biconcave elastic capsules were con-

sidered, with migration toward the centre-line was observed for all cases. Zhou et al.

(2007, 2008) studied the transport and deformation of a leukocyte in capillaries and

through a contraction with axisymmetric Newtonian and viscoelastic drop models, us-

ing an immersed boundary lattice Boltzmann model. The lateral migration of an elastic

capsule in a channel was studied by Doddi & Bagchi (2008), using a front-tracking im-

mersed boundary method. The migration velocity of the cell was observed to increase

with capillary number and capsule to channel size ratio, but decrease with increasing

viscosity ratio.

Sun et al. (2003), Sun & Munn (2005) developed a two-dimensional lattice Boltz-

mann approach to simulate the flow of red blood cells and leukocytes in a vessel. Sim-

ulation results obtained using this model suggest that the capillary to venule diameter
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Figure 2.10: Margination of platelets due to the presence of red blood cells in the
flow, as observed by Aarts et al. (1988). The top figure shows the concentration of
platelets as a function of radius in a circular vessel, for three different shear rates.
The bottom figure shows the concentration of platelets (dashed lines) in the presence
of red blood cells (solid lines).

ratio, cell configuration, and cell shape are critical determinants of the initiation of cell

rolling in post-capillary venules. The model was also used to predict that an optimal

configuration of the trailing red blood cells is required to drive the white blood cell to

the wall.

Bagchi (2007) developed a two-dimensional immersed boundary model of O(1000)

red blood cells in a channel. Zhang et al. (2007) and Fruend (2007) investigated leuko-

cyte margination in microvessels in the presence of red blood cells using two-dimensional

immersed boundary models. Fruend demonstrated that aggregation of red blood cells

is not a necessary condition for margination to occur, suggesting that a mismatch of cell

size or shape may be primarily responsible. Secomb et al. (2007) used a two-dimensional

finite-element method to study red blood cell motion in microvessels. The red blood

cells were modelled as a set of interconnected viscoelastic elements with incorporated

bending resistance. Cell trajectories and shapes compared favourably to experimental

data obtained in a rat microvessel (Figure 2.11). Lateral migration away from the wall

was observed to occur, caused by the asymmetry in cell shape.
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a) b)

c) d)

e) f)

Figure 2.11: Observations and simulations by Secomb et al. (2007) of red blood
cell trajectories in microvessels. Individual images of the microvessels selected for
observation are shown in a) and b), with arrows indicating which red blood cell was
tracked. The digitised outlines of the vessel wall and the position of each cell at
intervals of 10ms and 20ms respectively are shown in c) and d). The corresponding
simulations of a cell moving in a microvessel with the same shape as the experiments
are shown in e) and f).

Dupin et al. (2007) developed a three-dimensional lattice-Boltzmann method able

to model O(100) red blood cells in a capillary. Doddi & Bagchi (2009) developed a

three-dimensional immersed boundary method able to model O(100) red blood cells

moving in a microvessel. The study yielded a three-layer model of blood flow able to

quantitatively predict the size of the cell-free region caused by the F̊ahræus effect.

2.6 Summary and Hypotheses

It is apparent from the review of the literature that the modelling of cell behaviour

has advanced significantly in the past twenty years with the advent of ever cheaper

and faster computational equipment. There are numerous analytical and numerical

techniques available to investigate cell dynamics. The adhesion models outlined in this

chapter are capable of modelling multiple adhering cells, and are able to capture the

essential characteristics of cells moving across a surface. The models of the bonding

kinetics rely on empirical measurements of adhesion properties. The models of cell

dynamics analysed in this chapter are able to model multiple cells in different types of

geometries.

Current models lack the ability to accurately capture specific morphological changes
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that cells undergo during the adhesion process. These morphological changes, such as

tethering, have been shown to affect the cell’s ability to adhere to the vessel wall. Cells

have also been shown to actively change their internal structure, leading to a large

change in mechanical properties. The amount of deformation of the cell affects the

size of the disturbance created by the cell, and this in turn affects the hydrodynamic

properties relevant for successful adhesion.

Many different methods have been used to model the cell membrane. Some studies

model the cell as area-incompressible, others as purely elastic. Leukocytes are often

modelled as compound, non-Newtonian liquid drops. The amount of cell deformation

can be controlled by varying the extent of membrane area-incompressibility or mem-

brane prestress. The choice of membrane type affects the way the cell deforms, because

the relationship between the flow and the cell deformation is coupled and non-linear.

Characterisations of the effect of membrane choice on cell dynamics exist in the litera-

ture for unbounded flows, but not in a bounded flow. It would therefore be of interest

to determine the effect of cell deformation on the cell dynamics in a bounded flow, and

to quantify how cell deformation affects the cell’s ability to adhere to the surface.

It is apparent that the numerical models reviewed in this chapter have concentrated

mainly on the dynamics of the cell itself. It is also clear that the wall plays an important

role with regard to cell adhesion. Receptors on the cell and ligands present on the vessel

wall both need to be activated for adhesion to occur. The disturbance created by the

presence of a deforming cell in the flow will have an effect on both the shear stress

present on the cell and on the vessel wall. The effect of the presence of a cell on the

wall shear stress is often overlooked in the literature.

Numerous studies exist in the literature addressing the effect of deformation on

the lateral migration, but less emphasis is placed on the slip velocity of the cell. It

is clear that the slip velocity of a cell is important in terms of cell adhesion. It is

advantageous for a cell to be moving slowly relative to bonds on the vessel wall to

enhance the probability of cell adhesion. Analytic derivations and numeric studies of

the slip velocity of a rigid sphere and a liquid drop can be found, but no analogous

investigation of an elastic body exists.

These shortcomings in current models can be used to formulate hypotheses to be

tested in this thesis.
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2.6.1 Hypothesis 1

The models of tethered cells in the literature have focused solely on a solid sphere

connected to an elastic tether (King et al. 2005, Yu & Shao 2007). It is clear however

from the observations of Ramachandran et al. (2004) and Dopheide et al. (2002) that

a cell can undergo significant overall deformation when tethered, and this would play

a significant role on the dynamics of the cell. The tethered cell models developed have

not considered tethering platelets, which are discoidal, and it would be of interest to

determine the effect of cell aspect ratio on the tethered cell dynamics. Hence, the first

hypothesis is that the dynamics of a tethered cell are affected by the aspect ratio and

the internal viscosity of the cell.

2.6.2 Hypothesis 2

There is strong evidence to suggest that cells change their mechanical properties during

the adhesion process. Yap & Kamm (2005) demonstrated that the shear modulus of a

leukocyte changes significantly upon activation, meaning that activated cells undergo-

ing adhesion are more deformable than passive cells. Long membrane extensions called

tethers have been observed with adhering leukocytes and platelets (Schmidtke & Dia-

mond 2000, Dopheide et al. 2002). Ramachandran et al. (2004) showed that tethering

leukocytes form longer and wider tethers as rolling time increases due to weakening of

the cell structure. It is therefore of interest to quantify the effects of cell deformation

on the dynamics of a deformable cell near a wall. Thus, it is predicted that an easily

deformable cell creates hydrodynamic conditions amenable for cell adhesion.

2.6.3 Hypothesis 3

There is evidence to suggest that the presence of another cell improves the cell adhesion

process. King et al. (2001), King & Hammer (2001a,b) and Pappu & Bagchi (2008)

demonstrated that slower, more uniform cell rolling existed when multiple cell adhesion

was considered for both rigid and deformable cells. These studies focused on adhering

cells, not on the hydrodynamic conditions in the lead up to adhesion. It would be of

interest to characterise the hydrodynamic effect of multiple deformable cells moving

in the presence of a plane wall. Therefore the third hypothesis is that the presence of

multiple cells creates hydrodynamic conditions amenable for cell adhesion.

31



2. LITERATURE REVIEW

32



CHAPTER 3

METHODOLOGY

This chapter provides an overview of the computational methods used for the simula-

tions conducted for this thesis. The first section will outline the problem, and discuss

the assumptions made. Following this, the governing equations and boundary condi-

tions for the two-phase flow of a cell suspended above a wall will be presented. The

next section will present a boundary integral formulation of the problem, followed by

sections containing a discussion of the techniques used to discretise the boundary inte-

gral equations in both time and space. The following section defines the metrics used

to quantify the dynamics of the cell. For brevity, the sections on the boundary integral

formulation, the numerical methods and the metrics will present only those relevant to

the three-dimensional model. The corresponding two-dimensional equations, techniques

and metrics are presented in Appendix A. The final section contains the convergence

and validation studies carried out in order to confirm the validity and accuracy of the

methods presented.

3.1 Problem Statement & Assumptions

As a first approximation, a blood cell can be modelled as an elastic capsule containing a

Newtonian fluid of viscosity λµ, suspended in a Newtonian fluid of viscosity µ (Eggleton

& Popel 1998, Pappu et al. 2008, Pozrikidis 2003a). The interior domain is defined

as V , and the exterior domain as Ω (Figure 3.1). The interior and exterior domains are

separated by the cell interface S. The thickness of the cell membrane is assumed to be

negligible, hence the interface can be treated as a two-dimensional elastic sheet. This

implies that all elastic stresses are in the plane of the membrane. The local curvature

radius is assumed to be much larger than the thickness of the membrane, meaning that

bending resistance can be neglected. The membrane is also assumed to be transversely
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Figure 3.1

isotropic, or unchanged by rotations about the unit normal n in its local plane surface.

A major assumption made is that the size of the blood vessel is much greater

than the size of the blood cell. Typical blood vessel sizes range from capillaries of

diameter O(10−6)m to arteries of diameter O(10−2)m. Given that all blood cells are

of size O(10−6)m, this is a reasonable assumption for most types of blood vessels, but

not capillaries. This assumption allows the ambient flow u∞ through a vessel to be

approximated as linear shear flow over a plane wall. This can be written as

u∞ = (ky, 0, 0), (3.1)

where k is the shear rate.

The cell is assumed to be neutrally buoyant, with negligible gravitational effects.

The validity of this assumption can be tested by dividing the characteristic Bond num-

ber by the characteristic capillary number. The Bond number measures the relative

importance of gravitational forces to elastic forces, whereas the capillary number mea-

sures the relative importance of viscous forces to elastic forces. Thus, the division of

the Bond number with the capillary number yields

Bo

Ca
=

g∆ρL2/E

µU/E
=

g∆ρL2

µU
, (3.2)

where g is the gravitational constant, U is the characteristic velocity, ∆ρ is the difference

in density between the fluid and the cell, L is the characteristic length, and µ is the

fluid viscosity. Equation 3.2 yields a dimensionless number measuring the relative

importance of gravitational forces to viscous forces. With g of O(10)kg.m/s2, a density

difference of O(10−4)kg/m3 (Ratner et al. 1996), the characteristic length as the cell

diameter of O(10−6)m, µ of O(10−3)Pa.s, and characteristic velocity of blood in an
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artery of O(10−6)m, Equation 3.2 yields a Bo/Ca of O(10−2). This indicates that the

gravitational effects can be ignored when considering physiological cell dynamics.

Typical biological flows are characterised by extremely high viscous force effects

relative to the influence of inertial forces. This ratio is measured by the Reynolds

number, defined as

Re =
ρUL

µ
(3.3)

where ρ is the density of the fluid, U is the characteristic velocity, L is the characteristic

length and µ is the viscosity. A typical Reynolds number for cell adhesion in a blood

vessel can be calculated, with the characteristic length as the cell diameter of O(10−6)m,

the characteristic velocity of blood in an artery of O(10−2)m/s, density of blood plasma

of O(103)kg/m3, and viscosity of blood plasma of O(10−3)Pa.s (Mody & King 2005).

This leads to a Reynolds number of O(10−2), highlighting that inertial effects can be

considered negligible when considering physiological cell dynamics.

3.1.1 Governing Equations

If inertial effects are considered negligible, then the flow in the exterior and interior of

the cell is governed by the Stokes flow equations (Leal 1992)

µ∇2u = ∇p, ∇ · u = 0, (3.4)

λµ∇2û = ∇p̂, ∇ · û = 0, (3.5)

where u and p are the velocity and pressure fields in the exterior domain Ω, û and p̂

are the velocity and pressure fields in the interior domain V , and λ is the viscosity ratio

of the interior to exterior fluid.

The boundary conditions are such that the velocity is continuous across the inter-

face, and that the normal stress at the interface is balanced by elastic tensions in the

membrane. The first condition gives

u = û, x ∈ S. (3.6)

The second condition can be written as (Pozrikidis 2001b)

∆f = (σ − σ̂) · n = (I − nn) · ∇ · T , (3.7)

where σ is the stress tensor, ∆f is the stress discontinuity across the interface, n is the

unit normal vector to the interface pointing into the exterior fluid, T is the membrane

tension tensor, and I is the identity tensor. The term (I − nn).∇ is the surface

divergence operator.
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3.2 Boundary Integral Equation

The boundary integral equation is formed by seeking solutions to the singularly forced

Stokes flow equations (Pozrikidis 1992)

µ∇2u = ∇p − g δ(x − x0), ∇ · u = 0 (3.8)

where δ is the three-dimensional delta function, x is the observation point, x0 is the

source point, and g is an arbitrary constant vector. By introducing the velocity Green’s

function Gij and the stress Green’s function Tijk, the solution to equation 3.8 can be

written as (Pozrikidis 1992):

ui(x) =
1

8πµ
Gij(x,x0)gj (3.9)

σik(x) =
1

8π
Tijk(x,x0)gj (3.10)

Physically, equation 3.9 and equation 3.10 express the flow field produced by a concen-

trated point force of strength g located at source point x0. The form of the Green’s

function depends upon whether the fluid is bounded or unbounded. For an unbounded

fluid, the Green’s functions can be shown to be (Pozrikidis 1992):

GFS
ij (x,x0) =

δij

r
+

x̂ix̂j

r3
(3.11)

TFS
ijk (x,x0) = −6

x̂ix̂jx̂k

r5
(3.12)

where x̂ = x − x0 and r = |x̂|.
Other Green’s functions have been derived, including those for flow in a semi-infinite

domain bounded by an infinite plane wall. These are included in Appendix B.

Using equation 3.9, equation 3.10 and the Lorentz reciprocal relation the boundary

integral representation for Stokes flow can be derived (Pozrikidis 1992):

uj(x0) = − 1

8πµ

∫

S
fi(x)Gij(x,x0)dS(x)

+
1

8π

∫ PV

S
ui(x)Tijk(x,x0)nk(x)dS(x)

(3.13)

where the traction f is defined as σ · n. The first and second integrals on the RHS

of equation 3.13 are known as the single-layer and double-layer integrals respectively.

Depending on the type of boundary conditions specified, equation 3.13 can be used to

either describe the disturbance velocity caused by a body of any shape that exerts a

nonzero force in a fluid or to describe the hydrodynamic force acting on an arbitrarily
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shaped body. Specifying the boundary distribution of the velocity u reduces equation

3.13 to a Fredholm equation of the first kind for the traction f . Specifying the boundary

distribution of the traction f yields a Fredholm equation of the second kind for the

velocity u.

When considering linear shear flow past a deformable interface, equation 3.13 can

be used to derive the integral (Pozrikidis 1992):

uj(x0) =
2

1 + λ
u∞

j (x0) −
1

4πµ1(1 + λ)

∫

S
∆fi(x)Gij(x,x0)dS(x)

+
1 − λ

4π(1 + λ)

∫ PV

S
ui(x)Tijk(x,x0)nk(x)dS(x)

(3.14)

where µ1 is the external fluid viscosity, µ2 is the internal fluid viscosity, and λ is the

viscosity ratio µ2/µ1.

The type of interface is determined by the specification of the force balance at the

surface, denoted by ∆fi(x) in equation 3.14. The derivation and calculation of the force

balance is discussed in detail in section 3.5.

Non-dimensionalising equation 3.14 with length scale L, velocity scale kL, and stress

scale E/L, leads to

u∗

j(x
∗

0) =
2

1 + λ
u∞∗

j (x∗

0) −
1

4π(1 + λ)Ca

∫

S
∆f∗

i (x∗)G∗

ij(x
∗,x0

∗)dS∗(x∗)

+
1 − λ

4π(1 + λ)

∫ PV

S
u∗

i (x
∗)T ∗

ijk(x,x0
∗)n∗

k(x
∗)dS∗(x∗)

(3.15)

where Ca is the capillary number, and E is the elastic shear modulus of the membrane.

The superscript ∗ denotes a dimensionless quantity. From hereafter non-dimensionality

will apply to all quantities, and the superscript will not be used.

The evolution of the cell interface is governed by the elastic capillary number Ca,

representing the ratio of viscous forces to elastic forces, and the viscosity ratio λ. The

Capillary number Ca can be considered as the dimensionless shear rate, and is defined

as:

Ca =
µkL

E
. (3.16)

3.3 Surface Discretisation

The initial cell interface S is described by a set of NP marker points, and the surface of

the membrane is approximated with an unstructured mesh of NE quadratic triangular

elements, each uniquely defined by three edge nodes and three vertex nodes. The
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Mesh coefficient NE NP

0 20 42
1 80 162
2 320 642
3 1280 2562
4 5120 10242

n 20(4n) 2NE + 2

Table 3.1: Number of points and elements created by subdividing each face of an
icosahedron and projecting radially onto a sphere. NE is the number of elements,
and NP is the number of points.
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Figure 3.2: a) Mapping of a quadratic triangle in three-dimensional space to a two-
dimensional right isosceles triangle. b) Coordinates of points in the ξη plane.

membrane is discretised by subdividing each face of an icosahedron into 4n elements,

and projecting them radially onto a sphere to generate a mesh of NE = 20(4n) elements.

