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Abstract

Vortex breakdown is a much studied phenomenon of swirling jet flows, first identified in 1957

occurring in vortices over delta-wing aircraft wings. Delta-wing aircraft at high angles of attack rely

on vortices to generate lift, and so the formation of vortex breakdown over the wings can seriously

affect this. Vortex breakdown is characterised by an abrupt expansion of the laminar swirling jet

away from the central axis, followed typically by a region of recirculating flow. It is most commonly

associated with the formation of a point of axial flow stagnation. Despite general understanding of

the conditions of vortex breakdown occurrence, predictions of physical features, such as the location

where a breakdown will occur, or the size and shape of its recirculation zone, still can not be made.

Research into controlling the occurrence of vortex breakdown have tended to be very specific to the

particular experimental situation, and little has been done to systematically investigate the

interaction with varying control method parameters. This thesis aims to provide a detailed

investigation into the physical response of a vortex breakdown to the presence of a mechanical

control technique. Using a bluff body in the form of a sphere, two swirling jet vortex breakdown

apparatuses were investigated: the open tank swirling jet, and the confined spinning lid cylinder.

A sphere was held in place on the central axis of a swirling jet issuing into a large rectangular

tank of stagnant water. For various axial flow velocities, sphere sizes and sphere locations, the

rotational component of the jet was varied, and the dynamics of the stagnation point position were

measured, as well as the shape of the vortex breakdown formed. The sphere was found to enhance

the onset of breakdown, causing it to occur at a lower swirl velocity than without the sphere.

Evidence was found for the existence of two regions of relative stability in the stagnation point

position: the near-sphere region, and the near-nozzle regions. The sphere size was found to

determine whether the shear-layer of the vortex breakdown reattached to the sphere surface, and the

axial position of the sphere was found to affect the near-nozzle dynamics of the stagnation point.
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Quantitative velocity measurements of the interaction between a sphere and vortex breakdown

were performed in a closed cylinder swirling flow. Rotating one of the end-walls generated a vortex

breakdown on the central axis of the cylinder, and a sphere was held in place near the centre of the

cylinder by a sting protruding from the stationary end-wall. In general, formation of the vortex

breakdown occurred despite the presence of the sphere, although shape, width and position were all

variously affected. Rotating the sphere in conjunction with the rotating end-wall was found to affect

the size and strength of the bubble more than its axial position. A second stagnation point formed

upstream of the sphere surface for large rotation rates in co- and counter-rotating directions. Co-

and counter-rotation also formed a downstream recirculation zone with a stagnation point on the

central axis. This stagnation point was then found to form on the surface of the sphere for

sufficiently large spheres.
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Chapter 1

Introduction

It is now 50 years since Peckham & Atkinson (1957) first published their discovery of vortices

spontaneously “bursting” over their delta wing experiments. Yet all this time has failed to produce a

complete theoretical description of the phenomenon that can predict where along a vortex the

bursting, or as it is usually called “breakdown”, will occur. Vortex breakdown can be described as

the sudden and spontaneous change in the form of a swirling jet flow from a laminar and relatively

confined vortical flow to a region of sudden expansion of the jet away from the central axis. Shown

in figure 1.1 is a typical image of vortex breakdown occurring over an aircraft flying at a high angle

of attack. A vortex from the leading strake edge is visualised with smoke, and can be seen to burst

near the tail of the aircraft.

Figure 1.1: Smoke visualisation of a leading strake vortex from a military jet (FA-18).
Vortex breakdown is seen here towards the tail fin of the aircraft as a bursting of the
vortex (Mitchell & Delery 2001).
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1. INTRODUCTION

Often, the breakdown region is characterised by the appearance of a stagnation point, where the

axial flow of the central vortex core slows to zero, and beyond which the main vortex breakdown

structure appears. The conditions under which vortex breakdown occurs are generally well known:

typically, a spiraling jet of fluid will undergo vortex breakdown when the ratio of the jet’s rotational,

or azimuthal, component of velocity to its axial velocity component is approximately unity. This

ratio, often called the swirl ratio, is not a single precise value, but is known to depend on the exact

profile of the various velocity components of the swirling jet; the closest any study has come to being

able to predict the stagnation point position was that of Hall (1972). This study found that for a

quasi-cylindrical approximation to a swirling jet the location at which the approximation failed

coincided with the actual position of the breakdown. However, there has been no explanation as to

why this coincidence occurred.

As part of the studies on predicting stagnation point location, many have experimentally mapped

the position of the stagnation point for varying flow conditions of the particular swirling jet.

Sarpkaya (1971) first provided position measurements in a swirling pipe flow, finding that increasing

the swirl of the jet moved the breakdown position upstream. This general trend has also been seen

in many other differently produced swirling jet flows, such as in the torsionally driven cylinder (e.g.,

Fujimura et al. (2004), among others). The desire to understand where a breakdown will form is

primarily driven by delta wing research. Delta wing aircraft flying at high angles of attack rely on

leading edge vortices for lift production over wings. The presence of vortex breakdown under some

high angle-of-attack air flows can be detrimental to the lift characteristics of the particular wing over

which the breakdown occurs. For this reason, research into methods of controlling vortex breakdown

over delta wings has been the principal driver of research into novel control methods. As discussed in

the Mitchell & Delery (2001) survey of delta wing vortex breakdown control studies, control

techniques can be generally classed as being a pneumatic or mechanical method of control.

Pneumatic means of control use a secondary flow to interfere with the primary vortex flow, either

pulsing it or steadily streaming (both in positive or negative flow rates) to affect the forming

breakdown. Mechanical control methods on aircraft use physical structures, such as winglets, fences

or strakes to modify the original flow form and control the onset of breakdown or its position when it

does occur. Delta wing control methods have generally been very specific to the aircraft model being

studied, and as such, no general theories have been shown that can predict the breakdown location

(although it should be noted that Traub (1996) determined an empirical fit to stagnation point

location data). Furthermore, a large number of parameters can be varied in delta wing research,
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such as chord length, angle of attack, wing sweep angle, the addition of geometries, tail fins, to name

a few. As such, systematic parameter space investigations are scarce and the applications of any

findings are mostly limited to a particular experimental setup or wing model and so not easily

generalised.

Systematic investigations into particular control techniques are also very limited in other swirling

jet flows. This is despite there being much research into these base flows to which control techniques

can be easily compared. The few studies of mechanical breakdown control methods in

non-delta-wing flows have varied only a few flow parameters. These include studies of

physical/partial blockages in pipe flows (Mattner et al. 2003), and physical intrusions in closed

cylinders (Husain et al. 2003), with neither looking at varying more than a single flow parameter.

This thesis aims to contribute to the important field of vortex breakdown control research by

undertaking a thorough parameter space investigation of a particular mechanical control method.

This will attempt to provide insight into the behaviour of vortex breakdown in the presence of a

bluff body in two swirling jet configurations: a closed, torsionally driven cylinder flow, and the open

flow swirling jet. A detailed and systematic parameter space investigation of the control method will

be presented, showing the behaviour of the vortex breakdown as both the flow conditions and the

physical geometry of the bluff body are altered. The effect that their variation has on breakdown

structure and position will be determined, with a view to providing theoreticians with a detailed

reference of the response of vortex breakdown to this particular mechanical intrusion. In chapter 2,

the state of the art in the two swirling flows investigated is discussed, followed by a summary of the

experimental methods used in the current investigations in chapter 3. Chapter 5 presents the results

of the torsionally driven cylinder flow investigation, and chapter 4 the results of the open flow

swirling jet investigation. The findings are then summarised in chapter 6 as well as providing

possible directions of further research stemming from these.
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Chapter 2

Literature Survey

2.1 Overview

Vortex breakdown is a term used to characterise a phenomenon found in certain swirling jet

flows. Typically it occurs in jets where the rotational or azimuthal component of the jet flow velocity

is in the order of the longitudinal, or axial, velocity component. The ratio of these two velocity

components is often cited as a swirl ratio or swirl number, and the inverse tan of this ratio is often

referred to as the helix angle of the jet. When vortex breakdown occurs in jets, an abrupt change in

the form of a swirling jet occurs, changing it from a steady flow to a quite complex region of varying

flow components. Vortex breakdown can be described in terms of three main flow regions. The first

is the original swirling jet, where axial and azimuthal velocity components vary little in the axial

direction. The second is the point of breakdown, which is typically characterised by the formation of

a point of stagnation in the axial flow component on the jet centre-line, and streamlines around the

central axis of the flow start diverging as they approach this point. The third region comprises the

structure of vortex breakdown, and usually takes the form of a region of recirculating flow that often

contains reverse axial flow. Beyond this, the flow appears as a wake-like structure, and as such can

be stable, fluctuating or turbulent.

Vortex breakdown plays an important role in many swirling flows, such as those forming from the

leading-edge vortices of delta-wing aircraft, and in the stabilisation of combustion regions to increase

the efficiency of a chemical reaction. Ishizuka (2002) provides a detailed review of the literature in

combustion research, and how vortex breakdown is sometimes used in this field.

The first attributed account of a vortex breakdown was to Peckham & Atkinson (1957), when

conducting wind tunnel experiments over a delta wing. Peckham & Atkinson noticed what appeared
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2. LITERATURE SURVEY

to be ‘bursting’ over the delta wing section under various flow conditions. However this observation

was not part of their investigations, and it was left to other researchers (e.g., Werlé 1960) to pursue

that direction. In 1968, Vogel (1968) first noticed a flow reversal in a torsionally driven cylindrical

flow, and later still, vortex breakdown was generated in a pipe flow by Kirkpatrick (1964). Since

then there have been many studies in confined pipe flows, such as Sarpkaya (1971), Wang & Rusak

(1997), Snyder & Spall (2000) (which numerically duplicated Sarpkaya’s study), and Mattner et al.

(2003). For complete reviews of the literature and state of the art in vortex breakdown research,

extensive reviews have been performed by Hall (1972), Leibovich (1978), Escudier (1988), Lucca

Negro & O’Doherty (2001), Mitchell & Delery (2001), and Ishizuka (2002).