This results in Np = 2NE + 2 points on the surface. The amount of mesh refinement is

controlled by the mesh coefficient n (Table 3.1). The unstructured nature of the mesh

leads to a C0 continuous surface. Each surface element is mapped to a flat isosceles

triangle defined with two parametric coordinates ξ and η, as shown in Figure 3.2. The

six element points x1, x2, x3, x4, x5 and x6 are mapped to the points (0, 0), (1, 0), (0,

1), (α, 0), (γ, 1−γ) and (0, β) respectively in the ξη plane. The parametric coordinates
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ξ and η vary between 0 and 1. The coefficients α, β and γ are calculated using

α =

(

1 +
|x4 − x2|
|x4 − x1|

)

−1

, β =

(

1 +
|x6 − x3|
|x6 − x1|

)

−1

, γ =

(

1 +
|x5 − x2|
|x5 − x3|

)

−1

(3.17)

Any function h(x) can be approximated quadratically over an element with

h(ξ, η) =

6
∑

i=1

hiφi(ξ, η), (3.18)

where hi is the value of h at node i and the nodal shape functions φi are defined as

φ2(ξ, η) =
1

1 − α
ξ

(

ξ − α +
α − γ

1 − γ
η

)

φ3(ξ, η) =
1

1 − β
η

(

η − β +
β − γ − 1

γ
ξ

)

φ4(ξ, η) =
1

α(1 − α)
ξ (1 − ξ − η) (3.19)

φ5(ξ, η) =
1

γ(1 − γ)
ξη

φ6(ξ, η) =
1

β(1 − β)
η(1 − ξ − η)

φ1(ξ, η) = 1 − φ2 − φ3 − φ4 − φ5 − φ6

Equation 3.18 can be used to approximate the position, tangent and normal vectors

on each element according to

x(ξ, η) =

6
∑

i=1

xiφi(ξ, η) (3.20)

∂x

∂ξ
(ξ, η) =

6
∑

i=1

xi
∂φi

∂ξ
(ξ, η) (3.21)

∂x

∂η
(ξ, η) =

6
∑

i=1

xi
∂φi

∂η
(ξ, η) (3.22)

n(ξ, η) =
1

hs

(

∂x

∂ξ
× ∂x

∂η

)

, (3.23)

where hs is the surface metric, defined as

hs =

∣

∣

∣

∣

∂x

∂ξ
× ∂x

∂η

∣

∣

∣

∣

(3.24)

Although the unstructured discretisation presented is less accurate than the struc-

tured methods developed by Lac et al. (2004) and Kessler et al. (2008), a lower-order

method has been chosen in an effort to capture large singular deformations suspected

to occur when the deformable body is very close to the wall.
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3.4 Discretisation of Boundary Integral Equation

Discretising equation 3.15 yields:

uj(x0) =
2

1 + λ
u∞

j (x0) −
1

4π(1 + λ)Ca

NE
∑

m=1

∫

Em

∆fi(x)Gij(x,x0)dS(x)

+
1 − λ

4π(1 + λ)

NE
∑

m=1

∫ PV

Em

ui(x)Tijk(x,x0)nk(x)dS(x)

(3.25)

Equation 3.25 can be solved to yield the velocity of each marker point, once the

traction discontinuity ∆f and the integrals over each element have been computed.

The definition and calculation of the traction discontinuity follow in section 3.5. The

singularities that occur when x and x0 are equal need to be dealt with in both the single

and double-layer integrals. The methods for dealing with both regular and singular

integrals are outlined in section 3.6.

3.5 Elastic Stresses

3.5.1 Definition

To formulate the relationship between the membrane tension tensor T and the defor-

mation of the membrane described in equation 3.7, Barthés-Biesel & Rallison (1981)

introduced the surface deformation gradient tensor A, defined as

A = (I − nn) · ∂x

∂X
· (I − NN), (3.26)

where X is the position of a point on the membrane in the reference state, x is the

corresponding position in the deformed state, and N is the unit normal vector to the

membrane in the reference state (Figure 3.3). Any deformation of a body can be

decomposed into a rigid body rotation and a stretching of the body

A = R ·Λ, (3.27)

where R is a rotation tensor and Λ is a stretch tensor.

The left Cauchy-Green strain tensor B follows as (Pozrikidis 2001b)

B = Λ = A · AT . (3.28)

The eigenvalues of B are λ2
1,λ

2
2 and 0, where λi are the stretch ratios in the principal

directions of the deformation. Invariants of the Cauchy-Green tensor can be used to
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η
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A

Figure 3.3: The surface deformation gradient tensor A maps the reference state of
the membrane to its deformed state.

completely characterise the membrane deformation. These are defined as

I1 = λ2
1 + λ2

2 − 2 and I2 = λ2
1λ

2
2 − 1 (3.29)

If the membrane elasticity is assumed to be both local and instantaneous, then the

mechanical response of the membrane can be characterised by a strain energy function

w = f(λ1, λ2, λ3). A further assumption is made that the stretching along n, λ3, is

determined locally by the other stretch ratios and thus w is a function of λ1 and λ2

only.

This allows the membrane tension tensor T to be related to the membrane defor-

mation by

T =
2

λ1λ2

[

∂w

∂I1
B + λ2

1λ
2
2

∂w

∂I2
(I − nn)

]

. (3.30)

Equation 3.30 describes arbitrary membrane deformations for a given strain energy

function.

The strain energy function w can be chosen to represent different classes of hyper-

elastic materials, including an elastic neo-Hookean membrane

w =
G

2

(

λ2
1 + λ2

2 +
1

λ2
1λ

2
2

)

, (3.31)

or a biological-like membrane, known as the Skalak law (Skalak et al. 1973)

w =
G

4

(

(λ2
1 − 1)2 + (λ2

2 − 1)2 + C(λ2
1λ

2
2 − 1)2

)

, (3.32)
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where G is the surface shear elastic modulus, and CG is the area dilation elastic mod-

ulus. The constant C gives a measure of the amount of area dilation allowed by the

cell. When C ≫ 1 the Skalak law models an area incompressible membrane.

3.5.2 Calculation

To calculate the membrane tension tensor T at each point on the cell surface, the

surface deformation gradient tensor A is required. The surface deformation gradient

tensor A operates on the two surface tangent vectors in the reference state to give the

two tangent vectors in the deformed state

A.
∂X

∂ξ
=

∂x

∂ξ
, (3.33)

A.
∂X

∂η
=

∂x

∂η
. (3.34)

A also acts on the reference normal vector in the following manner

A · N = 0. (3.35)

Eq. (3.33), (3.34) and (3.35) allow the surface deformation gradient tensor A at each

point on the membrane to be calculated. However, because the mesh is C0 continuous,

A is multi-valued at each marker point. To circumvent this difficulty, the multiple

values of A are averaged at each node, weighted by the area of the elements sharing

the point. The normal vectors at each point are approximated in the same fashion.

Once the surface deformation gradient tensor and the normal vectors are known at

each point, the membrane tension tensor follows from Eq. (3.28) and (3.30)

With the membrane tension tensor now known at each node it is possible to de-

termine the corresponding values of the traction discontinuity ∆fi from equation 3.7.

However, calculating the surface divergence of the tension tensor on an unstructured

grid introduces and amplifies errors, causing the simulation to become unstable (Ra-

manujan & Pozrikidis 1998). To eliminate the numerical error associated with numerical

differentiation on an unstructured grid, the single-layer integral can be approximated

with (Ramanujan & Pozrikidis 1998)

∫

Em

∆fiGij(x,x0) dS(x) ≈ 〈∆fi〉m
∫

Em

Gij(x,x0) dS(x), (3.36)

where 〈∆fi〉m is the average surface traction discontinuity over the nth element. Equa-

tion 3.36 is in effect a three-dimensional implementation of the trapezoidal rule. The
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average traction on an element with area Am enclosed by contour Cm can be calculated

by applying the divergence theorem to equation 3.7 to yield (Ramanujan & Pozrikidis

1998)

〈∆fi〉m = − 1

Am

∮

Cm

τibi dl, (3.37)

where b = t×n is the unit vector pointing outward from the surface, perpendicular to

the unit normal vector t to Am and the unit tangent vector b to Cm. The stress field

along the contour of each element is determined by linear interpolation from the nodal

values.

With this approximation equation 3.25 becomes

uj(x0) =
2

1 + λ
u∞

j (x0) −
1

4πµ1(1 + λ)

NE
∑

n=1

〈∆fi〉m
∫

Em

Gij(x,x0) dS(x)

+
1 − λ

4π(1 + λ)

NE
∑

m=1

∫ PV

Em

ui(x)Tijk(x,x0)nk(x)dS(x)

(3.38)

3.6 Integration

3.6.1 Non-Singular Integrals

When the source point x0 does not lie on the element Em, the integrals are non-singular

and can be calculated using an NQ-point triangular domain Gaussian integration for-

mula (Pozrikidis 2002)

∫

Em

f(x) dS(x) =
1

2

NQ
∑

m=1

f [x(ξm, ηm)]hs(ξm, ηm)wm, (3.39)

where f(x) is the function being integrated, NQ is the number of quadrature base

points, (ξk, ηk) are the coordinates of the kth base point in parametric space and wk is

the integration weight corresponding to the kth base point.

3.6.2 Singular Integrals

Single-Layer Integral

The integral over an element can be written as

∫

Em

Gij(x,x0) dS(x) =

∫ 1

0

∫ 1−ξ

0
Gij [x(ξ, η),x0]hs(ξ, η) dη dξ (3.40)

When the source point x0 lies on the element Em, the integrand Gij exhibits a sin-

gularity of O(1/r). The singularity prevents the accurate use of Gaussian quadrature,
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but can be dealt with by using a polar coordinate system with the origin located at the

singular point (Figure 3.4). The transformation is given by

η − η0 = r′ cos θ, ξ − ξ0 = r′ sin θ, (3.41)

where (ξ0,η0) is the position of the singular point. If the singular point is located at x1

then equation 3.40 can be written as

∫ 1

0

∫ 1−ξ

0
Gij [x(ξ, η),x0]hs(ξ, η) dη dξ

=

∫ π/2

0

∫ 1

cos θ+sin θ

0
Gij [x(ξ(r′, θ), η(r′, θ)),x0]hs(ξ(r

′, θ), η(r′, θ))r′ dr′ dθ,

(3.42)

where r′ is the Jacobian of the transformation. The presence of r′ in the integral

means that the integral is now non-singular and can be integrated using Gauss-Legendre

quadrature in both polar coordinates. If the singular point is located at x2 or x3, then

equation 3.42 can be used if the nodes are temporarily relabelled to ensure that the

singular point is located at (0, 0) in the ξη plane. If the singular point is located at x5,

equation 3.40 can be written as

∫ 1

0

∫ 1−ξ

0
Gij [x(ξ, η),x0]hs(ξ, η) dη dξ =

∫ π+tan−1( 1−γ
γ

)

3π/4

∫
−γ

cos θ1

0
Gij [x(ξ(r′1, θ1), η(r′1, θ1)),x0]hs(ξ(r

′

1, θ1), η(r′1, θ1))r
′

1 dr′1 dθ1

+

∫ 7π/4

π+tan−1( 1−γ
γ

)

∫
γ−1

sin θ2

0
Gij [x(ξ(r′2, θ2), η(r′2, θ2)),x0]hs(ξ(r

′

2, θ2), η(r′2, θ2))r
′

2 dr′2 dθ2,

(3.43)

and evaluated with Gauss-Legendre quadrature. If the singular point is located at one

of the other two edge nodes, x4 or x6, the points can be temporarily relabelled to enable

equation 3.43 to be used.

Double-Layer Integral

The O(1/r) singularity of the double-layer integral can be removed by rewriting it in

the form (Pozrikidis 2002)

∫ PV

Em

ui(x)Tijk(x,x0)nk(x)dS(x) =

∫

Em

[ui(x) − ui(x0)]Tijk(x,x0)nk(x)dS(x) + 4πuj(x0).

(3.44)

The integral on the RHS of equation 3.44 can then be computed using Gaussian quadra-

ture.
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Figure 3.4: Transformation to polar coordinates for accurate integration of singular
integrals

3.7 Cell Prestressing

At shear rates below Ca ∼ 0.3, a cell with a purely elastic membrane undergoes a

buckling instability (Lac et al. 2004). The buckling instability is caused by the presence

of compressive tensions in the membrane, and is only present due to the neglect of

bending resistance. The implementation of bending resistance into an unstructured

boundary-element implementation is extremely difficult, and places severe constraints

on the size of the time step. A more amenable method of stabilising the membrane at

low shear rates is to prestress the membrane (Lac & Barthés-Biesel 2005). The amount

of membrane prestress α is defined as

α =
a

a0
− 1, (3.45)

where a is the radius of the shape of the cell at t = 0, and a0 is the radius of the

reference shape of the cell.

3.8 Matrix Inversion

If the viscosity ratio is not equal to one, the velocities of the marker points cannot be

found explicitly. As a consequence a linear set of 3NP equations need to be solved.

The LAPACK routine dgesv can be used to solve the linear set of equations using LU

decomposition to yield the velocities of the marker points.

3.9 Parallelisation

The computation of equation 3.25 is very amenable to parallelisation, especially with

a viscosity ratio of one. MPI functions can be used to implement code parallelisation.
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Figure 3.5: System time per simulation time step as a function of number of processors
used Ncpu for a cell with 1280 elements. Also shown is the line of best fit for a function
that scales inversely with the number of processors used.

At each time step, the master processor calculates the tension tensor at each node,

and following this the average traction discontinuity on each element. The node list is

then divided evenly amongst the n processors, and each processor then calculates the

velocity of each of the assigned nodes. The velocities are then collected by the master

processor, and the solution is integrated forward in time.

The system time for one simulation time step is shown in Figure 3.5. Ideally, the

system time should scale inversely with the number of processors used. It is apparent

however that the improvement in system time decreases significantly as the number of

processors used changes from eight to sixteen. As a result, all three-dimensional results

presented in this thesis are from simulations run on eight processors.

3.10 Time-stepping

Once the velocities of the particle have been found via the solution of the boundary-

integral equations, a time-stepping routine needs to be employed to determine the new

position and shape of the cell membrane. The differential equation to be solved to

determine the new position of the membrane is given by

dxi

dt
= ui (3.46)

To solve equation 3.46, the Runge-Kutta-Fehlberg (RKF45) method is used (Math-
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ews & Fink 1999). In the RKF45 method, Equation 3.46 is solved using a 4th order

Runge-Kutta method. Based on the local truncation error, the time step for the next

integration is adjusted to ensure optimal time step size. An approximation of the local

truncation error is obtained by comparing the solution given by the 4th order Runge-

Kutta method to that given by a 5th order Runge-Kutta method. Each time step

requires six velocity evaluations, given by

k1 =u
(

t(n), x(n)
)

∆t,

k2 =u

(

t(n) +
1

4
∆t, x(n) +

1

4
k1

)

∆t,

k3 =u

(

t(n) +
3

8
∆t, x(n) +

3

32
k1 +

9

32
k2

)

∆t,

k4 =u

(

t(n) +
12

13
∆t, x(n) +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3

)

∆t,

k5 =u

(

t(n) + ∆t, x(n) +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)

∆t,

k6 =u

(

t(n) +
1

2
∆t, x(n) − 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)

∆t.

(3.47)

The solution to equation 3.46 can then be obtained using a 4th order Runge-Kutta

method

x(n+1) = x(n) +
25

216
k1 +

1408

2565
k3 +

2197

4101
k4 −

1

5
k5. (3.48)

Another solution can be obtained using a 5th order Runge-Kutta method

x̂(n+1) = x(n) +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6, (3.49)

in order to obtain an estimate of the local truncation error.

The time step size ∆t can then be controlled using the quantity

s =

(

1
2ǫ

∣

∣x̂(n+1) − x(n+1)
∣

∣

)
1

4

(3.50)

where ǫ is the specified error control tolerance on the time step size, and the denominator

is the local truncation error estimate. If s is greater than 1.5, then the time step is

doubled. If s is less than 0.75, the time step is halved. The error control tolerance used

in all simulations is ǫ = 10−10.
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3.11 Cell Metric Definitions

3.11.1 Taylor Deformation Parameter

A common measure of deformation used in the literature is the Taylor deformation

parameter Dij , which is defined as

Dij =
|li − lj |
li + lj

, (3.51)

where li denotes the semi-axis length in the ith direction of an ellipsoid with the same

inertia tensor as the cell. The inertia tensor of the cell can be calculated from

I =

∫

V
ρ





y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + z2



 dV

= ρ

∫

S





1
3 (y3ny + z3nz) −1

4xy(xnx + yny) −1
4xz(xnx + znz)

−1
4xy(xnx + yny)

1
3(x3nx + z3nz) −1

4yz(yny + znz)
−1

4xz(xnx + znz) −1
4yz(yny + znz)

1
3(x3nx + y3ny)



 dS, (3.52)

where ni is the ith component of the unit normal vector on the surface of the cell, and

ρ is the density. The volume integral in equation 3.52 has been converted to a surface

integral using the divergence theorem. The inertia tensor of an ellipsoid is given by




1
5ρV (l22 + l23) 0 0

0 1
5ρV (l21 + l23) 0

0 0 1
5ρV (l21 + l22)



 . (3.53)

The semi-axis lengths l1, l2, and l3 can be calculated by finding the eigenvalues of the

cell inertia tensor and equating them to the eigenvalues of the ellipsoid inertia tensor.

The Taylor deformation parameter can then be calculated using equation 3.51.

3.11.2 Cell Velocity

The centre of the cell xc can be tracked at each time step using the integral equation

xc
i =

3

4π

∫

V
xi dV =

3

8π

∫

S
x2

i ni dS, (3.54)

where the volume integral has been converted to a surface integral using the divergence

theorem. The velocity of the cell ẋc can then be calculated by fitting a cubic spline to

xc = f(t) and taking the derivative with respect to time.

The slip velocity of the cell uslip is defined as the difference between the velocity of

the undisturbed fluid and the velocity of the cell at the cell centroid

uslip = kyc − ẋc. (3.55)
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Projected Area

To calculate the projected area of the cell, the integral equation

Ai =

∫

S
x · êi dS (3.56)

can be used, where Ai is the projected area of the surface on the plane defined by the

unit normal vector êi.

3.11.3 Shear Stress

The traction discontinuity ∆f is defined as the stress vector parallel to the unit normal

vector of the cell surface equation 3.7. Thus, the magnitude of this vector gives the

magnitude of the principal shear stress on the surface of the cell

σSS = |∆f | . (3.57)

When the cell is prestressed, the shear stress of the cell is finite in its initial configura-

tion. When this is the case, the increase in shear stress is used, defined as

∆σSS(t) = σSS(t) − σSS(t = 0). (3.58)

To calculate the shear stress on the surface of the wall, the velocity of the flow at the

vertices of a quadrilateral mesh located in the region above the wall can be calculated

using (Pozrikidis 1992)

uj(x0) = u∞

j (x0) −
1

8πCa

∫

S
∆fi(x)Gij(x,x0)dS(x)

+
1 − λ

8π

∫ PV

S
ui(x)Tijk(x,x0)nk(x)dS(x).