Vortex breakdown has traditionally been studied primarily for its behaviour over delta wings,

specifically its interaction with the flow topology over the aircraft. This is because since the primary

source of lift for a delta-wing aircraft operating at high angles of attack is from the vortices from the

leading edge, any breakdown of these vortices would dramatically affect the lift. This effect has also

motivated much research into vortex breakdown control as a possible mechanism for steering an

aircraft by reducing lift over a wing very suddenly. In aircraft flow topologies, the breakdown bubble

has been seen to buffet aircraft structures, such as the tail fin (Kim et al. 1995), reducing the fatigue

life of the part. Vortex breakdown has also been used to stabilise flames in combustion burners, and

create a very efficient method of mixing combustion material with air and the flame front in and

around the recirculation region. The mixing capability of vortex breakdown has also seen some

research into its applications in biomedical research, especially in bio-reactors, where efficient mixing

is used to cultivate cell growth (Dusting et al. 2006).

Why vortex breakdown occurs is not precisely known, and some of the theories developed over

time are cited later in section 2.3. It has been variously speculated that vortex breakdown is

described as, for example, a transition between conjugate flow states (Benjamin 1962), or as an

artifact of the growth of instabilities in the flow. However, all theories so far have their limitations

and as such have not been able to describe satisfactorily the reasons for breakdown to occur.

Furthermore, there seems to be even less progress in determining the location where breakdown will

occur in any given swirling jet. The general flow conditions under which a swirling jet will undergo

vortex breakdown appear to be well defined, in terms of a certain combination of swirl ratio and

axial Reynolds number. But these descriptors alone are not able to determine how far along the jet a

breakdown will occur. Some studies have attempted to empirically predict a location over delta

wings (Traub 1996), while others have stated that it cannot be located due to the nature of the

6



2.2. Forms and shapes

underlying mechanism (Hall 1972).

In this literature summary, the main areas of vortex breakdown research will be highlighted by

reporting on some of the key studies that have shaped research in each area. First, the various forms

of breakdown will be detailed along with the context in which each of these forms has been found.

Then will follow a summary of some of the more important theories that have been developed

regarding how vortex breakdown evolves from a swirling jet, followed by some of the techniques used

to quantify and measure breakdown. Finally, a summary of attempts made at controlling the

occurrence of vortex breakdown will be presented. Particular attention will be given to the use of

bluff bodies in breakdown control, specifically presenting how spheres have been studied in fluid

flows.

2.2 Forms and shapes

Although vortex breakdown only occurs for particular swirling jet flows, the diversity in the

manner in which swirling jets are created leads to a variety of different situations where breakdown

forms, and probably as a consequence, a variety of what appear to be structurally different outcomes

of the initial breakdown. Faler & Leibovich (1977) were the first to attempt a classification of the

varying forms of vortex breakdown found, and classified several distinct forms.

2.2.1 Bubble

This form of breakdown is considered to be the classical form of vortex breakdown. It is

characterised by an abrupt appearance of a bubble-like structure on the central axis of the swirling

flow. Although it was first observed in pipe flow (Kirkpatrick 1964), it was later discovered in

torsionally driven cylinders (Vogel 1968), as well as in open delta wing flows (Peckham & Atkinson

1957). Shown in figure 2.1 is a dye visualisation image from a pipe-flow study by Sarpkaya (1971),

with the flow in the image from left to right. Here the bubble region on the central axis can be seen

as the darker region, and is surrounded by an expanded envelope (blue dye in figure 2.1) that is

relatively laminar as it passes over the slowly recirculating bubble. Upstream of the bubble, the axial

component of the jet is known to decrease in magnitude in the axial direction, until it becomes zero,

and a stagnation point forms. From here, the flow undergoes an abrupt expansion, and a reversal of

the flow appears downstream of the stagnation point on the central axis.
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2. LITERATURE SURVEY

Figure 2.1: The standard form of what is known as the bubble breakdown. This image
was taken in a pipe flow by Sarpkaya (1971). Flow is from left to right, with visualisation
dye released on the central jet axis.

Faler & Leibovich (1977) attempted to categorise the pipe-flow breakdown structures, and found

that there were many stable forms as the swirl was increased for a given axial Reynolds number of

the flow. However, it was found that some forms of breakdown would spontaneously change form,

without adjusting the flow settings. The bubble type of breakdown is categorised by Faler &

Leibovich (1977) as Type-0, and is described as an axisymmetric mode of breakdown. Bottaro et al.

(1991) generated a bubble breakdown inside a pipe flow with asymmetric inflow conditions, and

found that the general flow features of a variety of flows generated were consistent and comparable

with axisymmetric studies.

The bubble is the predominant form of breakdown inside closed cylinder flows. In what is known

and described as a torsionally driven cylinder, Vogel (1968) showed that rotating one of the circular

end-walls of a closed cylinder of fluid could produce a vortical flow on the central axis. In this way,

fluid is driven radially outward along the surface of that end-wall, then circulates around the

container by moving from the stationary end-wall axially toward the centre of the rotating wall.

This motion forms a swirling central core region comparable to a swirling jet, and it is on this

central core that under certain conditions, Vogel observed a reversal in the axial flow direction.

Later, Escudier (1984) was able to present work of dye visualisation of this phenomenon, showing

the formation of a vortex breakdown bubble, seen here in figure 2.2. Since then, Lopez (1990)

confirmed numerically the form of the bubble breakdown in the experiments of Escudier (1988), and

Fujimura et al. (2001) reported detailed velocity measurements of the entire closed cylinder

apparatus with a vortex breakdown bubble.

The bubble region itself is known to be a region of slowly recirculating flow, where the fluid

moves much slower than the free-stream. It was experimentally determined to contain a single

toroidal structure (speculated by Sarpkaya 1971, and shown later by Brücker & Althaus 1992, who

took multiple slices through the bubble and joined streamlines to show this. The structure was

8
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Figure 2.2: The vortex breakdown formed inside a closed cylinder. Shown here is an
experimental result from the study of Escudier (1984) in a torsionally driven cylinder. The
rotating base-plate is at the bottom of the image, and illumination of fluorescein dye is in
meridional plane through the central axis.

confirmed subsequently by Snyder & Spall 2000). Faler & Leibovich (1978) measured low-frequency

asymmetries in the two-celled structure of the axisymmetric bubble breakdown. Research to

determine the open or closed nature of the bubble region has suggested that the volume inside is

filled and emptied by a slow process near the downstream stagnation point. Recently, Sotiropoulos

et al. (2001) found numerically in a closed cylinder set up that this process is sporadic, with a

bursting process that was shown to be chaotic (later confirmed experimentally by Sotiropoulos et al.

2002).

Shown in figure 2.3 is a time series of the bubble form of breakdown from Sotiropoulos et al.

(2001), where a set of 10 000 particles was released on the surface of the bubble. As the flow evolved,

particles were drawn into the recirculation zone, and in the last row of images, the bursting of

particles from the central bubble region can be seen. This shows the sporadic nature of the mixing

process, and that although the bubble appears stationary and axisymmetric, it has aspects that are

9
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Figure 2.3: Lagrangian particle tracking results of Sotiropoulos et al. (2001) showing the
bursting of particles from the slow moving recirculation region in the bubble breakdown.
For a vortex breakdown bubble (a), where the axial flow is from the top of the image, a set
of 10 000 particles are released from the surface of the bubble, colour coded according to
their axial origin. As the flow evolves over time, (b–i) the recirculation zone chaotically
draws particles into the central region of the bubble (c–f), before a bursting event (g)
occurs, releasing particles from the bubble. The number of particles inside the
recirculation zone was shown to decrease over time in a “devil’s staircase” fashion.
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chaotic and can seem asymmetric. The erratic-looking movement of the particles was also used to

explain asymmetries seen by Spohn et al. (1998) in their closed-cylinder visualisation experiments.

There, Sotiropoulos & Ventikos (2001) showed that particle movements in the bubble region were

spatially chaotic.

Many researchers have continued investigations into the closed cylinder bubble breakdown, and

particularly on varying geometric parameters. These have included rotating the other end-wall

(Valentine & Jahnke 1994, Sørensen et al. 2006), rotating the side-walls (Fujimura et al. 2004),

rotating partial sections of the end-wall (Piva & Meiburg 2005 and Mununga et al. 2004), and

addition of conical end-walls (Pereira & Sousa 1999). Most importantly, the closed cylinder flow

enables very detailed studies of vortex breakdown, due to its simplicity in design and limited

parameter space. Gelfgat et al. (1996) and Tsitverblit (1993) both used the closed cylinder flow to

demonstrate the very important finding that the onset of bubble breakdown occurs through a

smooth change in the flow field and not by any instabilities in the vortex itself. This shows the ease

of performing detailed experiments in the vortex breakdown using the closed cylinder flow.

H

r

Figure 2.4: Streamlines of the numerical study by Piva & Meiburg (2005) of a
free-surface cylinder flow, with a rotating base diameter (r ≡ 1) less than that of the
cylinder (2.3r). Shown in the right-hand side of the image is the third recirculation region,
which does not affect the formation of the vortex breakdown (left side of image). The
height ratio considered is 1 with Re = 1300.

Piva & Meiburg (2005) investigated the free surface torsionally driven cylinder with only a smaller

radius section of the end-wall used as the main fluid driving force. When the cylinder wall was

greater than 1 cylinder height away from the rotating disk, a third circulating flow regions was set

up away from the central axis (fig. 2.4) with the central axis vortex breakdown region still present.

This showed the robustness of vortex breakdown structure to form in the cylindrical swirling jet.
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2.2.2 Spiral

Categorised as Type-2 breakdown by Faler & Leibovich (1977), the spiral type is characterised by

the lack of an obvious stagnation point on the central axis and a sudden redirection of the axial

filament in an asymmetric and expanding spiral manner. Typically, the flow is seen to become

turbulent after only a few turns of the spiral. Seen to rotate about the central axis by Chanaud

(1965) in high Reynolds number wind tests, the spiral mode has been considered as an intermediary

state, an asymmetric resultant of disturbances in an axisymmetric bubble.

Figure 2.5: Spiral form of breakdown, identified here in the pipe flow of Sarpkaya (1971).

Sarpkaya (1971) found the spiral form of breakdown when a dye filament failed to expand

axisymmetrically, and instead diverged suddenly away from the central axis in a single filament.

Shown in figure 2.5, the filament then twisted about the axis in a cork-screw fashion for

approximately one turn, before degenerating into turbulence. In these experiments, it was noted

that the direction of spiralling of the diverged filament was the same as the original flow, although it

has since been observed to be in the opposite direction in open flows over delta wings. Studying

spiral breakdowns in closed cylinder flows can be difficult, as Hourigan et al. (1995) showed that

off-axis dye-injection can lead to spiral streaks in visualisation of an otherwise axisymmetric flow.