(3.59)

The velocity gradient tensor
∂uj

∂xi
is then calculated using second-order central differences

in the interior of the mesh, and first-order one-sided differences on the boundaries. On

the wall, the velocity gradient tensor takes the form





0 0 0
∂u
∂y 0 ∂w

∂y

0 0 0



 , (3.60)

due to no-slip and continuity constraints.

With the velocity gradient tensor defined at the wall, the wall stress tensor can be

calculated with

σij =
∂ui

∂xj
+

∂uj

∂xi
, (3.61)

49



3. METHODOLOGY

yielding






0 ∂u
∂y 0

∂u
∂y 0 ∂w

∂y

0 ∂w
∂y 0






. (3.62)

Hence, the principal wall shear stress can be calculated with

σSS =

√

(

∂u

∂y

)2

+

(

∂w

∂y

)2

. (3.63)

3.12 Convergence and Validation

3.12.1 Mesh Resolution

Two-Dimensional Model

To ensure that the results gained were mesh-independent, a grid resolution study was

undertaken. The force on the tether of a cell with aspect ratio a/b = 1 at a shear rate

of Ca = 0.25 and a viscosity ratio of λ = 1 is shown in Figure 3.6 over a range of mesh

sizes. As the mesh resolution increases, the force on the tether decreases monotonically.

The order of accuracy of the method for this case can be estimated as O(N−1.45
E ). The

difference over the range of mesh sizes considered is 3.4%. Increasing the mesh size

from 256 elements to 320 elements changes the value by less than 0.5%, suggesting

that convergence has been reached. Figure 3.6 also shows the force on the tether of

a cell with aspect ratio a/b = 0.25 at a shear rate of Ca = 0.25 and a viscosity ratio

of λ = 10. The order of accuracy of the method for this case can be estimated as

O(N−2.45
E ), and the solution difference over the range of mesh sizes is 0.5%. Hence, in

all two-dimensional simulations, the mesh resolution is set at 256 elements.

The variation of the force on the tether as the number of integration quadrature

points is increased is shown in Table 3.2. Differences of less than 0.1% can be observed,

and the number of Gauss-Legendre points is set at NGL = 6 for all two-dimensional

simulations.

Three-Dimensional Model

Figure 3.7 shows the change with mesh size of the maximum deformation parameter

DMAX
12 for a cell at initial wall height h/a = 1.2 with shear rate Ca = 0.90 and area

dilation parameter C = 2.5. The difference over the range of mesh resolutions is ∼ 1.6%,

suggesting convergence has been reached. The order of accuracy of the method can be
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Figure 3.6: Effect of mesh size NE on the maximum force acting on the tether for a
two-dimensional cell with a) aspect ratio a/b = 1, shear rate Ca = 0.25 and viscosity
ratio λ = 1, and b) a) aspect ratio a/b = 0.25, shear rate Ca = 0.25 and viscosity
ratio λ = 10. Also shown are the lines of best fit of the form Fmax = F̂max +C(NE)α,
where F̂max is the mesh-independent solution, C is a constant, and α is an estimate
of the method’s order of accuracy.

NGL FMAX

5 3.2525
6 3.2469
8 3.2474

12 3.2475

Table 3.2: Effect of number of Gaussian-Legendre quadrature points NGL on the
maximum force acting on the tether for a two-dimensional cell with aspect ratio
a/b = 1, shear rate Ca = 0.25 and viscosity ratio λ = 1

estimated as O(N−0.75
E ). For all three-dimensional simulations, a mesh size of 1280

elements is used.

The variation of the equilibrium deformation parameter D∞

12 for a cell in unbounded

shear flow at a shear rate Ca = 1.80 and membrane prestress α = 0.025 with increasing

integration quadrature points is shown in Table 3.3. A difference of less than 0.2% can

be seen over the range of quadrature points chosen. The number of quadrature points

is set at NQ = 7 for all three-dimensional simulations.

NQ D∞

12

6 0.5378
7 0.5380
9 0.5385

13 0.5387

Table 3.3: Effect of number of Gaussian quadrature points NQ on the equilibrium
Taylor deformation parameter D∞

12 for a three-dimensional cell in unbounded shear
flow with shear rate Ca = 1.80 and membrane prestress α = 0.025.
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Figure 3.7: Effect of mesh size NE on the maximum Taylor deformation parameter
DMAX

12 for a three-dimensional cell at initial wall height h/a = 1.2 with shear rate
Ca = 0.90 and area dilation parameter C = 2.5. Also shown is the line of best fit of
the form Dmax

12 = D̂max
12 + C(NE)α, where D̂max

12 is the mesh-independent solution, C
is a constant, and α is an estimate of the method’s order of accuracy.

3.12.2 Validation

Two-Dimensional Model

Figure 3.8 shows a comparison of data from the two-dimensional model with the nu-

merical data of Breyiannis & Pozrikidis (2000). Excellent agreement can be seen over

the range of shear rates tested. The difference between the two data sets is below 0.5%

for all cases. Accuracy of the method could also be checked by tracking the area of

the cell over the length of the simulations. Changes of less than 0.5% were evident in

most cases. At a viscosity ratio of λ = 10, the change in area was less than 1.5%. At

higher viscosity ratios the change in area increased significantly, restricting the range

of viscosity ratios studied.

Three-Dimensional Model

To validate the three-dimensional simulation, a comparison was made with the numer-

ical data of Lac et al. (2004), who used a boundary-element method with a structured

mesh discretisation to investigate the effect of shear rate on a capsule in unbounded

shear flow (Figure 3.9). The maximum difference between the two data sets was 1.2%,

at a shear rate of Ca = 0.75. The difference between the two data sets can be explained
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Figure 3.8: Comparison of simulation data at different shear rates with the numerical
data of Breyiannis & Pozrikidis (2000)

with an observation by Lac et al. (2004), who noted that the values obtained with their

procedure yields deformation parameters ∼ 1.3% higher than the unstructured mesh

discretisation scheme used by Ramanujan & Pozrikidis (1998).

To ensure the accuracy of the simulation when modelling Skalak capsules under

prestress, a comparison was made with the results of Lac & Barthés-Biesel (2005),

for a Skalak capsule prestressed at 2.5% in unbounded shear flow at a shear rate of

Ca = 1.80. The measurements of Lac & Barthés-Biesel (2005) gives an equilibrium

deformation parameter D∞

12 = 0.547. The results of the simulation gives a value of

D∞

12 = 0.538, a difference of 1.6%. A difference of this magnitude can also be explained

by the different discretisation schemes used. For all simulations considered, the volume

of the capsule changed by less than 0.3%.

It can therefore be concluded that the numerical scheme appears to be implemented

correctly, and gives physically meaningful results.
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Figure 3.9: Comparison of simulation data at different shear rates with the numerical
data of Lac et al. (2004)

2D cell Single 3D cell Two 3D cells

No. of points 256 2562 5124
No. of CPUs 1 8 16

Required Memory 34MB 130MB 550MB
No. of time steps 10, 000 1, 500 − 10, 000 3, 000

Time per time step 6.9s 12.9s 26.3s

Table 3.4: Computational data for a two-dimensional simulation with one cell, a
three-dimensional simulation with one cell, and a three-dimensional simulation with
two cells. The simulations were run on 3.0Ghz Intel processors.
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CHAPTER 4

TETHERED CELL DYNAMICS

The presence of long, thin membrane tethers extruded from the surface of both leuko-

cytes and platelets undergoing adhesion has been observed in experiments. At a low

shear rate of 200s−1 the leukocyte membrane tether consists of a single bond, and very

little overall cell deformation is observed. However, at a higher shear rate of 800s−1,

membrane tethers consisting of multiple bonds have been observed to form, with length

7−12µm (0.6−1 cell diameters), and width ∼ 2µm (0.17 cell diameters) (Ramachandran

et al. 2004). Schmidtke & Diamond (2000) observed tethers of mean length 6µm (0.5

cell diameters) over a shear rate range 100− 250s−1 with a growth rate of 6− 40µm/s.

Significant overall cell deformation can be observed when the leukocyte tether consists

of multiple bonds. Dopheide et al. (2002) observed tether formation in platelets, and

observed that the mean tether length ranged from 3− 16µm (1− 5 cell diameters) over

a shear rate range of 150s−1 to 10, 000s−1.

Two regimes were noted during tether formation by Evans et al. (2005) and Heinrich

et al. (2005), who formed leukocyte tethers using a bio-membrane force probe. At first,

the tether was extruded with a linear elastic extension of the cell membrane. After this

elastic behaviour, a viscous membrane-pulling regime was observed, attributed to the

dissociation of the bond from the cytoskeleton. The resistive force of the tether was

found to depend on the pulling speed in this regime. The authors postulated that the

force on the tether exponentially relaxes to a speed-dependent plateau force.

A model of a cell tether was developed by King et al. (2005), who used a boundary

element method to model a rigid spherical body connected to a wall with an elastic

tether. The initial extraction of the tether was modelled using a linearly elastic spring,

and the viscoelastic effect of cytoskeletal dissociation was captured using a phenomeno-

logical model in which the force on the tether was proportional to the pulling speed.
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a
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C

n

u∞ = (ky, 0)

A,µ Ω, λµ

Figure 4.1: Schematic diagram of two-dimensional cell model above a plane wall in
linear shear flow. The area A of the cell is kept constant for all cell shapes, and the
length scale of the problem is L =

√
ab.

The transition from spring to viscoelastic model was controlled with a stochastic dis-

association model. The model was able to capture tether lengths of ∼ 1.5µm, at a

dimensionless shear rate of Ca ∼ 10−3, but neglected overall cell deformation and the

effect of cytoplasmic viscosity. A similar model was developed by Yu & Shao (2007) to

examine the effect of simultaneous tether extraction from both the cell surface and the

vessel wall, demonstrating that deformation of the vessel wall contributes to the length

of the tether.

The present study aims to provide some understanding of the effects of membrane

elasticity, internal cell viscosity and cell aspect ratio on the deformation and forces

experienced by a cell tethered to a surface. Hence, the hypothesis to be tested in this

chapter is that the dynamics of a tethered cell are affected by the aspect ratio and the

internal viscosity of the cell. The stochastic nature of cell adhesion and tether formation

is not investigated in this study. The effect of cell deformation on the force, length,

deformation and growth rate of a tethered cell will be examined by assuming that a

stable tether has been formed at time t∗ = t0.

To investigate the effect of cell shape, the deformation of a cell is considered for an

initial circular cell, a/b = 1, and two initially elliptic cells, a/b = 0.25, and a/b = 0.5.

The aspect ratio a/b is defined in Figure 4.1. To determine the effect of internal cell

viscosity, a viscosity ratio range of 1 ≤ λ ≤ 10 has been chosen. The viscosity ratio

of a leukocyte is of the order of 105, which is too high to model accurately. However,

a trend as λ increases may be able to be discerned, allowing conclusions to be drawn

on cells at higher viscosity ratios. The shear rate range chosen is 0.01 ≤ Ca ≤ 0.25.

Bending resistance is neglected, and the internal area of each cell is kept constant over
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the range of aspect ratios, giving a length scale of L =
√

ab. The model used to test the

hypothesis in this chapter only captures some of the physics involved with physiological

tethered cells, but

4.1 Solution Procedure

To simulate a tether, the node closest to the wall is fixed in position. It was found

that imposing shear flow at t∗ = 0 onto the reference cell with one node fixed was too

unstable to generate equilibrium solutions for some of the parameter space examined.

In the initial stages of deformation a sawtooth-like instability was observed in the

velocities of the marker points immediately upstream of the tether point. The size of the

instability increased when a finer mesh was used. The constraint of zero velocity applied

to the tether point means that marker points immediately upstream move towards the

tether, placing this region of the membrane under compression. The presence of the

instability may be explained by the tendency of elastic membranes to exhibit buckling

under compression, which causes the oscillations of quantities such as curvature and

velocity (Lac et al. 2007).

To overcome this problem, the cell was freely suspended at y = 0.005 above the

wall and allowed to deform to its maximum extent, without fixing the lowest node of

the cell. The lowest point of the resulting cell contour was then fixed in position at

(x/L, y/L) = (0, 0.005), to represent a tether. Some initial shapes for cells with aspect

ratios a/b = 0.25, and a/b = 1 over a range of shear rates are shown in Figure 4.2.

It is reasonable to assume that the relaxation time for an elastic capsule will scale

as some function of the viscosity ratio λ. For a liquid drop at a shear rate Ca ≪ 1,

the characteristic time-scale for relaxation scales with the viscosity ratio function (Leal

2007)

f(λ) =
(2λ + 3)(19λ + 16)

40(λ + 1)
. (4.1)

For viscosity ratios λ ≫ 1, this function reduces to f(λ) = λ. As a consequence the

dimensionless time has been rescaled by λ throughout this study.

4.2 Cell Deformation

The evolution of the cell contour shown in Figure 4.3 is for a cell of aspect ratio a/b = 1

and viscosity ratio λ = 1, for shear rates Ca = 0.01 and 0.25. It can be seen that the

57



4. TETHERED CELL DYNAMICS

 0

 1

 2

 3

 4

-1  0  1  2  3  4  5  6  7

Ca=0.01
Ca=0.05
Ca=0.10
Ca=0.15
Ca=0.20
Ca=0.25

Reference cell

x/L

y
/L

 0

 1

 2

-1  0  1  2  3  4  5  6  7

Ca=0.01
Ca=0.05
Ca=0.10
Ca=0.15
Ca=0.20
Ca=0.25

Reference cell

x/L

y
/L

a)

b)

Figure 4.2: Initial cell contours over a range of shear rates for a cell with viscosity
ratio λ = 1 and aspect ratio a) a/b = 1, and b) a/b = 0.25. Flow is from left to right.

cell pivots around the tether point and moves closer to the wall as time evolves. This

suggests that, if the tether does not break, contact with the wall will occur. It is also

apparent that at a high shear rate of Ca = 0.25 the cell is initially highly deformed,

but relaxes as the cell moves closer to the wall.

Figure 4.4 shows a progression of steady-state contours for cells of aspect ratios

a/b = 0.25 and a/b = 1, and a viscosity ratio λ = 1, for 0.01 ≤ Ca ≤ 0.25. It can be

seen that the cell is drawn out into a flatter, thinner shape along the wall as the shear

rate increases. The elliptic cell is drawn out further along the wall due to its larger

initial contour length. It is also apparent that the elliptic cells sit up higher above the

wall than the circular cells.

A comparison of cell contours at different viscosity ratios, with aspect ratios a/b =

0.25 and a/b = 1 at the lowest shear rate of Ca = 0.01, and time k(t − t0)/λ = 10,

is shown in Figure 4.5. It is clear that the choice of scaling function f(λ) = λ is

appropriate at low shear rates, as the circular cell contours over the range of viscosity

ratios studied are almost identical. For the elliptic cell some variation can be observed,

with the tether becoming thinner as the viscosity ratio increases. Again, it is very clear
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Figure 4.3: Cell contours at different times for a cell with aspect ratio a/b = 1 and
viscosity ratio λ = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25. Flow is from
left to right.

that the elliptic cells sit much higher above the wall than the circular cells.

Figure 4.6 depicts the contours of cells with aspect ratios a/b = 0.25 and a/b = 1 at

the highest shear rate of Ca = 0.25, and time k(t − t0)/λ = 200. Significant variation

in cell contour with viscosity ratio can be observed, with a thinner tether forming as

the viscosity ratio increases. The cell length in the flow direction also increases with

viscosity ratio. As the viscosity ratio increases the cell contours appear to be converging

to a λ-independent shape, indicating that the choice of f(λ) is also appropriate at high

shear rates and high viscosity ratios. The elliptic cells form much thinner tethers, and

again can be observed to sit higher above the wall than the circular cells.

The evolution of the normalised cell contour length A/A0 over a range of shear

rates is shown in Figure 4.7 for a cell with aspect ratio a/b = 1 at viscosity ratios of

λ = 1 and 10. The normalised cell contour length, defined as the ratio of the contour

length A to the reference cell contour length A0, provides a measure of the overall

deformation of the cell. At the lowest shear rate of Ca = 0.01, the evolution of the

cell deformation reaches a steady-state much quicker than the cells at the highest shear

rate of Ca = 0.25. This is because, at low shear rates Ca, the cell relaxation time-scale
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Figure 4.4: Equilibrium cell contours over a range of shear rates for a cell with
viscosity ratio λ = 1 and aspect ratio a) a/b = 1, and b) a/b = 0.25. The cell
is determined to be in an equilibrium state when the L2-norm of the difference in
position between successive time steps falls below 10−7.

is much smaller than the flow time-scale, and the cell shape adjusts to the flow very

quickly. It is clear that for the highest shear rate of Ca = 0.25, the viscous response of

the cell is slower to respond to the initial elastic deformation caused by the tethering of

the cell. Immediately after tether formation the cell contour length increases rapidly to

a maximum value, an effect that becomes more pronounced as the shear rate increases.

Once the maximum value has been reached, the cell contour length decreases slowly

thereafter. The behaviour of the evolution of the deformation of the cell is qualitatively

similar to that of the model developed by King et al. (2005).

The effect of varying the viscosity ratio can be observed in Figure 4.8, which shows

the evolution of the normalised contour length for a cell of aspect ratio a/b = 1, and

varying viscosity ratio. At the lowest shear rate of Ca = 0.01, varying the viscosity

ratio has very little effect on the magnitude of the cell deformation. However, because

the relaxation time-scale for a capsule appears to scale inversely with λ, the cell deforms

at a slower rate as the viscosity ratio increases. At the highest shear rate of Ca = 0.25,
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Figure 4.5: Cell contours at shear rate Ca = 0.01, and time k(t − t0)/λ = 10 for a)
aspect ratio a/b = 1, and b) aspect ratio a/b = 0.25. Flow is from left to right.
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Figure 4.7: Evolution of normalised cell contour length A/A0 over a range of shear
rates for a cell with aspect ratio a/b = 1 and viscosity ratio a) λ = 1, and b) λ = 10.
A is the cell contour length at time k(t − t0)/λ, and A0 is the contour length of the
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Figure 4.8: Evolution of normalised cell contour length A/A0 over a range of viscosity
ratios for a cell of aspect ratio a/b = 1 at a shear rate of a) Ca = 0.01, and b)
Ca = 0.25. A is the cell contour length at time k(t − t0)/λ, and A0 is the contour
length of the reference cell.

the cell deformation increases with increasing viscosity ratio.