Despite the fact that Sarpkaya (1971) and Faler & Leibovich (1977) found the spiral to be a form

of breakdown on its own, it has been suggested that it occurs due to instabilities in the axisymmetric

breakdown (Benjamin 1967 and Escudier & Zehnder 1982). Sarpkaya (1971) saw for particular flow

conditions that bubble and spiral forms would spontaneously swap states for little or no change in

the experimental flow settings. Sarpkaya dubbed the swirl range for which this occurred as a region

of “vortex-breakdown hysteresis”. Spall (1996) and Kurosaka et al. (2003) found experimentally that

the spiral could transform into a bubble by exciting particular azimuthal modes at particular
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frequencies. This suggested that these forms of breakdown are linked through hydrodynamic

instabilities. Carvalho & Heitor (1996) noticed a change in form from an initially spiral form, to a

bubble form as swirl was increased in high Reynolds number swirling air flow. (This transformation

was also seen by Mattner et al. (2002) in pipe flows). The fact that the mean position of each form

of breakdown was found to be several vortex-core diameters upstream of the previous mean position

(closer to outlet) was interpreted by Carvalho & Heitor (1996) as demonstrating that each form of

breakdown was a unique state of breakdown and not just a different form of the same state.

Kurosaka et al. (2003) used four cylinder pistons at 90◦ from each other at the inlet of a swirling

pipe flow to excite particular instability mode shapes. By pulsing a radial flow component on the jet

(with zero-net mass flux), they found that for a particular frequency and mode shape of excitement,

a bubble form could spontaneously transform into the spiral form. Once the excitation was removed,

it returned to the bubble form. One such transition is shown in figure 2.6, where the m = 1 mode

was excited at a driving frequency of 3Hz and a flow Reynolds number of Re = 2683.

Figure 2.6: The transition in a pipe of the bubble breakdown to spiral breakdown, under
the influence of an m = 1 excitation by Kurosaka et al. (2003). Flow is from the top of the
image to the bottom, with time series incrementing from left to right.

This phenomenon of switching between bubble and spiral breakdown states occurred for only a

narrow frequency range (based around the natural Strouhal number of a spiral breakdown), and for

particular mode shapes, which Kurosaka et al. (2003) also suggest links the different forms of

breakdown through hydrodynamic instability. Liang & Maxworthy (2005) observed spiral breakdown

forming in the bubble region of the axisymmetric breakdown, and Ruith et al. (2003) found that the

instabilities of the m = 1 mode of a Bachelor vortex compared qualitatively with the numerical

characteristics of spiral breakdown. Gallaire et al. (2006) later found numerically that the spiral

vortex could be interpreted as a non-linear global mode that develops on the axisymmetric bubble

breakdown state.
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2.2.3 Cone

The cone form is a fairly recent discovery in the research of vortex breakdown, found first by

Billant et al. (1998) in a study of open tank vortex flows. As shown in figure 2.7, the cone form of

breakdown is characterised by the shear layer diverging at an angle past the stagnation region and

continuing into the free-stream. Unlike the bubble form, this exposes the downstream side of the

stagnation point directly to the free-field stagnation conditions.

Figure 2.7: The cone form of breakdown in the open tank swirling jet experiments
performed by Billant et al. (1998). Flow is downwards from a nozzle at the top of the
image, with the flow illuminated by both a vertical light sheet along the vortex axis and a
perpendicular sheet to show the rotational components of the flow.

The cone shape was observed to be different to that found by Sarpkaya (1995), where a cone

shaped breakdown was formed for very high Reynolds number flows (Re > 100 000). Billant et al.

(1998) also saw what appeared to be a filling and emptying motion to the conical shear-layer, as a

temporal variation to this shape.

Liang & Maxworthy (2005) also studied the open flow jet, but without the contraction nozzle.

Measuring velocity vectors of the flow with PIV, they found that the cone angle of the shear layer

increased suddenly with swirl number. This is shown in figure 2.8, where figure 2.8(a) shows the

method used to determine a cone angle, and figure 2.8(b) shows the sudden increase in the measured
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cone angle as the swirl ratio was increased. Liang & Maxworthy also saw a temporal variation in the

shape of the cone, and attributed this to buoyancy effects due to temperature differences between

the jet and the stagnant tank water.

Figure 2.8: The results of Liang & Maxworthy (2005) cone-angle measurements.
(a) Axial velocity profiles of the swirling jet in axial (x) and radial (r) locations, in terms
of the nozzle diameter D. Nozzle outlet is at x/D = 0, and cone angle α is measured from
a linear trend line passing through the half-maximum velocity points of several profiles.
(b) Cone angle α measurements for various swirl ratio settings S.

2.2.4 Other

Another commonly visualised breakdown form, especially in pipe flows, is the double helix form,

shown in figure 2.9. First identified by the closed pipe observations of Sarpkaya (1971), and later

classified as Type-5 by Faler & Leibovich (1977), this form of breakdown is identified by an apparent

lack of an axial stagnation point, and a swirling envelope that appears to twist around itself. It was

noted in Sarpkaya’s study that a slight disturbance to this form was able to produce the Type-2, or

spiral breakdown, suggesting that for a particular combination of Reynolds number and swirl, the

spiral form is more stable than the double-helix.