Figure 4.9 shows the effect of aspect ratio on the normalised cell contour length. At

the lowest shear rate of Ca = 0.01, the deformation of the cell increases with increasing

aspect ratio. As the aspect ratio decreases, the time to maximum cell deformation

shortens. At the highest shear rate Ca = 0.25, the maximum deformation of the cell

increases with decreasing aspect ratio. At longer times however, the deformation of the

cells with lower aspect ratios is less than the deformation of cells with higher aspect

ratios.

Figure 4.10 shows the maximum normalised cell contour length as a function of shear

rate for cells with aspect ratios a/b = 0.25, and a/b = 1. The overall cell deformation
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Figure 4.9: Evolution of normalised cell contour length A/A0 over a range of aspect
ratios for a cell of viscosity ratio λ = 1 at a shear rate of a) Ca = 0.01, and b)
Ca = 0.25. A is the cell contour length at time k(t − t0)/λ, and A0 is the contour
length of the reference cell.
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Figure 4.10: Maximum normalised cell contour length Amax/A0 as a function of
shear rate for a cell with aspect ratio a) a/b = 0.25, and b) a/b = 1. A is the cell
contour length at time k(t− t0)/λ, and A0 is the contour length of the reference cell.

increases with the shear rate, but the rate of increase lessens as the shear rate increases.

The rate of increase of the elliptic cell deformation is greater than that of the circular

cell. It is clear that the effect of varying the viscosity ratio only becomes pronounced

at shear rates Ca & 0.1.

4.3 Tether Length

Also of interest is the effect of varying the shear rate, cell shape and viscosity ratio on

the length of the cell tether. The length of the cell in the flow direction has been chosen

to represent the tether length, as it can be easily measured as

Lcell = xmax − xmin (4.2)
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Figure 4.11: Evolution of cell length Lcell/L over a range of shear rates for a cell of
aspect ratio a/b = 1 and viscosity ratio a) λ = 1, and b) λ = 10.
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Figure 4.12: Evolution of cell length Lcell/L over a range of viscosity ratios for a cell
of aspect ratio a/b = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25.

The evolution of the length of the cell in the flow direction shown in Figure 4.11 is for

a cell of aspect ratio a/b = 1, and viscosity ratios λ = 1 and 10. The evolution of the

cell length is qualitatively similar to the overall cell deformation for all aspect ratios.

The length increases to a maximum value, and then decreases slowly as the tether time

increases, an effect that becomes more pronounced with increasing shear rate.

The effect of viscosity ratio on the cell length can be seen in Figure 4.12. As observed

with the overall cell deformation, the cell length is not affected by the viscosity ratio

at a shear rate of Ca = 0.01. At the highest shear rate of Ca = 0.25, the cell length

increases with increasing viscosity ratio.

Figure 4.13 shows the effect of cell aspect ratio on the cell length. At shear rates of

Ca = 0.01, and Ca = 0.25, the cell length increases with increasing aspect ratio. The

maximum cell length as a function of shear rate for cells with aspect ratios a/b = 0.25,

and a/b = 1 is shown in Figure 4.14. It is again evident that the viscosity ratio only
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Figure 4.13: Evolution of cell length Lcell/L over a range of aspect ratios for a cell
of viscosity ratio λ = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25.
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Figure 4.14: Maximum cell length L(cell)max
/L as a function of shear rate for a cell

with aspect ratio a) a/b = 0.25, and b) a/b = 1

has an effect at shear rates Ca & 0.1.

4.4 Force on Tether

Figure 4.15 shows the evolution of the force acting on the tether. The force on the

tether increases rapidly to a maximum value for all shear rates, and then decreases

as time advances. The evolution of the force is qualitatively similar to the results of

the model developed by King et al. (2005). The presence of a maximum force soon

after tether formation suggests that if the tether were to break then it would happen

shortly after formation, and the longer a tether is present the more likely it is that

stable adhesion will occur.

Figure 4.16 illustrates the effect of viscosity ratio on the force evolution of a cell

with aspect ratio a/b = 1. At the lowest shear rate of Ca = 0.01, the viscosity ratio

has no effect on the force evolution. At the higher shear rate of Ca = 0.25, the force on
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Figure 4.15: Evolution of force on tether F/E over a range of shear rates for a cell
with aspect ratio a/b = 1 and viscosity ratio a) λ = 1, and b) λ = 10.
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Figure 4.16: Evolution of force on tether F/E over a range of viscosity ratios for a
cell of aspect ratio a/b = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25.

the tether increases with increasing viscosity ratio. The maximum force on the tether

also becomes more pronounced with increasing viscosity ratio. The initial evolution of

the force on the tether at low shear rates agrees qualitatively with the observations of

Evans et al. (2005) and Heinrich et al. (2005). The authors of the studies postulate

that the force response during tether growth exponentially relaxes to a speed-dependent

plateau. However over the range of shear rates examined in this study, it was found

that the force initially increases to a maximum value, and then decreases thereafter as

the cell pivots about the tether point and moves closer to the wall.

The effect of varying the aspect ratio on the force evolution of a cell of viscosity

ratio λ = 1 is shown in Figure 4.17. At the lower shear rate, the force on the tether

decreases with decreasing aspect ratio. At the higher shear rate however, this effect is

reversed, and the force increases with decreasing aspect ratio.

Figure 4.18 depicts the effect of shear rate on the maximum force acting on the
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Figure 4.17: Evolution of force on tether F/E over a range of aspect ratios for a cell
of viscosity ratio λ = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25.
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Figure 4.18: Maximum force on tether Fmax/E as a function of shear rate for a cell
with aspect ratio a) a/b = 0.25, and b) a/b = 1

tether of a cell with viscosity ratio λ = 1, and aspect ratios a/b = 0.25, and a/b = 1.

For both aspect ratios, the force on the tether increases with increasing shear rate. It

is also clear that the increase in force grows more rapidly as the shear rate increases.

Again, the effect of varying the viscosity ratio is only evident at shear rates Ca & 0.1.

4.5 Cell Velocity

The velocity of the tethered cell is shown in Figure 4.19. In this study, the velocity of

the cell has been defined as the velocity of the leading edge of the cell. The velocity of

the cell can also be thought of as the growth rate of the cell tether. It is clear that the

cell decelerates relatively quickly after tether formation, slowing to zero forward motion

in the range of 5 ≤ k(t − t0)/λ ≤ 10. The time to decelerate to zero velocity increases

with decreasing shear rate. At higher shear rates it is evident that the cell then moves

backwards at low velocity for a period before coming to a halt.
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Figure 4.19: Evolution of cell velocity λUcell/ka over a range of shear rates for a cell
with aspect ratio a/b = 1 and viscosity ratio a) λ = 1, and b) λ = 10.
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Figure 4.20: Evolution of cell velocity λUcell/ka over a range of viscosity ratios for
a cell of aspect ratio a/b = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25.

Because the relaxation time-scale is inversely proportional to the viscosity ratio λ,

it follows that the velocity of the cell scales with the viscosity ratio λ. The comparison

of cells of different viscosity ratios is shown in Figure 4.20 for two different shear rates

Ca = 0.01, and Ca = 0.25. For the lower shear rate, the velocity nearly collapses when

scaled with the viscosity ratio λ. At the higher shear rate, the velocity collapses for the

two higher values of λ, but a difference can be observed with the cell of viscosity ratio

λ = 1.

Figure 4.21 illustrates the effect of aspect ratio on the cell velocity. The initial cell

velocity increases with aspect ratio, and the cells with lower aspect ratios take longer

to slow to a halt.
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Figure 4.21: Evolution of cell velocity λUcell/ka over a range of aspect ratios for a
cell of viscosity ratio λ = 1 at a shear rate of a) Ca = 0.01, and b) Ca = 0.25.

4.6 Cell Stress

The stress distribution and corresponding cell contours are shown in Figure 4.22 for

a cell with aspect ratio a/b = 1, viscosity ratio λ = 1, and shear rate Ca = 0.01.

The stress distribution is plotted as a function of the monotonic parameter s used to

parameterise the cell contour. The stress on the cell membrane is highest immediately

after tethering, at the point of tethering (s/smax = 0). As time evolves, the stress

immediately downstream of the tether reduces dramatically. It is clear that, as time

evolves, the cell pivots about the tether point and moves towards the wall. The stress

in the region of the cell membrane that would contact the wall if the cell is tethered

for a sufficient period of time is highlighted in red, in the range 0.25 . s/smax . 0.40.

It is evident that the stress in this part of the membrane increases as the cell moves

closer to the wall. The average shear stress in this region increases by 20% between

t∗ = 1 and t∗ = 20. This increase in stress in the region that will contact the wall may

provide an explanation of the observation by Ramachandran et al. (2004) that tether

formation correlates with slower, more uniform rolling speeds. Upon tether breakage,

the increase in membrane stress caused by the cell deformation in this region could lead

to more ligands becoming activated, and thus a greater chance of a new tether forming

as this region contacts the wall. It is also clear that the stress on the top of the cell

increases as time evolves, which may increase the probability of other cells adhering to

the tethered cell.

The stress on the cell membrane of the same cell in a shear flow of Ca = 0.25 is

shown in Figure 4.22. It can be seen that the stress immediately downstream of the
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Figure 4.22: a) Principal stress distribution σL/E on the membrane of a cell with aspect ratio a/b = 1, viscosity ratio λ = 1, and shear
rate of Ca = 0.01, at four different times, and b) corresponding cell contours. The cell contour parameter s has been normalised by its
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contour and reaches a value of smax back at the tether point. The regions marked in red on the stress distribution curves correspond to the
regions marked in red on the cell contours.
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Figure 4.23: Schematic of solid body inside an elastic membrane.

tether is very high, and decreases as time evolves. The cell pivots about the tether

point and approaches the wall, and the region which would come into contact increases

in stress as the cell moves closer to the wall, in the range 0.5 . s/smax . 0.6. Again, a

portion of the upper part of the cell contour experiences elevated levels of stress, with

the average shear stress in this region increasing by 9% between t∗ = 10 and t∗ = 200.

4.7 Extensions to Model

To improve the physiological relevance of the tether model, several different strategies

were adopted. The main drawback of the elastic fluid-filled capsule is its inability to

maintain a circular shape whilst a long, thin tether is pulled from the membrane. It is

reasonable to assume that the cell’s internal structure plays a major role in maintaining

the cell’s overall shape whilst undergoing tethering. As such, an attempt was made to

include the effects of an internal structure within the 2D tether model. This involved

the inclusion of extra integral equations, taken from Leal & Lee (1982) and Lee & Leal

(1982). The equations outlined in the study were formulated to capture the dynamics of

an axisymmetric, viscous drop moving near an interface. The equations were modified

in order to model a 2D solid body moving inside a closed interface (Figure 4.23). It

became apparent that the size of the solid body inside the membrane was restricted

to diameters of asolid/L . 0.3. Any choice of solid body larger than this restriction

severely affected the stability of the computation. The formulation of the equations was

such that the membrane was attached to the wall via the tether point, and the solid
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4. TETHERED CELL DYNAMICS

body was allowed to move freely with no forces and no torques acting on it. Thus, as the

membrane deformed, the solid body eventually came into contact with the membrane.

To take this model further, it will be necessary to include coupling between the elastic

membrane and the solid body. This could take the form of springs connecting the two

(Figure 4.23), or a repulsive force distribution on the cell membrane that acts over short

distances.

Another attempt to improve the 2D tether model consisted of a cell membrane with

locally varying elasticity. Evans et al. (2005) and Heinrich et al. (2005) postulate that

the formation of a tether is due to membrane dissociation from the cell cytoskeleton. To

try and capture this effect, a portion of the membrane was specified to have much less

stiffness than the other part of the cell membrane. This can be quantified by the ratio

of Young’s moduli Etether/Ecell. Very low values of this ratio resulted in prohibitively

small time steps. Setting the ratio to 0.1 meant that the time step was acceptable, but

the resulting membrane contour was no more physiologically consistent than the results

presented in this chapter. It would be advisable to try other functions of E(s), rather

than the step change function used, to try and get a more physiologically consistent

contour shape.

An effort was also made to implement a model of a tether with the 3D boundary-

element formulation presented in Chapter 3. The unstructured formulation presented

proved to be too inaccurate to allow a tether to form. It is apparent that either the

resolution of the mesh or the accuracy of the method need to be improved to allow

singular deformation of the cell membrane. Dynamic adaption was implemented to

improve the mesh resolution in regions of high curvature. An element was split into

four new elements if the quality function Q met the condition

Q = κ2
maxA ≥ 0.2, (4.3)

, where κmax is the maximum curvature of the six nodes on the original element, and

A is the surface area of the original element. Because quadratic triangles have been

used in the discretisation, the adaption of one element necessitated the adaption of all

elements immediately next to the original element in order to maintain the integrity

of the mesh. With this choice of quality function and threshold condition, a stable

computation was not able to occur without a computationally prohibitive increase in

mesh resolution. The choice of quality function Q, and the choice of threshold value,

will need to be tuned in order for optimal adaption to occur and a tether to form.
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4.8 Conclusions

A model of a tethered cell has been developed to investigate the effects of cell deforma-

tion, internal viscosity, and cell aspect ratio on the force, length, velocity and surface

shear stress of the cell. Increasing the shear rate leads to higher overall cell deforma-

tion, longer cell lengths, larger force on the tether, and higher cell velocities, for all cells

examined in the parameter space.

Immediately after tethering, the cell experiences elastic deformation and all quan-

tities increase to a maximum value. The time taken to reach these maximum values

scales inversely with the viscosity ratio λ. The elastic deformation is then damped

out by the viscous response of the internal fluid of the cell, and all quantities decrease

thereafter. This response is qualitatively similar to the results of the model developed

by King et al. (2005). The cell is pulled out into the flow, and then pivots about the

tether point and slowly moves towards the wall. A region of elevated shear stress has

been found to occur in the part of the cell membrane that would come into contact

with the wall after a sufficient period of time. This finding may in part explain the ob-

servation of Ramachandran et al. (2004) that membrane tether formation corresponds

with cell rolling stabilisation. The ligands present on the cell membrane may become

activated due to this region of elevated shear stress, increasing the chances of adhesion

with the wall and subsequent tether formation at the leading edge of the cell. A region

of elevated shear stress is also present on the top of the cell, which provides attractive

bonding conditions for other cells to adhere to the tethered cell.

Changing the viscosity ratio of the cell was found to have negligible effect on all

properties measured at low shear rates for cells with aspect ratio a/b = 1. Because the

relaxation time-scale of the cell is proportional to 1/λ, the cell velocity should scale

linearly with λ. At low shear rates, Ca . 0.05, this was found to hold for all viscosity

ratios and aspect ratios considered. At high shear rates, a difference in cell velocity

can be observed at low viscosity ratios, but the difference becomes negligible as the

viscosity ratio increases. At high shear rates, an increase in the cell deformation, cell

length, and the force on the tether resulted from an increase in viscosity ratio. It was

also found that an increase in viscosity ratio caused thinner tethers to form.

It was expected that elliptic cells would experience higher forces initially as they sit

up higher into the flow, but that the force would decrease below that of a circular cell
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because it would be able to lie down along the wall. At moderate to high shear rates,

Ca & 0.05, cells with lower aspect ratios experience greater force and deformation.

At lower shear rates however, elliptic cells experience less force and deformation than

circular cells, despite sitting up higher above the wall. Elliptic cells exhibited larger

cell velocities than circular cells. Cells with lower aspect ratios were observed to form

longer, thinner tethers, but experienced less overall deformation after long tether times.

Longer tethers increase the area of the cell exposed to the wall, facilitating the formation

of multiple bonds.

The model presented in this chapter is able to capture larger tether lengths and

overall cell deformation consistent with experimental observations. The hypothesis

tested with the model was that the dynamics of a tethered cell are affected by the

aspect ratio and the internal viscosity of the cell. It is apparent that the aspect ratio

of the cell has a marked effect on the dynamics of the cell. On the other hand, the

effect of viscosity ratio appears to be minimal at viscosity ratios λ > 10. This result

suggests that leukocytes, with an extremely high viscosity ratio of 105, would display

qualitatively similar behaviour to the idealised model presented is this chapter. The

only major effect of the viscosity ratio is on the time-scale of the dynamics, which

appears to scale proportionally to λ.
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CHAPTER 5

SINGLE CELL DYNAMICS

Previous studies have shown that cells actively change their structure during the ad-

hesion process. Recent experiments have suggested that leukocytes undergo a shear

modulus reduction of ∼ 50% when activated, meaning that activated cells are more

deformable than passive cells (Yap & Kamm 2005). Platelets and leukocytes have

the ability to form long membrane extensions, called tethers, whilst undergoing ad-

hesion Schmidtke & Diamond (2000), Dopheide et al. (2002). Ramachandran et al.

(2004) demonstrated that the deformation of a leukocyte increased as the rolling time

increased, due to the continuous forming and breaking of tethers weakening the cell

structure.

Current models of cells focus mainly on cells that have already contacted the wall

and initiated adhesion. As a consequence, the hydrodynamic effect of the presence of

a cell in the flow on the cell itself is often neglected. The presence of a cell creates a

disturbance in the flow, and this disturbance has an effect on the cell’s velocity, and

the velocity of the flow around it. The disturbance to the flow caused by the presence

of a cell near a wall has an effect on the wall shear stress, which has implications for

the activation of receptors on the vessel surface. The amount of disturbance caused by

the cell is related to the amount of deformation of the cell. It is therefore of interest to

quantify the effect of deformation on the cell dynamics when cells are in close proximity

to a wall. In this chapter, results are presented in order to test the hypothesis that an

easily deformable cell creates hydrodynamic conditions amenable for cell adhesion.

5.1 Solution Procedure

In this chapter, the response of the elastic membrane of the cell to the flow is described

by the Skalak law (Skalak et al. 1973), developed to capture the mechanics of a biological
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Figure 5.1: Schematic diagram of cell model above a plane wall in linear-shear flow.

membrane. Utilising the Skalak law to model the cell membrane deformation allows

the amount of area dilation of the membrane to be controlled by the area dilation

parameter C. A cell with a high value of area dilation parameter C resists area dilation

more than a cell with a low value of C. The deformation of the cell is controlled with

three independent parameters: the dimensionless shear rate, or capillary number, Ca;

the area dilation parameter C; and the membrane prestress α. With a physiological

wall shear-rate range of k = 20s−1−800s−1, typical biological elastic-capillary numbers

range from Ca = 0.01 − 1. Hence, the range of dimensionless shear rates studied in

this chapter is 0.01 ≤ Ca ≤ 0.90. Above Ca = 0.90 increased deformation results

in significant mesh degradation, which could possibly be remedied by increasing the

resolution of the mesh or by remeshing the interface.