Figure 2.9: The double-helix form of breakdown observed by Sarpkaya (1971).
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(a) (b)

Figure 2.10: Flow visualisation of the open lid torsionally driven cylinder vortex
breakdown. The meridional plane of the cylinder is illuminated, with fluorescein dye
visualising the flow structures. The spinning base plate is at the bottom of the image, and
the stagnation ring is at the top in both images. (a) HR = 1.0, Re = 1350 from Dusting
et al. (2006). (b) HR = 1.0, Re = 1875 from Spohn et al. (1998).

There has also been found an asymmetric form of the Type-0 bubble form, labelled as Type-1.

This form is most distinctly characterised by an unsteady envelope around the flow. Asymmetric

regions are generally found for higher Reynolds number flows, although the flow can also become

unsteady in closed cylinder devices with minor design flaws and imperfections (Thompson &

Hourigan 2003, Brøns et al. 2007 and Brøns 2007).

Spohn et al. (1993) performed an extensive investigation of the parameter space for a cylinder

with rotating end-wall and free surface, showing markedly different flow topologies. In this study,

Spohn et al. mapped the existence domain carefully, showing that the stagnation point moved

upstream with increasing Reynolds number, until it reached the free surface and became a

stagnation ring, in the azimuthal direction. Visualisation of free-surface cylinder flow vortex

breakdown is shown in figure 2.10.

2.3 Theory

With the variety of different forms of breakdown that have been observed, attempts have been

made to understand the phenomenon with an underlying theory. Various theories have evolved and

surfaced since Squire (1960) first proposed a wave theory mechanism for the occurrence of

breakdown, but none has been all encompassing. Initially, theories that attempted to describe the

entire phenomenon had been developed by Benjamin (1962), who elaborated Squire’s wave theory

into a critical state theory, and Hall (1966), who described the vortex breakdown as being analogous

to boundary layer separation. Hall (1972) suggested that in the presence of an adverse pressure

gradient, a flow reversal would form, similar to the near-wake region of boundary layer separation.

Modifications and suggestions to these theories have since been made by Benjamin (1970), Escudier
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(1988), Brown & Lopez (1990), Keller (1995), Althaus et al. (1995), and Sarpkaya (1995). Some

empirical work has also been presented (such as by Spall et al. (1987) and by Traub (1996), who

devised empirical methods of breakdown prediction based on the results of other researchers).

Some of the fundamental ideas that are still today being used as reference points for

investigations are the hydraulic jump analogy by Benjamin (1962), and the idea of negative

azimuthal vorticity derived by Brown & Lopez (1990), and these will be discussed in this section.

The hydraulic jump analogy.

Squire (1960) proposed a theory that disturbances from a downstream source, such as a tube exit

or the trailing edge of a wing, would propagate upstream (in a sub-critical flow) and build up in a

region of critical flow. In this region, the vortex would then eventually break down. It should be

noted here also, that Squire was first to suggest that a necessary condition for breakdown to occur

was that swirl velocity be much greater than axial velocity. But in the review by Hall (1972), it was

cited that experimental data by Sarpkaya (1971) showed that this was not in fact necessary.

However, it was Benjamin (1962) who highlighted the fact that the group velocity used by Squire

(1960) was actually directed downstream, meaning that disturbances could not travel upstream.

Benjamin then extended Squire’s theory, proposing that breakdown occurrence was an analogy to

the hydraulic jump, and describing the breakdown structure as a discontinuous transition from super

critical upstream flow to sub critical wake flow. Indeed, measurements by Faler & Leibovich (1977)

and Faler & Leibovich (1978) have shown that the region upstream of a breakdown flow is

super-critical and the wake is sub-critical. The review articles by Lucca Negro & O’Doherty (2001),

and of Leibovich (1978) in particular carefully analyse the theories of Squire (1960) and Benjamin

(1962) highlighting differences and how Benjamin extended Squire’s work.

The theory of vortex breakdown being a transition from super-critical to sub-critical flow has

since sparked much debate. The review by Hall (1972) criticised this theory for explaining the

breakdown as a turbulent transition, when in fact the breakdown bubble was often seen to be very

stable and steady. However, the studies by Ruith et al. (2003) and Wang & Rusak (1997) supported

the idea of a critical state. Wang & Rusak (1997) found that for high Reynolds numbers, once the

swirl of the pipe flow reached a critical level, the flow became unsteady, and downstream

disturbances could propagate upstream and cause the flow to form the solid-body recirculation zone.

Ruith et al. (2003) numerically simulated an open flow jet, and were able to show that applying

Benjamin’s criticality criterion locally to a jet with supercritical inflow could accurately predict the
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onset of breakdown. Shown in figure 2.11 is the work of Ruith et al. (2003), presenting the criticality

boundary for inflow conditions, plotted for co-flow ratio α (defined as the ratio of the axial velocity

on the vortex central axis to the free-stream axial velocity) against the swirl ratio S. This shows

that the criticality of the inflow (solid line) is not able to predict breakdown, but applying the

criticality condition locally (dashed line) does.