The range of area dilation parameters studied in this chapter is 0.5 ≤ C ≤ 2.5.

Typically, a leukocyte has an area dilation parameter of C ∼ 200. It was found that

the computation time-step became prohibitively small at area dilation parameters above

C = 2.5, dictating the range of C that could be studied. Other more accurate boundary-

element formulations are only able to model values of C ≤ 10 due to prohibitively

small time-steps (Lac et al. 2004, Barthés-Biesel et al. 2002). Two values of membrane

prestress are chosen, α = 0% and 5%. For cells at shear rates Ca ≤ 0.10, a stable

solution cannot be reached with a membrane prestress of α = 0%, due to a buckling

instability caused by the neglect of bending resistance (Lac et al. 2004).

The initially spherical cell is placed at an initial height (h/a)0 above the wall, and

subjected to sudden linear-shear flow at t∗ = 0 (Figure 5.1). As time evolves the cell is

allowed to deform and move away from the wall. The cell undergoes an initial, transient

deformation followed by steady-state, tank-treading behaviour. Once transient effects

have dissipated the velocity and other properties of the cell can be measured (Figure

5.2). The membrane moves significantly during the computation due to advection
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Figure 5.2: Transient evolution of surface deformation at eight different starting
positions of an initially spherical neo-Hookean cell at Ca = 0.60. Also shown are
the sampling points ( ) where the area of the cell could be measured once transient
effects had dissipated. A is the surface area of the deformed cell, and A0 is the
surface area of the unstressed, spherical cell. Cell height h/a = 1 corresponds to an
undeformed spherical cell touching the wall.

and rotation about the internal fluid, leading to severe mesh degradation at t∗ ∼ 15.

Because of this, the cell properties for any particular initial cell height are only able

to be measured in a very narrow range of cell heights. To circumvent this problem, a

range of initial cell heights is used to cover a large range of cell heights. The initial cell

heights used for the results presented are (h/a)0 = 1.2, 1.6, 2.0, 3.0, 5.0, 7.5, and 10.0.

To isolate the effect of cell deformation on the cell velocity, cell shear stress and

wall shear stress, another series of simulations is undertaken at a fixed cell height of

h/a = 1.25. This ensures that the cell is kept as close to the wall as possible. The

cell height can be fixed because the deformation time-scale is much smaller than the

migration velocity time-scale for cells of viscosity ratio λ = O(1) (Uijttewaal & Nijhof

1995).

5.2 Cell Deformation

Figure 5.3 shows the effect of the cell height on the reduced volume of the cell over

the range of shear rates and area dilation parameters studied. The reduced volume is

defined by

ν =
(4π)3/2

4π/3

V

S3/2
, (5.1)

with a reduced volume of unity indicating that the cell is spherical, and a reduced

volume much less than one indicating significant area dilation. For small shear rates of

Ca ≤ 0.10, very little variation from ν = 1 is observed. This indicates that the cell is
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Figure 5.3: Reduced volume ν of cells as a function of cell height h/a at a) con-
stant area dilation parameter C = 2.5 and membrane prestress α = 5%, and b)
constant shear rate Ca = 0.90 and membrane prestress α = 0%. Cell height h/a = 1
corresponds to an undeformed spherical cell touching the wall.
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Figure 5.4: Reduced volume ν of cells with membrane prestress α = 5% at a constant
height h/a = 1.25 as a function of a) area dilation parameter C, and b) shear rate
Ca.

able to retain a shape close to its reference spherical shape despite the presence of a wall

in close proximity. However, at higher shear rates the cell deforms quite significantly as

it moves closer to the wall. It is also apparent that a non-prestressed cell, with α = 0%,

undergoes significantly larger deformation in comparison to a cell with a membrane

prestress of α = 5%.

By keeping the height of the cell above the wall constant, the effect of shear rate

and area dilation parameter can be elucidated further (Figure 5.4). As the shear rate

increases, the effect of varying the area dilation parameter C becomes pronounced. For

moderate to large shear rates of Ca ≥ 0.1, the extent of cell deformation increases

rapidly as the area dilation parameter decreases. At a shear rate corresponding to

Ca = 0.01 however, there is virtually no measurable deformation over the range of area
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Figure 5.5: Profile of the cell in the xy plane, for a shear rate of Ca = 0.90 and
a membrane prestress α = 0%, and area dilation parameters (from left to right) of
C = 0.5, 1, 1.5, 2, and 2.5. The top row shows the cell profiles in unbounded shear
flow, and the bottom row shows the cell profiles in bounded, linear shear flow at
height above the wall h/a = 1.25. Flow is from left to right.

dilation parameters examined. The highest amount of deformation observed over the

range of parameters studied was a reduced volume ν = 0.72, for a non-prestressed cell

with area dilation parameter C = 0.5 at a shear rate Ca = 0.90. This indicates that

the cell undergoes very substantial deformation from the initial spherical shape.

The profile of a non-prestressed cell in the xy plane at a cell height of h/a = 1.25 is

shown in Figure 5.5, for the highest shear rate of Ca = 0.90, and varying area dilation

parameters. For comparison, the profiles of the cell in unbounded shear flow are also

presented. At large cell heights the cell profile approaches the profile of the cell in

unbounded shear flow. It is clear that the presence of a wall in close proximity has

a significant effect on the shape of the cell. The symmetry of shape displayed by the

unbounded shear flow cell profiles is broken by a narrowing of the trailing tip of the

cell. This effect becomes more pronounced as the area dilation parameter decreases.

The profiles in the xy plane of cells with area dilation parameter C = 0.5, which

allows the largest deformation, at membrane prestress α = 5% and varying shear rates

are shown in Figure 5.6 at a cell height of h/a = 1.25. It is clear that at the lowest shear

rate of Ca = 0.01, the cell shape hardly changes from its unbounded, nearly spherical

state despite the close proximity of the wall. As the shear rate increases, the distortion

caused by the presence of the wall becomes increasingly pronounced, with the trailing

tip of the cell becoming narrower and more elongated.
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Figure 5.6: Profile of the cell in the xy plane, for an area dilation parameter of C =
0.5 and a membrane prestress of α = 5%, and shear rates (from left to right) of Ca =
0.01, 0.10, 0.30, 0.60, and 0.90. The top row shows the cell profiles in unbounded
shear flow, and the bottom row shows the cell profiles in bounded, linear shear flow
at height above the wall h/a = 1.25. Flow is from left to right.

 1

 1.25

 1.5

 1.75

 2

 1  10

Ca = 0.01
Ca = 0.10
Ca = 0.30
Ca = 0.60
Ca = 0.90

h/a

A
x
z
/π

a
2

 1

 1.25

 1.5

 1.75

 2

 1  10

C = 0.5
C = 1.0
C = 1.5
C = 2.0
C = 2.5

h/a

A
x
z
/π

a
2

a) b)

Figure 5.7: Projected area Axz/πa2 of cells in the xz plane as a function of cell
height h/a at a) constant area dilation parameter C = 2.5 and membrane prestress
α = 5%, and b) constant shear rate Ca = 0.90 and membrane prestress 0%. Cell
height h/a = 1 corresponds to an undeformed spherical cell touching the wall.

5.2.1 Cell Footprint

An important quantity to consider when examining the effect of a wall on cell dynamics

is the projected area of the cell in the xz plane, or the cell “footprint”. The larger the

cell footprint, the more contact area the cell exposes to the vessel wall, and therefore

the cell has a greater chance of forming bonds with the vessel surface. Figure 5.7

shows the effect of cell height on the footprint of a cell over the range of shear rates,

membrane prestress, and area dilation parameters studied. It is clear that the effect of

cell height on the footprint of the cell is qualitatively similar to the effect on the overall

cell deformation. The cell footprint increases rapidly with decreasing cell height, an

effect that becomes more significant at high shear rates and low area dilation parameters

(Figure 5.8). This indicates that a cell with a low shear modulus, such as an activated
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Figure 5.8: Projected area Axz/πa2 of cells in the xz plane at a constant height
h/a = 1.25 with membrane prestress 5% as a function of a) area dilation parameter
C, and b) shear rate Ca.

Figure 5.9: Profile of the cell in the xz plane, for an area dilation parameter of
C = 0.5, a membrane prestress of α = 5%, and shear rates (from left to right) of Ca =
0.01, 0.10, 0.30, 0.60, and 0.90. The top row shows the cell profiles in unbounded
shear flow, and the bottom row shows the cell profiles in bounded, linear shear flow
at height above the wall h/a = 1.25. Flow is from left to right.

cell, will present a larger area to the wall, a condition beneficial to bond formation

between the cell and the vessel wall. The maximum cell footprint area observed over

the range of parameters studied was ∼ 95% greater than that of the reference spherical

shape, at a shear rate of Ca = 0.90, an area dilation parameter of C = 0.5, and a

membrane prestress of α = 0%. As with the overall surface area, the increase in the

cell footprint size is suppressed at low shear rates, and by high area dilation parameters

and membrane prestressing.

Figure 5.9 shows the profiles of cells in the xy plane at varying shear rates for

an area dilation parameter of C = 0.5, a membrane prestress of α = 5%, and a cell

height of h/a = 1.25. The profiles of cells in unbounded shear flow are shown for

comparison. The wall acts to increase the projected area of the cell, an effect that is

most pronounced at higher shear rates. Cells at shear rate Ca = 0.01 display negligible
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5. SINGLE CELL DYNAMICS

change in projected area, despite the presence of the wall. In contrast to the profiles in

the xy plane, fore-aft symmetry is only minimally broken in the xz plane despite the

presence of a wall.

5.3 Cell Velocity

The velocity of a cell near a plane wall is an important factor relevant to cell adhesion.

Cells that move at a slower translational speed relative to the wall are more likely to

form bonds with the surface. The difference between the translational velocity of the

cell and the velocity of the undisturbed flow can be measured using the slip velocity,

defined in equation 3.55. A large, positive slip velocity means that the cell moves more

slowly relative to the wall. The cell velocity normal to the wall, or migration velocity,

is also of interest.

5.3.1 Slip Velocity

The slip velocity of the cell is affected significantly by the cell height (Figure 5.10).

As the cell moves closer to the wall, the cell slip velocity for all shear rates and area

dilation parameters increases. As the deformation of the cell increases, the cell aligns

itself with the fluid streamlines, thus offering less resistance to the flow and a smaller

slip velocity results (Figure 5.11). At large cell heights, the slip velocities of all cells

appear to vary inversely with the square of h/a. However, at close cell heights the

rate of increase of the slip velocity decreases. This can be attributed to the changing

shape of the cell: the trailing edge aligns itself with the flow, decreasing the resistance

of the cell to the flow faster than the resistance of the wall on the cell. As the shear

rate decreases, the cell remains closer to its reference spherical shape, and the cell slip

velocity approaches the analytical solution for a solid sphere derived by Goldman et al.

(1967) (Equation 2.10). However, even at the lowest shear rate of Ca = 0.01, there

is still slight deviation from the analytical result. This indicates that the very slight

deformation experienced by the cell at low shear rates has an effect on the velocity of

the cell.

At shear rates of Ca = 0.10 and Ca = 0.30, a comparison between the slip velocity

of a cell with area dilation parameter C = 2.5 and the slip velocity of a liquid drop is

shown in Figure 5.12, using the numerical results of Uijttewaal et al. (1993). It is clear

that over the range of cell heights studied, the cell slip velocity is higher than that of
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Figure 5.10: Slip velocity Uslip/ka of cells as a function of cell height h/a at a)
constant area dilation parameter C = 2.5 and membrane prestress α = 5%, and
b) constant shear rate Ca = 0.90 and membrane prestress α = 0%. The dotted
line shows the analytical solution for the slip velocity of a rigid sphere derived by
Goldman et al. (1967). Cell height h/a = 1 corresponds to an undeformed spherical
cell touching the wall.
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Figure 5.11: Slip velocity Uslip/ka of cells at a constant height h/a = 1.25 and
membrane prestress α = 5% as a function of a) area dilation parameter C, and b)
shear rate Ca. The dotted line shows the analytical solution for the slip velocity of
a rigid sphere derived by Goldman et al. (1967).

the liquid drop for both shear rates.

5.3.2 Migration Velocity

The migration velocity of the cell follows a similar trend to the slip velocity as the cell

is moved closer to the wall (Figure 5.13). The migration velocity increases as the cell is

moved closer to the wall for all properties, similar to the behaviour of the slip velocity.

The rate of increase lessens at very small cell heights for moderate to high shear rates

and all area dilation parameters, which can also be attributed to the tip that forms at

the trailing edge of the cell. In contrast to the behaviour of the slip velocity of the cell,

the migration velocity decreases as the deformation increases, whether by variation in
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Figure 5.12: Comparison between a cell of area dilation parameter C = 2.5 and
membrane prestress α = 5%, and a liquid drop of a) slip velocity Uslip/ka, and b)
migration velocity Umigr. The liquid drop data is taken from the numerical results of
Uijttewaal et al. (1993). Cell height h/a = 1 corresponds to an undeformed spherical
cell touching the wall.
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Figure 5.13: Migration velocity Umigr/ka of cells as a function of cell height h/a at
a) constant area dilation parameter C = 2.5, and b) constant shear rate Ca = 0.90.
Cell height h/a = 1 corresponds to an undeformed spherical cell touching the wall.

shear rate, in area dilation parameter, or in membrane prestress. (Figure 5.14). This is

consistent with the expectation that as the cell shape approaches its reference spherical

shape, the cell migration velocity goes to zero due to the reversibility of Stokes flow.

The effect of large deformation on the migration velocity appears to be less significant

than the effect on the slip velocity, with little change with a variation in either shear

rate or area dilation parameter at large values of each.

A comparison can be made between the migration velocity of a cell with area dilation

parameter C = 2.5 and membrane prestress α = 5%, and that of a liquid drop at shear

rates Ca = 0.10 and Ca = 0.30. Over the range of cell heights examined, the migration

velocity of the cell is less than that of the liquid drop at both shear rates.
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Figure 5.14: Migration velocity Umigr/ka of cells with membrane prestress α = 5%
at a constant height h/a = 1.25 as a function of a) area dilation parameter C, and
b) shear rate Ca.

5.4 Shear Stress

A critical property mediating cell adhesion is shear stress, both on the cell surface and

on the vessel wall. Receptors on both surfaces are activated over specific ranges of shear

stress. As such it is important to quantify the shear stress on a cell in close proximity

to a wall. It is also of interest to characterise the effect of the cell on the shear stress

distribution on the vessel wall.

5.4.1 Stress on Cell

The shear stress varies widely over the surface of a cell, even in unbounded flow. The

maximum shear stress is observed to occur at the trailing tip of the cell when in close

proximity to the wall. The use of an unstructured boundary-element formulation in

the simulations leads to noise in the shear stress distribution on the cell membrane. To

minimise the effect of this numerical error, it is more accurate to consider the mean

shear stress, rather than the maximum shear stress, as a measure of the stress on the

cell. The change in mean shear stress on a cell as a function of cell height is shown

in Figure 5.15. The change in shear stress refers to the difference in the shear stress

of the deformed cell and its reference spherical shape. This only has an effect on

the prestressed cells, as the reference spherical shapes of these cells are under a finite

amount of stress.

It is clear that as the cell approaches the wall, the mean shear stress on the surface

of the cell increases significantly at moderate to high shear rates. At a shear rate

of Ca = 0.01, the cell experiences very little shear stress, even with a wall in close
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Figure 5.15: Increase in mean shear stress ∆|σSS|a/E on cells as a function of cell
height h/a at a) constant area dilation parameter C = 2.5 and membrane prestress
α = 5%, and b) constant shear rate Ca = 0.90 and membrane prestress α = 0%.
∆|σSS|a/E refers to the difference in mean shear stress between the deformed and
reference shapes of the cell. Cell height h/a = 1 corresponds to an undeformed
spherical cell touching the wall.
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Figure 5.16: Increase in mean shear stress ∆|σSS|a/E on cells with membrane pre-
stress α = 5% at a constant height h/a = 1.25 as a function of a) area dilation
parameter C, and b) shear rate Ca. ∆|σSS |a/E refers to the difference in mean shear
stress between the deformed and reference shapes of the cell.

proximity. This is consistent with the experimental observation that cells at low shear

rates do not activate due to the absence of an external shear stress trigger.

As the shear rate increases, the mean shear stress on the cell increases significantly

(Figure 5.16). The significant increase with shear rate has ramifications for activated

cells, which experience a reduction in shear modulus, and thus an increase in shear

rate. This suggests that an activated cell will experience much higher surface shear

stress than an unactivated cell, a condition amenable to cell adhesion. Interestingly,

the mean shear stress on the surface of the cell decreases with decreasing area dilation

parameter.
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5.4.2 Stress on Wall

The presence of a cell in close proximity to a wall creates a marked effect on the shear

stress distribution on the wall surface. Figure 5.17 shows the contours of principal

shear stress on the wall with a cell, of area dilation parameter C = 2.5 and membrane

prestress α = 5%, at a constant height h/a = 1.25, over the range of shear rates

examined. In the absence of the cell, the wall experiences a dimensionless shear stress

of 1. For all shear rates, there is a region of elevated stress upstream of the cell, a

region of reduced stress immediately below the cell, and a region of elevated stress

downstream of the cell. The maximum shear stress experienced by the wall occurs in

the region of elevated stress upstream of the cell. The minimum and maximum shear

stress on the wall decrease and increase respectively as the shear rate decreases. The

existence of a region of elevated shear stress on the wall immediately downstream of

the cell is beneficial for the activation of receptors on the vessel wall in preparation for

cell contact with the wall. Similarly, a region of elevated shear stress upstream of the

cell may in turn be beneficial for upstream cells.

At the lowest shear rate of Ca = 0.01, the shear stress displays symmetry in the

plane perpendicular to the flow direction. The regions of elevated stress at this shear

rate extend approximately 3 cell diameters upstream and downstream of the cell. As

the shear rate increases, the region of influence on the shear stress upstream of the

cell moves upstream and increases in size. In contrast, an increase in shear rate has a

minimal effect on the size of the region of influence downstream of the cell. To illustrate

this more clearly, the regions of the wall which experience levels of shear stress at least

5% greater than ambient levels are shown in Figure 5.17.