α

S

Figure 2.11: From Ruith et al. (2003), the formation of breakdown is accurately
predicted by applying the criticality condition of Benjamin (1962) locally. Plotted is the
co-flow ratio α against the swirl ratio S. Open squares indicate where no breakdown was
detected, and closed squares indicate experiments where the axisymmetric bubble
breakdown formed.

2.3.1 The Brown & Lopez criterion.

In their numerical investigations into a closed cylinder apparatus, Brown & Lopez (1990) derived

a necessary, but not sufficient, criterion for the onset of vortex breakdown in a swirling flow. Using

standard equations of modelling swirling jet flows, they showed that for vortex breakdown to occur

on the central axis of a swirling jet, there needed to be a production of negative azimuthal vorticity,

which would lead to a reversed axial flow.

As shown in figure 2.12, an initially axial streamline, once perturbed, diverges slightly. From the

Biot-Savart law, this vorticity generates a component of velocity in the negative axial direction,

causing the further divergence of streamlines, leading to a feedback mechanism that continues until

the axial velocity is reduced to zero, and a stagnation point is formed.

Brown & Lopez (1990) proposed that for the azimuthal component of vorticity η at some station
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Figure 2.12: Schematic representation by (Mattner et al. 2003, fig. 2) of the feedback
mechanism proposed by Brown & Lopez (1990) for negative azimuthal vorticity slowing
the axial velocity component.

0 along a streamline at a radial distance σ from the central axis,

η

η0
=
σ0

σ
(
α0

β0

) − σ

σ0

(
α0

β0

− 1) for η0 6= 0, (2.1)

where α0 is the ratio of axial to azimuthal velocity components v0/w0, and β0 is the ratio of axial to

azimuthal vorticity components, η0/ζ0. Both these quantities are measured at σ0, where the core

radius is a minimum. In this form, Brown & Lopez stated that for the axial component of velocity to

be brought to zero, negative azimuthal component of vorticity needs to develop a along a streamline,

which will only occur if

α0 > β0. (2.2)

In other words, a necessary condition for breakdown to occur is that the helix angle of velocity be

greater than that of vorticity along a stream surface. It must be noted, that although this is a

necessary criterion for breakdown to occur, it does not say anything about where or when this

condition may be met, and does not suggest if this condition is sufficient in itself to predict

breakdown.
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In light of this theory, much work has focused on measuring these components of velocity and

vorticity, especially with the improvement of flow velocimetry techniques. Watson & Neitzel (1996)

performed some numerical analysis on closed cylinder vortex breakdown, and determined the

velocity and vorticity components in the flow. They found that although the criterion of

equation 2.2 was met at the point of vortex breakdown, it was not met upstream of the bubble, nor

at any stage of pre-bubble flow. Stokes et al. (2001) suggested that this questions the use of the

Brown & Lopez criterion to predict breakdown. However, Stokes et al. did manage to show the

divergence of streamlines leads to the adverse pressure gradient present in the vortex breakdown

formation. Negative vorticity was also found by Gallaire et al. (2004) on the central axis of a

swirling jet that exhibited breakdown.

Other developments in swirling jets

In an attempt to determine where the transition of a swirling jet into a breakdown form occurs,

focus turned also to instabilities inherent in swirling jets. Since it is known that the addition of swirl

to a jet increases the axial shear-layer instability (Cooper & Peake 2002), many studies have been

undertaken of the stability modes of the jet to understand how the centrifugal and axial shear

instabilities interact and grow with distance, and velocity profile. Although it is considered generally

an axisymmetric phenomenon, it is known that the formation of the axisymmetric breakdown bubble

itself is in effect responsible for the development of other breakdown forms. Understanding the

general flow patterns in swirling jets would then go a long way to explaining vortex breakdown itself.

Swirling jets experience multiple shear instabilities: the axial shear of the jet passing through

(relatively) stationary fluid, known as the Kelvin-Helmholtz instability; the same interaction occurs

in the azimuthal direction, especially if in numerical simulations a discontinuity in azimuthal velocity

exists as a swirling jet boundary; the instabilities in the azimuthal velocity profile, where the swirling

is not solid-body rotation. Interactions of these instabilities were presented by Martin & Meiburg

(1994), and later in more depth by Gallaire & Chomaz (2003a).

Although not responsible for breakdown itself, it seems that instabilities govern the form of

breakdown. Importantly, Gyllenram et al. (2007) showed that neither turbulence, nor viscosity were

responsible for vortex breakdown occurring. The study by Panda & McLaughlin (1994) was

probably one of the earliest to suggest that the Kelvin-Helmholtz shear-layer was not responsible for

causing vortex breakdown. Since this time, this has been confirmed in studies by Gelfgat et al.

(1996), Brøns et al. (1999) and Brøns et al. (2001). Loiseleux et al. (2000) studied the absolute and
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convective instabilities in an artificial jet profile. Absolute instabilities are those that once excited

remain in place, whereas convective instabilities are washed away by the flow. Loiseleux et al. (1998)

determined under which conditions on a Rankine vortex with co-flow absolute instabilities formed,

and even predicted a swirl value for the onset of vortex breakdown, based on the transition of

absolute to convective instabilities. Although convective instabilities themselves were ruled out as a

cause of breakdown by Champagne & Kromat (2000), Gallaire & Chomaz (2003b) later found that

the concept of investigating convective and absolute instabilities was useful in being able to predict

the flow features. Herrada & Fernandez-Feria (2006) found that in pipe flows, the initially

axisymmetric bubble form became asymmetric due to sufficiently large instabilities from inside the

bubble region. Recently, Sørensen et al. (2006) provided experimental results in the closed cylinder,

determining which instability modes dominated the flow at which height ratios, finding that for the

highest aspect ratios instabilities were not responsible for breakdown.