Figure 5.18 shows the distribution of wall shear stress on the flow axis immediately

below the cell. Varying the shear rate has an effect on both the magnitude and position

of the maximum and minimum shear stress. As the shear rate increases, the maximum

shear stress position upstream of the cell moves upstream, and the minimum shear stress

position moves downstream. The maximum shear stress position downstream of the cell

remains largely invariant to the shear rate. The maximum shear stress upstream of the

cell increases as the shear rate decreases, until Ca = 0.10, where it is at a maximum.

Further decreasing the shear rate to Ca = 0.01 decreases the magnitude of the maximum

stress upstream of the cell. In contrast, the minimum shear stress, and the maximum

shear stress downstream of the cell, increase monotonically with decreasing shear rate.
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Figure 5.18: Variation in principal shear stress σSSa/E in the flow direction x on
the wall below the centre of the cell at height h/a = 1.25 in the flow direction x, for
a) constant area dilation parameter C = 2.5 and membrane prestress α = 5%, and
b) constant shear rate Ca = 0.90 and membrane prestress α = 0%.
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Figure 5.19: Area of wall A/πa2 downstream of the cell exposed to a principal shear
stress σssa/E of 5% above the ambient level as a function of cell height above the
wall h/a for a cell at a) constant area dilation parameter C = 2.5 and membrane
prestress α = 5%, and b) constant shear rate Ca = 0.90 and membrane prestress
α = 0%. Cell height h/a = 1 corresponds to an undeformed spherical cell touching
the wall.

Varying the area dilation parameter has no effect on the positions of the maximum and

minimum stresses. The maximum stresses downstream and upstream of the cell, and

the minimum stress, all increase with increasing area dilation parameter.

The area of the region of elevated shear stress downstream of the cell as a function of

cell height is shown in Figure 5.19. It can be seen that the area of elevated shear stress

downstream of the cell increases as the cell approaches the wall, until a maximum is

reached when the cell is located at a distance h/a ∼ 2 above the wall. As the cell moves

closer to the wall, the region of influence downstream of the cell then decreases in area.

When the cell is located at distance of h/a ∼ 3 above the wall, the effect of varying
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Figure 5.20: Area of wall A/πa2 downstream of the cell exposed to a principal shear
stress σssa/E of 5% above the ambient level for a cell at height h/a = 1.25 and
membrane prestress α = 5% as a function of a) area dilation parameter C, and b)
shear rate Ca.
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Figure 5.21: Area of wall A/πa2 upstream of the cell exposed to a principal shear
stress σssa/E of 5% above the ambient level as a function of cell height above the
wall h/a for a cell at a) constant area dilation parameter C = 2.5 and membrane
prestress α = 5%, and b) constant shear rate Ca = 0.90 and membrane prestress
α = 0%. Cell height h/a = 1 corresponds to an undeformed spherical cell touching
the wall.

shear rate and area dilation parameter is evident. At close cell heights however, the

area of elevated shear stress becomes independent of either the shear rate or the area

dilation parameter. This effect can be seen clearly in Figure 5.20, with little variation

in area over a range of shear rates and area dilation parameters when the cell is at

height h/a = 1.25.

Figure 5.21 shows the effect of cell height on the area of the elevated stress region

upstream of the cell. The change in the area of elevated stress upstream of the cell

behaves similarly to that of the area downstream of the cell. The area increases with

decreasing cell height, until a maximum is reached. The area of the elevated stress
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Figure 5.22: Area of wall A/πa2 upstream of the cell exposed to a principal shear
stress σssa/E of 5% above the ambient level for a cell at height h/a = 1.25 and
membrane prestress α = 5% as a function of a) area dilation parameter C, and b)
shear rate Ca.

region then decreases as the cell height decreases further. As the shear rate increases,

the position of the cell that corresponds to the maximum area of elevated stress moves

closer to the wall. When the cell is at height h/a ∼ 3 above the wall, the effect of

varying both the shear rate and the area dilation parameter is significant, and the cells

with less deformation affect a larger region of the wall. At closer cell heights this effect

is reversed, and the cells at higher shear rates and lower area dilation parameters have

a larger effect on the wall (Figure 5.22).

5.5 Extensions to Model

In order to make the 3D formulation more physiologically consistent, an attempt was

made to implement bending resistance on the cell surface. The contribution of bending

resistance to the surface traction ∆fb can be written as (Seifert 1999, Vlahovska &

Gracia 2007)

∆fb = Eb(4κ
3 − 4κH + 2∆sκ)n, (5.2)

where Eb is the elastic bending modulus, κ is the mean curvature, ∆s is the surface

Laplacian operator (more generally known as the Laplace-Beltrami operator), and H is

the Gaussian curvature. The Gaussian curvature of a surface can be considered constant

if no topological change, such as tearing or gluing, occurs. The surface Laplacian of the

mean curvature can be written as

∆κ =
1

√

|g|
∂i

(

√

|g|gij∂jκ
)

, (5.3)

where gij is the metric tensor of the surface, and g its determinant.
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Figure 5.23: Comparison of the percentage RMS error in the calculation of curvature
κ between the unstructured formulation of Ramanujan & Pozrikidis (1998) and the
surface-fitting technique of Zinchenko et al. (1997), as a function of the number
of elements NE. Results are presented on a prolate ellipsoid with axes ratios of
b/a = 0.5, and c/a = 2.

Because the surface Laplacian of the curvature is effectively a fourth-order surface

derivative, it is clear that a successful implementation of bending resistance requires

a very accurate estimation of the surface mean curvature. The second-order unstruc-

tured discretisation presented in Chapter 3 is not able to give an accurate description

of equation 5.2. It is therefore necessary to implement an improved estimation of the

surface in order to accurately model bending resistance. An improved estimation of

the cell surface can be achieved by implementing an iterative surface-fitting technique

developed by Zinchenko et al. (1997). The technique involves fitting a local quadratic

surface z′ = f(x′, y′) to a node O and its immediately neighbouring nodes. Initially, the

z′ axis is aligned with a best guess for the normal to the surface at the node O. A suit-

able choice of best guess is the normal calculated at the previous time-step. A quadratic

surface passing through O is then found using the least-squares method. The normal

to this quadratic surface is then used as the new z′ axis, and the process is repeated

until the difference between successive normals falls below a threshold value. Once the

iterative process is complete, an improved estimate of the surface normal and mean

curvature follow. A comparison between the curvature error from the unstructured

formulation presented in Chapter 3, which involves the averaging of the curvatures on

elements sharing a common node, and the iterative surface-fitting method is shown in

Figure 5.23. It is clear that the local surface-fitting technique gives a much more ac-

curate approximation of the mean curvature. However, because the local surface is C2
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continuous, the surface Laplacian of the curvature in equation 5.2 cannot be computed.

An attempt was made to fit a local quadratic function to the curvature at node O and

its immediate neighbouring points, in the same fashion as the surface-fitting technique

outlined above. This allowed equation 5.3 to be evaluated, and an approximation of

equation 5.2 to be found. However, the implementation of this approximation did not

lead to a stable, accurate computation. Another approach to implementing bending

resistance, albeit less accurate, was outlined by Pozrikidis (2001a), based on the un-

structured discretisation outlined in Chapter 3. An unsuccessful attempt was made to

implement this alternative approach.

To implement bending resistance successfully, it is apparent that a much more

accurate representation of the cell surface is required. Kessler et al. (2008) used a

spectral boundary-element formulation to successfully capture bending resistance in

an elastic capsule. The formulation of Kessler et al. (2008) would not however be

able to cope with the large deformations apparent close to a wall, or whilst undergoing

tethering. There is benefit in exploring further the implementation of bending resistance

into an unstructured formulation. It may be possible to use the surface-fitting algorithm

of Zinchenko et al. (1997) to significantly improve the accuracy of the bending-resistance

approximation developed by Pozrikidis (2001a).

5.6 Conclusions

Results have been presented in this chapter in order to quantify the effect of cell defor-

mation on cell dynamics near a wall. Specifically the effects of shear rate, area dilation

parameter and membrane prestress on the footprint of the cell, the slip and migration

velocities of the cell, and the shear stresses present on both the cell and wall have been

presented. The range of shear rates examined is 0.01 ≤ Ca ≤ 0.90, almost two orders

of magnitude. The range of area dilation parameters examined is 0.5 ≤ C ≤ 2.5, and

the closest cell height above the wall studied is h/a = 1.25. The membrane prestresses

examined are α = 0% and 5%.

Over the range of parameters studied, it was found that less deformable cells offer

more resistance to the flow, which leads to higher slip velocities and lower migration

velocities. Both of these conditions are advantageous in terms of approach to the vessel

wall. Unactivated cells would therefore be able to more easily come into close proximity

to the vessel wall when compared to an activated, more deformable cell. The greater
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resistance to the flow of less deformable cells leads to greater disturbance of the flow

around the cell, causing significant changes to the shear stress on the wall surface. At

cell heights of h/a & 1.25, less deformable cells cause a larger region of elevated shear

stress on the wall surface downstream of the cell. This suggests that unactivated cells

also have an advantage in “preparing” the vessel wall for adhesion.

On the other hand, easily deformable cells present a much higher surface to the vessel

wall. An activated cell would therefore be able to come into contact with more wall

surface, thus enhancing the probability of multiple bond formation. It was also found

that easily deformable cells display much higher shear stresses on the cell surface. This

implies that the receptors on the activated cell surface would become activated, ready

to form bonds with the vessel wall. For close cell heights of h/a < 2, it was observed

that a larger region of elevated stress was present upstream to an easily deformable

cell. This would be beneficial to other cells upstream, and enhance the probability of

multiple cell adhesion. At close cell heights it can also be concluded that the region of

elevated wall shear stress downstream of the cell becomes independent of the amount

of cell deformation.

From the results presented, the hypothesis that an easily deformable cell creates

hydrodynamic conditions amenable for cell adhesion has been shown to be too general a

statement. It is clear that an easily deformable cell does create hydrodynamic conditions

amenable for cell adhesion, but only at close cell heights. Closer to the wall, an easily

deformable cell experiences higher shear stress, and presents a greater surface area to

the vessel wall. At higher cell heights however, less deformable cells are able to approach

the wall more easily, with a higher slip velocity and a lower migration velocity. It can be

concluded that it is hydrodynamically advantageous for a cell to approach the wall in

its unactivated state. However, once the cell is in close proximity to the wall, activation

of the cell would then be hydrodynamically beneficial with regard to cell adhesion.
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CHAPTER 6

MULTIPLE CELL DYNAMICS

There is evidence to suggest that the presence of another cell improves the cell adhesion

process. King et al. (2001), King & Hammer (2001a,b) and Pappu & Bagchi (2008)

demonstrated that slower, more uniform cell rolling existed when multiple cell adhesion

was considered for both rigid and deformable cells. These studies focused on adher-

ing cells, not on the hydrodynamic conditions in the lead up to adhesion. Previous

numerical studies have examined the dynamics of two bodies in unbounded shear flow

for elastic capsules (Lac et al. 2007), and liquid drops (Singh & Sarkar 2009). No such

study exists in bounded flows. The previous chapter has shown that the presence of

a wall has a non-trivial effect on the deformation and velocities of a cell. It is reason-

able to assume that the presence of a wall will have a similar effect on the interaction

between two cells. Therefore, the objective of this chapter is to test the hypothesis

that the presence of multiple cells creates hydrodynamic conditions amenable for cell

adhesion.

6.1 Solution Procedure

The domain of the problem is shown in Figure 6.1. The shear rate is fixed at Ca = 0.30,

and the area dilation parameter for each cell is fixed at C = 2.5. Neither membrane is

under prestress, and the viscosity ratio for each cell is set at λ = 1. Two heights above

the wall have been chosen to determine the effect of the wall: h/a = 2.5, and h/a = 1.25.

The height of each cell above the wall is held fixed for each simulation, similar to the

method of Uijttewaal et al. (1993). Two different scenarios are investigated, with

cells either side-by-side (∆x/a = 0), or in-line with the flow (∆z/a = 0). The cells

are started at different initial positions of ∆x0/a and ∆z0/a, and allowed to deform

until equilibrium has been reached. The initial positions chosen for each scenario are
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Figure 6.1: Schematic diagram of two cells suspended in linear shear flow above
a plane wall. One cell is located at (∆x/2a, h/a,∆z/2a), and the other at
(−∆x/2a, h/a,−∆z/2a). The cells are positioned either side-by-side (∆x/a = 0),
or in-line with the flow (∆z/a = 0).

∆x0/a = 1, 2, 3, 4, 5, 7.5, 10, 20, and ∆z0/a = 0.5, 1, 2, 3, 4, 5, 7.5, 10.

6.2 Side-by-Side Cells

6.2.1 Cell Deformation

The reduced volume of a cell as a function of separation distance for two cell heights

h/a = 1.25 and 2.5 is shown in Figure 6.2. Very little variation from the deformation

of a single cell can be observed as the cells move closer together. At small separation

distances ∆z/a . 5, the reduced volume of cells at h/a = 1.25 increases slightly, indi-

cating that the presence of a cell in close proximity causes marginally less deformation

than a cell in isolation. The highest increase in reduced volume observed in comparison

to an isolated cell is ∼ 0.6%.

6.2.2 Cell Velocity

The slip velocity of the cells at two different cell heights h/a = 1.25 and 2.5 is shown in

Figure 6.3. Because the orientation of the cells is symmetric with respect to the flow

plane the velocities of the cells are identical in the x and y directions. It is clear that

the slip velocity of each cell is greater than that of a single cell for both cell heights
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Figure 6.2: Reduced volume ν of cells as a function of separation distance ∆z/a at
two different cell heights h/a = 1.25 and 2.5.
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Figure 6.3: Velocity of cells separated by distance ∆z/a at two different cell heights
h/a = 1.25 and 2.5, showing a) the slip velocity of the cells Uslip/ka and b) the
migration velocity of the cells Umigr/ka.

examined. As the separation distance lessens, the slip velocity of each cell increases. At

the cell height of h/a = 1.25, the slip velocity and the rate of increase for each cell are

higher than they are for the higher cell height of h/a = 2.5. The separation distance

at which the cells begin to have an influence on each other decreases as the cells move

closer to the wall. For a cell height of h/a = 2.5, the slip velocity of the cells is affected

for ∆z/a . 9.5. For a cell height of h/a = 1.25, the region of influence decreases to

∆z/a . 7.

The presence of multiple cells also has an effect on the migration velocity of the cells.

For both heights considered the migration velocity increases above that of a single cell,
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Figure 6.4: Difference in velocity of the cells in the z direction ∆(U
(1)
z −U

(2)
z )/ka as

a function of separation distance ∆z/a for two cell heights h/a = 1.25, and 2.5. The
superscript (1) refers to the cell located at (0, h/a,∆z/2a) while the superscript (2)

refers to the cell located at (0, h/a,−∆z/2a).

and the migration velocity increases as the separation distance lessens. The migration

velocity appears to be less sensitive to the presence of another cell than the slip velocity,

with negligible effect beyond ∆z/a & 7 for cell height h/a = 2.5, and ∆z/a & 4 for cell

height h/a = 1.25.

The difference in the velocity of the cells in the z direction is shown in Figure

6.4. Due to the symmetry of the cell positions with respect to the flow, the velocity

in the z direction of one cell is equal and opposite to the velocity of the other. It is

apparent that the cells move away from one another, and that the magnitude of the

velocity increases as the separation distance decreases. The velocity of the cells in the

z direction decreases as the cell height decreases.

6.2.3 Cell Shear Stress

Figure 6.5 depicts the effect of cell separation distance on the average principal shear

stress on the surface of the cell. It is clear that the separation distance has a negligible

effect on the surface shear stress. At a cell height of h/a = 2.5, there is a slight increase

of approximately 0.2% in surface shear stress in the range 2.5 . ∆z/a . 5. For a cell

height of h/a = 1.25, the surface shear stress decreases by approximately 0.6% in the

range of 2.5 . ∆z/a . 7. The marginal decrease in cell shear stress can be explained
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Figure 6.5: Average principal shear stress on the cell surface σssa/E as a function
of cell separation distance ∆z/a for two cell heights h/a = 1.25 and 2.5.

by the corresponding increase in reduced volume of the cells (Figure 6.2).

6.2.4 Wall Shear Stress

Figure 6.6 illustrates the effect of separation distance on the principal shear stress

present on the wall. The principal shear stress contours are shown at three separation

distances ∆z/a, with the regions of principal shear stress 5% above ambient levels

indicated with solid black lines. Also shown are the regions of shear stress that fall

below or exceed the shear stress range for an isolated cell. It is apparent that the

main effect of two cells side-by-side on the wall shear stress is the presence of a low

shear stress region between the two cells at close separation distances. At the closest

separation distance of ∆z/a = 2.68, there are two small regions of stress that exceed

the maximum wall shear stress for an isolated cell by ∼ 4%. At larger cell separation

distances the wall shear stress levels correspond to the wall shear stress contours of a

single cell.

6.3 In-Line Cells

6.3.1 Cell Deformation

When the configuration is changed from two cells side-by-side to two cells in-line with

one another, the symmetry with the respect to the flow plane is broken. Therefore
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Figure 6.6: Principal wall shear stress contours σssa/E for various separation dis-
tances ∆z/a. The separation distances shown are a) ∆z/a = 7.00, b) ∆z/a = 3.13,
and c) ∆z/a = 2.68. The solid black line indicates the region of the wall where the
principal shear stress is 5% or more above ambient levels. The solid white line indi-
cates the region of the wall where the principal shear stress falls below the minimum
wall shear stress for an isolated cell. The dashed black line indicates the region of
the wall where the principal shear stress exceeds the maximum wall shear stress for
an isolated cell. Flow is from bottom to top.
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each cell will behave differently at close separation distances ∆x/a. The cell shapes at

various separation distances ∆x/a are shown in Figure 6.7 for cell height h/a = 1.25.

For large separation distances the cell shapes are indistinguishable from the shape of a

single cell at the same height. However at small separation distances the upstream and

downstream cell shapes differ. For the closest separation distance of ∆x/a = 2.65, the

membrane of each cell flattens in the region closest to the other cell. This is similar

to the observations of Lac et al. (2007), who observed high external pressures in the

gap between two crossing capsules in unbounded shear flow. The high pressure region

causes a flattening of the membrane.

The reduced volume of both cells as a function of separation distance is shown in

Figure 6.8. It is evident that the reduced volume of each cell increases significantly

as the cell separation distance decreases. This effect becomes more significant at the

closer cell height of h/a = 1.25. At small separation distances, the downstream cell has

a lower reduced volume than the upstream cell. This increase in reduced volume means

that the cells deform less than an isolated cell, due to the flattening of the membrane.

6.3.2 Cell Velocity

The slip velocities of the cells for two cell heights h/a = 1.25 and h/a = 2.5 are

shown in Figure 6.9. It is apparent that the slip velocity of the downstream cell is

higher than that of a single cell. The upstream cell, however, experiences a lower slip

velocity than the downstream cell. This means that the cells will eventually come

into contact, because the downstream cell moves slower relative to the upstream cell.

As the separation distance decreases, the slip velocity of the upstream cell decreases

rapidly, and the slip velocity of the downstream cell increases rapidly. The difference

between the upstream and downstream cell slip velocities is depicted in Figure 6.10. The

difference in velocity is positive over a large range before becoming negligible at very

large separation distances ∆x/a & 15. At the cell height of h/a = 2.5, the slip velocity

difference is greater than the lower cell height for intermediate separation distances of

∆x/a & 4.5. At closer separation distances, the cells at height h/a = 1.25 experience a

greater difference in slip velocity.

The migration velocity of the cells is also affected by cell separation distance and

cell height. For cell height h/a = 2.5, the migration velocity of the upstream cell is less

than the migration velocity of a single cell at the same height. At intermediate wall
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Figure 6.8: Reduced volume of cells ν as a function of separation distance ∆x/a at
two different cell heights h/a = 1.25 and 2.5.
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Figure 6.9: Velocity of upstream and downstream cells separated by distance ∆x/a
at two different cell heights h/a = 1.25 and 2.5. Shown are a) the slip velocity of the
cells Uslip/ka, and b) the migration velocity of the cells Umigr/ka.

heights, the migration velocity of the downstream cell falls slightly below the single cell

migration velocity. For separation distances ∆x/a . 7, the migration velocity of the

downstream cell is greater than the migration velocity of the single cell. The rate-of-

change of the migration velocity for both cells changes sign at ∆x/a ∼ 4. At the closer

cell height of h/a = 1.25, the migration velocity of both cells falls below that of the

single cell. The upstream cell migration velocity decreases significantly with decreasing

separation distance, whereas the downstream cell migration velocity starts to increase

at ∆x/a ∼ 2.
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separation distance ∆x/a for two cell heights h/a = 1.25, and 2.5. The superscript 1
refers to the cell located at (∆x/2a, h/a, 0) while the superscript 2 refers to the cell
located at (−∆x/2a, h/a, 0).

6.3.3 Cell Shear Stress

The effect of separation distance on the average principal shear stress present on the cell

membrane is shown in Figure 6.11. As the separation distance decreases, the average

cell shear stress decreases markedly, an effect that is more pronounced at the lower

cell height of h/a = 1.25. The decrease in cell shear stress with decreasing separation

distance can be attributed to the corresponding increase in reduced volume caused by

the flattening of the cell membrane (Figure 6.8). At close separation distances the

upstream cell experiences less average shear stress than the downstream cell at a cell

height of h/a = 1.25.

6.3.4 Wall Shear Stress

Figure 6.12 depicts the principal wall shear stress contours for various separation dis-

tances ∆x/a. The regions of elevated shear stress 5% above ambient levels are marked

with solid black lines. At large separation distances of ∆x/a & 9.5 the shear stress of

the region below each cell is the same as the shear stress distribution of an isolated cell.

As the separation distance decreases a region of low shear stress, below the minimum

wall shear stress caused by a single cell, develops below the downstream cell. At the

closest separation distance of ∆x/a = 2.65, this region of low shear stress disappears.
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Figure 6.11: Average principal shear stress σssa/E on the upstream and downstream
cell surfaces as a function of cell separation distance ∆x/a for two cell heights h/a =
1.25 and 2.5.

Instead, a region of high shear stress forms immediately behind the downstream cell,

and ahead of the upstream cell. It is apparent that the upstream cell experiences a

larger region of elevated shear stress ahead of it, due to the presence of the downstream

cell. The region of lower shear stress immediately below the upstream cell also becomes

much smaller as the separation distance decreases.

6.4 Conclusions

Results have been presented in this chapter in order to quantify the effect of cell sep-

aration distance on multiple cell dynamics near a wall in linear shear flow. The effect

of one cell on another has been examined for a cell next to another cell, and for a cell

behind another cell. The effect of cell height and separation distance on the slip and

migration velocities of each cell, and the shear stresses present on the cells and the wall

have been presented.

Side-by-side cells display very little change in deformation as the separation distance

decreases. This negligible change in cell deformation means that the change in average

cell shear stress with separation distance is also marginal. The presence of multiple

cells also has a limited effect on the wall shear stress. The main effect of the presence

of two cells is a region between the two cells of lower shear stress than that observed
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Figure 6.12: Principal wall shear stress contours σssa/E for various separation dis-
tances ∆x/a. The separation distances shown are a) ∆x/a = 9.49, b) ∆x/a = 6.96,
c) ∆x/a = 4.87, d) ∆x/a = 3.76, and e) ∆x/a = 2.65. The solid black line indicates
the region of the wall where the principal shear stress is 5% or more above ambient
levels. The solid white line indicates the region of the wall where the principal shear
stress falls below the minimum wall shear stress for an isolated cell. The dashed
black line indicates the region of the wall where the principal shear stress exceeds the
maximum wall shear stress for an isolated cell. Flow is from left to right.
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for a single cell, a condition not ideal for increased activation of receptors on the vessel

surface.

In contrast, the velocity of the cells are affected markedly as they move closer

together. For both cell heights examined, the slip velocity of the cells was greater

than that of a single cell at the same height. At the closest cell height of h/a = 1.25,

the largest increase in slip velocity was 25% above that of a single cell at the same

height. This increase in slip velocity as a result of the presence of another cell is highly

beneficial for cell adhesion, as each cell moves slower relative to the receptors present

on the vessel surface.

The migration velocity of side-by-side cells also increases above that of a single cell

as the separation distance increases. This is disadvantageous to cell adhesion, as the

cells spend less time in close proximity to the wall. It is evident however that this

effect decreases as the cell height decreases, suggesting that the effect of the presence

of multiple cells on the migration velocity is not important when the cells are very

near the wall. It is also apparent that two cells side-by-side will not come into contact,

because the cells have a tendency to move away from one another. This effect increases

with decreasing separation distance. It is also apparent that this effect decreases with

decreasing cell height.

The effect of one cell behind another on the deformation of each cell is more marked

than for cells side-by-side. At close separation distances the membrane of each cell

flattens in the region closest to the other cell. This causes the deformation of each cell

to decrease in comparison to the deformation of a single cell at the same height. In

turn, this leads to a decrease in average cell shear stress of each cell as the separation

distance lessens. The in-line cell configuration also has an effect on the wall shear stress

distribution. As the cell separation distance decreases, a region of higher shear stress

develops behind the downstream cell, and ahead of the upstream cell.

The in-line cell configuration has a marked effect on the cell velocities. The upstream

cell has a lower slip velocity than a single cell at the same cell height. Conversely, the

downstream cell has a higher slip velocity, and the cells move toward one another. The

migration velocity of the upstream cell is lower than that of the downstream cell for

close separation distances. As a consequence, the upstream cell moves towards and

below the downstream cell. This may lead to subsequent contact with both the wall

and the downstream cell, increasing the probability of adhesion.
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The aim of this chapter was to test the hypothesis that the presence of multiple

cells creates hydrodynamic conditions amenable for cell adhesion. It is clear from the

results presented that the hypothesis is too simplistic a statement. It is evident that the

presence of multiple cells has both a positive and a negative effect on the hydrodynamic

conditions relevant to cell adhesion. The presence of multiple cells has a limited effect

on the wall shear stress, although the presence of a cell downstream of another cell

provides a larger region of elevated shear stress on the vessel wall. It is also apparent

that a cell moving behind another cell will move towards, and below the downstream

cell, increasing the probability of cell-cell or cell-wall contact. The presence of another

cell in the flow has an adverse effect on the cell surface shear stress, which tends to

decrease with decreasing separation distance. Cells moving side-by-side with the flow

experience a larger migration velocity, and tend to move further apart. Beneficially,

the presence of another cell in the flow means that a cell moves slower relative to the

vessel wall than an isolated cell, increasing the probability of bonds forming between

the cell and the wall.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

This chapter presents a summary of the conclusions of the thesis. The thesis has

presented the results of two numerical models developed to model blood cell dynamics

near a vessel wall. The aim of the study has been to provide a more physiologically

relevant model of a blood cell. Cells such as leukocytes and platelets consist of a

complex internal structure immersed in a non-Newtonian cytoplasm. Current models

presented in the literature rarely consider the morphological changes that cells undergo

during cell adhesion. These morphological changes involve an active reorganisation of

the cell cytoskeletion, and consequently the mechanical properties of the cell change

significantly. Evidence of this is the observation of long, thin tethers being pulled from

the surface of platelets and leukocytes moving across a surface.

In Chapter 4, results have been presented from a model of a two-dimensional teth-

ered cell. Models of cell tethering in the literature do not consider cell deformation.

The response of the cell to the flow was observed to be qualitatively similar to the re-

sults of the model developed by King et al. (2005). As the cell deformed, it was pulled

out into the flow, and then pivoted about the tether point and slowly moved toward

the wall. The region of cell membrane that would come into contact with the wall was

found to correspond to a region of elevated shear stress. The ligands present on the cell

membrane may become activated due to this region of elevated shear stress, increasing

the chances of adhesion with the wall and subsequent tether formation at the leading

edge of the cell, leading to stabilised cell rolling.

The model of a tethered cell was used to test the hypothesis that the dynamics

of a tethered cell are affected by the aspect ratio and the internal viscosity of the cell.

The effect of viscosity was found to be negligible at low shear rates, but at high shear
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rates an increase in cell internal viscosity resulted in an increase in cell deformation and

tether force. The increase in cell internal viscosity also caused longer, thinner tethers

to form. Cells at moderate to high shear rates with lower aspect ratios were found to

experience greater tether force and deformation. At low shear rates this was reversed,

with higher aspect ratio cells experiencing greater tether force and deformation. Cells

with lower aspect ratios were observed to form longer, thinner tethers.

Several different strategies were employed in an attempt to make the tether model

more physiologically consistent. For the two-dimensional model, a membrane with

locally varying elasticity was trialled in an attempt to pull a long, thin tether from

the cell, with little deformation of the body of the cell. Another strategy undertaken

involved modelling the cell as a solid body enclosed in a fluid-filled elastic membrane.

Both of these attempts proved unsuccessful. The three-dimensional model proved to be

too insufficiently resolved for a tether to form, so effort was directed at improving the

accuracy of the formulation. An improved method of approximating the unit normal

to the surface was implemented following the work of Zinchenko et al. (1997), but

the formation of a tether was still not possible. Another strategy employed to make

the formulation more stable was to implement dynamic adaption of the mesh, which

offered more promising results but was too computationally expensive for the resources

available.

In Chapter 5, results from a three-dimensional model have been presented. Current

models of cells in the literature focus mainly on cells that have already contacted the

wall and initiated adhesion. As a consequence, the hydrodynamic effect caused by

the presence of a cell has not been quantified. Hence, it was also the aim of this

thesis to quantify the effect of cell deformation on the flow properties relevant to cell

adhesion. The hypothesis tested with the 3D model was that an easily deformable cell

creates hydrodynamic conditions amenable for cell adhesion. It was found that a less

deformable cell is able to approach the wall more easily due to a higher slip velocity

and a smaller migration velocity. Closer to the wall however, it was observed that an

easily deformable cell creates hydrodynamic conditions amenable for cell adhesion. An

easily deformable cell is stressed to a larger degree, and presents a greater surface to

the vessel wall. An easily deformable cell also creates a greater region of elevated wall

shear stress upstream, beneficial for the adhesion of other cells present in the flow. It

can be concluded that it is easier for a cell to approach the wall in its unactivated state.
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Once close to the wall and activation has taken place, the cell is then more likely to

initiate adhesion.

Chapter 6 presented data gathered from the 3D model in order to test the hypothesis

that the presence of multiple cells creates hydrodynamic conditions amenable for cell

adhesion. It has been found that the presence of multiple cells has both a positive and

a negative effect on the hydrodynamic conditions important to cell adhesion. The wall

shear stress distribution is not affected to a significant degree, although the presence

of a cell downstream provides a larger region of elevated shear stress on the vessel

wall for the upstream cell. The cell surface shear stress was found to decrease with

decreasing cell separation distance. Cells moving side-by-side in the flow experience

a larger migration velocity, and have a tendency to move away from each other. A

cell moving behind another cell will move towards, and below the downstream cell,

increasing the probability of cell-cell or cell-wall contact. It was also found that the

presence of multiple cells in the flow increases the slip velocity of the cells significantly,

heightening the probability of cell adhesion.

Although the original aim of the thesis was not fully met with regard to a more

physiologically consistent model of a cell, it is clear that a significant amount of original

work has been presented in this thesis. The dynamics of elastic capsules moving near

or attached to a wall can be used to shed light on the effect of the hydrodynamic

conditions created by a cell on the likelihood of cell adhesion. It is hoped that the

models and results presented in this study can form the basis for the development of

models directly applicable to physiological scenarios.

7.2 Future Work

There is considerable scope for improvement with regard to the models developed in

this thesis. Presented here are a number of possibilities for future work on this topic.

For the three-dimensional model, a simple modification to allow for viscosity ratios

other than unity would mean that the effect of the transition from tank-treading to

tumbling of the cell on the cell velocity could be determined. A more stable formulation

would also enable more detailed studies of single and multiple-cell dynamics. This could

be achieved by several different modifications to the code:

• the stability and accuracy of the unstructured-mesh formulation can be improved

by developing an accurate method to calculate the traction at each node, rather
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than averaging over each element.

• An implementation of a structured mesh formulation would allow the simulation

to be more stable for longer periods of time.

Once the stability and accuracy of the model has been improved, other studies can be

carried out, such as:

• the effects of pulsatile flow,

• the effect of a vessel wall on cells in very close proximity with regard to potential

contact area between the cells.

Other modifications can be implemented to widen the scope of both the 2D and 3D

models:

• To improve the physiological relevance of both the 2D and 3D models, a solid

body can be placed inside the cell membrane to represent the cell nucleus in the

case of a leukocyte, or the microtubule band in the case of a platelet. This would

necessitate the development of some sort of coupling between the solid and the

membrane to prevent the solid from contacting the membrane. This could take

the form of a repulsive force distribution.

• Explicit meshing of external boundaries can be implemented. This would enable

studies of cells moving in vessels to be carried out, allowing the effects of thrombii

or stenoses on cell dynamics to be elucidated.
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APPENDIX A

2D METHOD

A.1 Governing Equations

If inertial effects are considered negligible, then the flow in the exterior and interior of

the cell is governed by the Stokes flow equations (Leal 1992)

µ∇2u = ∇p, ∇ · u = 0, (A.1)

λµ∇2û = ∇p̂, ∇ · û = 0, (A.2)

where u and p are the velocity and pressure fields in the exterior domain Ω, û and p̂

are the velocity and pressure fields in the interior domain V , and λ is the viscosity ratio

of the interior to exterior fluid.

The boundary conditions are such that the velocity is continuous across the interface

C, and that the normal stress at the interface is balanced by elastic tensions in the

membrane. The first condition gives

u = û, x ∈ C. (A.3)

The second condition can be written as (Pozrikidis 2001b)

∆f = (σ − σ̂) · n = γκn − ∂γ

∂l
t, (A.4)

where σ is the stress tensor, ∆f is the stress discontinuity across the interface, n is the

unit normal vector to the interface pointing into the exterior fluid, t is the unit tangent

vector, l is the arc-length along the interface, κ is the curvature of the interface, and γ

is the elastic tension of the membrane.
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A.2 Boundary Integral Equation

The boundary integral equation is formed by seeking solutions to the singularly forced

Stokes flow equations (Pozrikidis 1992)

µ∇2u = ∇p − g δ(x − x0), ∇ · u = 0 (A.5)

where δ is the two-dimensional delta function, x is the observation point, x0 is the

source point, and g is an arbitrary constant vector. By introducing the velocity Green’s

function Gij and the stress Green’s function Tijk, the solution to equation A.5 can be

written as (Pozrikidis 1992):

ui(x) =
1

4πµ
Gij(x,x0)gj (A.6)

σik(x) =
1

4π
Tijk(x,x0)gj (A.7)

Physically, equation A.6 and equation A.7 express the flow field produced by a concen-

trated point force of strength g located at source point x0. The form of the Green’s

function depends upon whether the fluid is bounded or unbounded. For an unbounded

fluid, the Green’s functions can be shown to be (Pozrikidis 1992):

GFS
ij (x,x0) = −δij ln r +

x̂ix̂j

r2
(A.8)

TFS
ijk (x,x0) = −4

x̂ix̂jx̂k

r4
(A.9)

where x̂ = x − x0 and r = |x̂|.

Other Green’s functions have been derived, including for flow in a semi-infinite

domain bounded by an infinite plane wall. These are included in Appendix B.

Using equation A.6, equation A.7 and the Lorentz reciprocal relation the boundary

integral representation for Stokes flow can be derived (Pozrikidis 1992):

uj(x0) = − 1

2πµ

∫

C
Gij(x,x0)fi(x) dl(x) +

1

2π

∫ PV

C
ui(x)Tijk(x,x0)nk(x) dl(x)

(A.10)

where the traction f is defined as σ · n. The first and second integrals on the RHS

of equation A.10 are known as the single-layer and double-layer integrals respectively.

Depending on the type of boundary conditions specified, equation A.10 can be used to

either describe the disturbance velocity caused by a body of any shape that exerts a

nonzero force in a fluid or to describe the hydrodynamic force acting on an arbitrarily
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shaped body. Specifying the boundary distribution of the velocity u reduces equation

A.10 to a Fredholm equation of the first kind for the traction f . Specifying the boundary

distribution of the traction f yields a Fredholm equation of the second kind for the

velocity u.

When considering linear shear flow past a deformable interface, equation A.10 can

be used to derive the integral (Pozrikidis 1992):

uj(x0) =
2

1 + λ
u∞

j (x0) −
1

2πµ1(1 + λ)

∫

C
∆fi(x)Gij(x,x0) dl(x)

+
1 − λ

2π(1 + λ)

∫ PV

C
ui(x)Tijk(x,x0)nk(x) dl(x)

(A.11)

where µ1 is the external fluid viscosity, µ2 is the internal fluid viscosity, and λ is the

viscosity ratio µ2/µ1.

The type of interface is determined by the specification of the force balance at the

surface, denoted by ∆fi(x) in equation A.11. The derivation and calculation of the

force balance is discussed in detail in section A.5.

Non-dimensionalising equation A.11 with length scale L, velocity scale kL, and

stress scale E/L, leads to

u∗

j(x
∗

0) =
2

1 + λ
u∞∗

j (x∗

0) −
1

2π(1 + λ)Ca

∫

C
∆f∗

i (x∗)G∗

ij(x
∗,x0

∗)dl∗(x∗)

+
1 − λ

2π(1 + λ)

∫ PV

C
u∗

i (x
∗)T ∗

ijk(x,x0
∗)n∗

k(x
∗)dl∗(x∗)

(A.12)

where Ca is the capillary number, and E is the elastic shear modulus of the membrane.

The superscript ∗ denotes a dimensionless quantity. From hereafter non-dimensionality

will apply to all quantities, and the superscript will not be used.

The evolution of the cell interface is governed by the elastic capillary number Ca,

representing the ratio of viscous forces to elastic forces, and the viscosity ratio λ. The

Capillary number Ca can be considered as the dimensionless shear rate, and is defined

as:

Ca =
µkL

E
. (A.13)

A.3 Contour Discretisation

The initial cell interface C is described by a set of NP marker points, and the shape of

the interface is approximated by cubic spline interpolation with respect to a monotonic

parameter s. A suitable choice for the monotonic parameter is

sk = k, (A.14)
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where sk is the value of s at the kth node.

The kth element is located between the kth and the k + 1 node, and is described in

parametric form by the cubic polynomials

x(s) = Pk(s) = ak(s − sk)
3 + bk(s − sk)

2 + ck(s − sk) + dk, (A.15)

y(s) = P̂k(s) = âk(s − sk)
3 + b̂k(s − sk)

2 + ĉk(s − sk) + d̂k, (A.16)

where sk ≤ s ≤ sk+1, and ak, bk, ck, dk, âk, b̂k, ĉk and d̂k are the coefficients of the

polynomials Pk and P̂k.

To find the unknown coefficients ak, bk, ck and dk, smoothness and interpolation

conditions can be used. The polynomials must satisfy the interpolation conditions

P (sk) = xk for k = 1, ..., NE + 1 (A.17)

Pk(sk+1) = Pk+1(sk+1) for k = 1, ..., NE − 1. (A.18)

At the interior nodes the first and second derivatives must be continuous, yielding

P ′

k(sk+1) = P ′

k+1(sk+1) for k = 1, ..., NE − 1 (A.19)

P ′′

k (sk+1) = P ′′

k+1(sk+1) for k = 1, ..., NE − 1 (A.20)

This gives 4NE − 2 conditions to solve for the 4NE unknown coefficients ak, bk, ck

and dk. Hence, two extra constraints are required at the end-points in order to calculate

the unknown coefficients. The end-point constraints are discussed in subsection A.3.1.

It can be shown that the the conditions of smoothness and interpolation lead to

an equation involving only the second derivatives P ′′

k (s) of the form (Mathews & Fink

1999)

(xk − xk−1)P
′′

k−1 + 2(xk+1 − xk−1)P
′′

k

+ (xk+1 − xk)P
′′

k+1 = 6

[

xk+1 − xk

sk+1 − sk
− xk − xk−1

sk − sk−1

]

(A.21)

for k = 2, ..., NE . This gives a linear system of NE − 1 equations for the NE + 1

unknowns P ′′

k+1. With an appropriate choice of end-point constraints the system can

be solved using regular matrix methods, or with the computationally efficient Thomas’

algorithm (Pozrikidis 2002).

Once the second derivatives have been determined from equation A.21, the coeffi-
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cients ak, bk, ck and dk follow as

ak =
P ′′

k+1 − P ′′

k

6(sk+1 − sk)
, (A.22)

bk =
P ′′

k

2
, (A.23)

ck =
xk+1 − xk

sk+1 − sk
−

(sk+1 − sk)(2P
′′

k + P ′′

k+1)

6
, (A.24)

dk = yk. (A.25)

The 4NE unknown coefficients âk, b̂k, ĉk and d̂k can be found in exactly the same

fashion.

The unit normal vector components can now be found using

n1(s) = −dy

dl
= − 1

hk(s)

(

3âk(s − sk)
2 + 2b̂k(s − sk) + ĉk

)

, (A.26)

n2(s) =
dx

dl
=

1

hk(s)

(

3ak(s − sk)
2 + 2bk(s − sk) + ck

)

, (A.27)

where the metric coefficient hk(s) is defined as

hk(s) =
[

(

3ak(s − sk)
2 + 2bk(s − sk) + ck

)2

+
(

3âk(s − sk)
2 + 2b̂k(s − sk) + ĉk

)2
]1/2

. (A.28)

The unit tangent vector to the cell contour follows as

t1(s) = −n2(s) (A.29)

t2(s) = n1(s) (A.30)

A.3.1 End-Point Constraints

Natural Spline

When the cell contour is tethered to the wall, it is reasonable to expect that the curva-

ture will be zero at the end-points. Thus, the two conditions necessary to solve equation

A.21 are

P ′′

1 (s1) = 0 (A.31)

P ′′

NE
(sNE+1) = 0 (A.32)

Periodic Spline

When the cell is not tethered to the wall, the end-point constraints are such that the

first and second derivatives of the cubic spline polynomials are continuous across the
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entire cell contour. This gives the two conditions necessary to solve equation A.21 as

P ′

1(s1) = P ′

NE
(sNE+1) (A.33)

P ′′

1 (s1) = P ′′

NE
(sNE+1) (A.34)

A.4 Discretisation of Boundary Integral Equation

Discretising equation A.12 yields:

uj(x0) =
2

1 + λ
u∞

j (x0) −
1

2π(1 + λ)Ca

NE
∑

m=1

∫

Em

∆fi(x)Gij(x,x0)dl(x)

+
1 − λ

2π(1 + λ)

NE
∑

m=1

∫ PV

Em

ui(x)Tijk(x,x0)nk(x)dl(x)

(A.35)

Equation A.35 can be solved to yield the velocity of each marker point, once the

traction discontinuity ∆f and the integrals over each element have been computed.

The definition and calculation of the traction discontinuity follow in section A.5. The

singularities that occur when x and x0 are equal need to be dealt with in both the

single and double layer integrals. The methods for dealing with both regular and

singular integrals are outlined in section A.6.

A.5 Elastic Tension

A.5.1 Definition

The traction discontinuity can be calculated from Equation A.4 once the membrane

tension γ is known. The membrane tension γ can be determined from the deformation of

the cell interface using a constitutive equation. For small deformations, the membrane

tension can be written as (Breyiannis & Pozrikidis 2000)

γ = E(ω − 1), (A.36)

where E is the shear elastic modulus, and ω is the stretch ratio defined as

ω =
∂l(t)

∂l0
, (A.37)

where l(t) is the arc-length of the interface at time t, and l0 is the arc-length of the

interface in its undeformed state.
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A.5.2 Calculation

The elastic stress in the membrane can be calculated by fitting a cubic spline to the

arc-length of the contour, using the arc-length of the reference shape as the monotonic

parameter. The stretch ratio ω is then calculated using

ω(l0) =
∂l

∂l0
= 3al(l0 − l0,k)

2 + 2bl(l0 − l0,k) + cl. (A.38)

The result of equation A.38 can then be used in equation A.36 to give the membrane

tension γ.

The membrane tension γ at each node is then fitted with a cubic spline, using the

arc-length l as the monotonic parameter. The last term of equation A.4 can then be

calculated using
∂γ

∂l
= 3aγ(l − lk)

2 + 2bγ(l − lk) + cγ . (A.39)

A.6 Integration

A.6.1 Non-Singular Integrals

When the source point x0 does not lie on the element Em, the integrals are non-singular

and can be calculated using Gauss-Legendre quadrature (Pozrikidis 2002)

∫

Em

f(x) dl(x) =

∫ sk+1

sk

f(x(s))hk(s) ds

=
sk+1 − sk

2

∫ 1

−1
f(x(ξ))hk(ξ)dξ =

sk+1 − sk

2

NQ
∑

m=1

f [x(ξm)]hk(ξm)wm, (A.40)

where f(x) is the function being integrated, NQ is the number of quadrature base

points, and wm is the integration weight corresponding to the mth base point. The

parameter ξ is defined as

s =
1

2
(sk + sk+1) +

1

2
(sk+1 − sk)ξ, (A.41)

A.6.2 Singular Integrals

Single-Layer Integral

When the source point x0 lies on the element Em, the integrand Gij exhibits a singular-

ity of O(ln r). The singularity prevents the accurate use of Gauss-Legendre quadrature.

To isolate the singularity, the integral over an element can be written as
∫

Em

Gij(x,x0) dl(x) =

∫

Em

(Gij(x,x0) + δij ln r) dl(x) −
∫

Em

δij ln r dl(x), (A.42)
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where the logarithmic singularity has been removed from the first integral on the RHS

of equation A.42. This integral can now be calculated with Gauss-Legendre quadrature.

The second integral on the RHS of equation A.42 can be dealt with by writing it as the

sum of two integrals

−
∫

Em

δij ln r dl(x) = −
∫ sk+1

sk

δij ln
r

|s − s0|
hk(s) ds −

∫ sk+1

sk

δij ln |s − s0| hk(s) ds,

(A.43)

where s0 is the position of the source point. The first integral on the RHS of equation

A.43 is non-singular, and can be computed using Gauss-Legendre quadrature. The

second integral on the RHS of equation A.43 can also be written as the sum of two

integrals

−
∫ sk+1

sk

δij ln |s − s0| hk(s) ds

= −
∫ s0

sk

δij ln |s − s0|hk(s) ds −
∫ sk+1

s0

δij ln |s − s0|hk(s) ds.

(A.44)

Choosing auxilliary dummy variables of η = s0 − s and η̂ = s − s0, equation A.44 can

be rewritten as

−
∫ s0

sk

δij ln |s − s0|hk(s) ds −
∫ sk+1

s0

δij ln |s − s0|hk(s) ds

= −
∫ s0−sk

0
δij ln(η)hk(s0 − η) dη −

∫ sk+1−s0

0
δij ln(η̂)hk(s0 + η̂) dη̂

(A.45)

Both the integrals on the RHS of equation A.45 can be dealt with in the same manner.

Considering only the first integral on the RHS of equation A.45, it can be written as

−
∫ s0−sk

0
δij ln(η)hk(s0 − η) dη

= −(s0 − sk)

∫ 1

0
δij ln[ξ(s0 − sk)]hk[s0 − ξ(s0 − sk)] dξ

= −(s0 − sk)

∫ 1

0
δij ln(ξ)hk[s0 − ξ(s0 − sk)] dξ

− (s0 − sk) ln(s0 − si)

∫ 1

0
hkδij [s0 − ξ(s0 − sk)] dξ

(A.46)

The second integral in the last expression can be computed using Gauss-Legendre

quadrature. The first integral can be computed using a quadrature formulated to

deal with logarithmic singularities. This allows the integral to be computed using

∫ 1

0
δij ln(ξ)hk[s0 − ξ(s0 − si)] dξ =

NQ
∑

m=1

δijhm[s0 − ξ(s0 − sm)]wm (A.47)

The values of ξm and wm are available in Pozrikidis (2002).
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Double-Layer Integral

The integrand of the 2D double-layer integral is non-singular and can be computed

using Gauss-Legendre quadrature.

A.7 Matrix Inversion

If the viscosity ratio is not equal to one, the velocities of the marker points cannot be

found explicitly. As a consequence a linear set of 2NP equations need to be solved.

The LAPACK routine dgesv can be used to solve the linear set of equations using LU

decomposition to yield the velocities of the marker points.

A.8 Time-stepping

Once the velocities of the particle have been found via the solution of the boundary-

integral equations, a time-stepping routine needs to be employed to determine the new

position and shape of the cell membrane. The differential equation to be solved to

determine the new position of the membrane is given by

dxi

dt
= ui (A.48)

To solve equation A.48, the Runge-Kutta-Fehlberg (RKF45) method is used (Math-

ews & Fink 1999). In the RKF45 method, Equation A.48 is solved using a 4th order

Runge-Kutta method. Based on the local truncation error, the time step for the next

integration is adjusted to ensure optimal time step size. An approximation of the local

truncation error is obtained by comparing the solution given by the 4th order Runge-

Kutta method to that given by a 5th order Runge-Kutta method. Each time step

requires six velocity evaluations, given by

k1 =u
(

t(n), x(n)
)

∆t,

k2 =u

(

t(n) +
1

4
∆t, x(n) +

1

4
k1

)

∆t,

k3 =u

(

t(n) +
3

8
∆t, x(n) +

3

32
k1 +

9

32
k2

)

∆t,

k4 =u

(

t(n) +
12

13
∆t, x(n) +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3

)

∆t,

k5 =u

(

t(n) + ∆t, x(n) +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)

∆t,

k6 =u

(

t(n) +
1

2
∆t, x(n) − 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)

∆t.

(A.49)

121



A. 2D METHOD

The solution to equation A.48 can then be obtained using a 4th order Runge-Kutta

method

x(n+1) = x(n) +
25

216
k1 +

1408

2565
k3 +

2197

4101
k4 −

1

5
k5. (A.50)

Another solution can be obtained using a 5th order Runge-Kutta method

x̂(n+1) = x(n) +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6, (A.51)

in order to obtain an estimate of the local truncation error.

The time step size ∆t can then be controlled using the quantity

s =

(

1
2ǫ

∣

∣x̂(n+1) − x(n+1)
∣

∣

)
1

4

(A.52)

where ǫ is the specified error control tolerance on the time step size, and the denominator

is the local truncation error estimate. If s is greater than 1.5, then the time step is

doubled. If s is less than 0.75, the time step is halved. The error control tolerance used

in all simulations was ǫ = 10−6.

A.9 Cell Metric Definitions

A.9.1 Taylor Deformation Parameter

A common measure of deformation used is the Taylor deformation parameter D12,

which is defined as

D12 =
|l1 − l2|
l1 + l2

, (A.53)

where li denotes the semi-axis length in the ith direction of an ellipse with the same

inertia tensor as the cell. The inertia tensor of the cell is defined as

I =

∫

S
ρ

[

x2 −xy
−xy y2

]

dA = ρ

∫

C

[

1
3x3nx −1

4xy(xnx + yny)
−1

4xy(xnx + yny)
1
3y3ny

]

dl, (A.54)

where ni is the ith component of the unit normal vector on the interface of the cell,

and ρ is the density. The surface integral in equation A.54 has been converted to a line

integral using the divergence theorem. The inertia tensor of an ellipse is given by

[

1
4ρAl21 0

0 1
4ρAl22

]

(A.55)

The semi-axis lengths l1, and l2 can be calculated by finding the eigenvalues of the cell

inertia tensor and equating them to the eigenvalues of the ellipse inertia tensor. The

Taylor deformation parameter can then be calculated using Equation A.53.
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A.9.2 Force on Tether

The force on the cell tether can be calculated using

F =

∫

C
∆f dl. (A.56)
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APPENDIX B

WALL-BOUNDED FLOW GREEN’S

FUNCTIONS

B.1 Two-Dimensional Green’s Function

The two-dimensional Green’s function for a point source bounded by an infinite plane

wall at y = w is given by

GW (x,x0) =GFS(x,x0) − GFS(x,xIM

0 ) (B.1)

+ 2h2
0G

D(x,xIM

0
) − 2h0G

SD(x,xIM

0
), (B.2)

where h0 = y0 − w, xIM
0 = (x0, 2w − y0), and GFS is the free-space Green’s function

defined in equation A.8. The point xIM
0 is the image of the source point x0 with respect

to the wall. The potential dipole GD and the Stokeslet doublet GSD are defined as

GD
ij (x,x0) = ±

(

δij

r2
− 2

x̂ix̂j

r4

)

, (B.3)

GSD
ij (x,x0) = x̂2G

D
ij (x,x0) ± δj2x̂i − δi2x̂j

r2
, (B.4)

where x̂ = x − x0 and r = |x̂|. Equation B.3 and equation B.4 are positive for j = 1

and negative for j = 2.

The two-dimensional stress tensor is given by

T W (x,x0) =T FS(x,x0) − T FS(x,xIM

0 ) (B.5)

+ 2h2
0T

D(x,xIM

0
) − 2h0T

SD(x,xIM

0
), (B.6)

where T FS is the free-space stress tensor defined in equation A.9. The tensors T D and

T SD are defined as

TD
ij (x,x0) =

∂GD
ij

∂xk
+

∂GD
kj

∂xi
, (B.7)

T SD
ij (x,x0) = −2δik

x̂j

r2
+

∂GSD
ij

∂xk
+

∂GSD
kj

∂xi
. (B.8)
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B.2 Three-Dimensional Green’s Function

The three-dimensional Green’s function for a point source bounded by an infinite plane

wall at y = w is given by

GW (x,x0) =GFS(x,x0) − GFS(x,xIM

0 ) (B.9)

+ 2h2
0G

D(x,xIM

0
) − 2h0G

SD(x,xIM

0
) (B.10)

where h0 = y0−w, xIM
0 = (x0, 2w−y0, z0), and GFS is the free-space Green’s function

defined in equation 3.11. The point xIM
0 is the image of the source point x0 with respect

to the wall. The potential dipole GD and the Stokeslet doublet GSD are defined as

GD
ij (x,x0) = ±

(

δij

r3
− 3

x̂ix̂j

r5

)

(B.11)

GSD
ij (x,x0) = x2G

D
ij (x,x0) ± δj2xi − δi2xj

r3
(B.12)

where x̂ = x − x0 and r = |x̂|. Equation B.3 and equation B.4 are positive for j = 1

and 3, and negative for j = 2.

The three-dimensional stress tensor is given by

T W (x,x0) =T FS(x,x0) − T FS(x,xIM

0
) (B.13)

+ 2h2
0T

D(x,xIM

0
) − 2h0T

SD(x,xIM

0
), (B.14)

where T FS is the free-space stress tensor defined in equation A.9. The tensors T D and

T SD are defined as

TD
ij (x,x0) = ±

(

−δikxj + δijxk + δkjxi

r5
+ 5

xixjxk

r7

)

(B.15)

T SD
ij (x,x0) = x2T

D
ijk(x,x0) ± 6

(

δikxjx2 − δj2xixk

r5

)

(B.16)
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