The extent to which asymmetries can be observed, and linked to particular instability modes of a

swirling jet, can depend on the experiment itself. Hourigan et al. (1995), and later Thompson &

Hourigan (2003), showed that small, and even immeasurably small imperfections in the geometry of

cylindrical containers can be responsible for the asymmetries observed by many researchers.

Hourigan et al. (1995) in particular showed that introducing dye particles offset from the central axis

by a small amount can show streak lines that appear asymmetric. Later, Thompson & Hourigan

(2003) showed that asymmetries in the usually axisymmetric bubble breakdown of the closed

cylinder could be disturbed into an asymmetric form simply by tilting the rotating base by as little

as 0.1 degrees from axisymmetry. However, the extent to which asymmetries in the observations of

breakdown bubbles can be attributed directly to asymmetries in the experimental apparatus are

probably very limited. Brøns et al. (2007) showed that applying small but quantified perturbations

to the lid angle or the offset of the rotation axis of the base plate was enough to reproduce the

experimental asymmetries seen by Spohn et al. (1998) and Sotiropoulos & Ventikos (2001). This

showed that the hyperbolic saddle points of the stagnation points on the central axis were indeed

structurally unstable. This means that only very minor imperfections were needed to cause

asymmetries to develop. However, Brøns et al. (2007) point out that the structure of the asymmetry

observed in the vortex breakdown can in no way be used to determine the form of experimental

imperfections present.
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2.4 Measurement

There are various methods of measuring the vortex breakdown, based on particular features of

the structure. An obvious choice of measuring the vortex breakdown is to describe its position in

space. This is usually defined by finding the position of the stagnation point (such as by Sarpkaya

1971, using dye visualisation in a pipe flow), or some other flow features such as the change of

vorticity, in line with the theory of Brown & Lopez (1990) (such as by Akilli et al. 2003, using PIV

measurements over delta wings). Another measurement method is to observe the form of vortex

breakdown, be it bubble, spiral or other, and mark this form in a parameter space existence domain.

This existence domain usually displays two independent variables that describe the experimental

conditions such as by Escudier 1988 in the HR−Re domain of a closed cylinder, or Escudier &

Zehnder 1982 in the Re− Ω domain of pipe flows).

2.4.1 The existence domain

Since the first work of cylindrical container flows of Vogel (1968), there have been many

investigations into variations in height ratios, and numerical work to determine possible points of

vortex breakdown initiation. The existence domain of Vogel (1968) in closed cylinder flows was

represented by the height ratio HR of the cylinder and the rotational Reynolds number Re of the

spinning base plate. This was later extended in range by Escudier (1984). As reproduced from

Escudier (1984) in figure 2.13, this parameter space mapped out regions where one, two or three

vortex breakdown bubbles would be seen forming on the central axis, depending on the combination

and values of each of the independent variables. Escudier also added boundary region information

that describes the onset of instability in the vortex breakdown form (explored later by, among

others, Blackburn 2002).

Existence domains in open flow swirling jet experiments are not generally available. A study by

Fitzgerald et al. (2005), in suggesting that the bubble form of vortex breakdown in a swirling jet

might be more stable than the conical form, produced the beginnings of an existence domain for

these forms of breakdown. Plotting forms in a Swirl–Reynolds number domain, Fitzgerald et al.

found bubble breakdowns were not the first to appear beyond Re ≈ 750. However, this study did not

investigate possible hysteresis effects.

Numerically, the three-dimensionality of the open tank flow has meant that studying this flow is

computationally intensive. However, Ruith et al. (2004) showed that radial boundary conditions
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Figure 2.13: The existence domain of Escudier (1984), depicting the various bubble
regimes for particular combinations of tank height ratio, HR, and disk rotational Reynolds
number, Re.
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could be replaced by a radiative condition, allowing the computational domain to be reduced, and

hopefully make a parameter sweep of these flows more feasible. Experimentally, Loiseleux & Chomaz

(2003) highlighted several dominant behaviours and interactions of instability modes at various swirl

number ranges in the pre-breakdown swirling jet.

Variations on the existence domain also include identifying the flow topology numerically (Brøns

et al. 1999, Brøns et al. 2001) and defining saddle points and other features.

2.4.2 The stagnation point position

Theoretical attempts at predicting a position of the vortex breakdown location have been

unsuccessful. Hall (1972) noticed that the position of the failure of the quasi-cylindrical

approximation to a swirling jet coincided with the location of the stagnation point. Although this

relationship could not be proved, the coincidence of these locations was shown also to be the case

numerically by Gyllenram et al. (2007).

There have been only a handful of studies into deliberately mapping the movement of the

stagnation point since the work of Sarpkaya (1971). As shown in figure 2.14, Sarpkaya mapped the

position (x/R) and form (bubble or spiral) of breakdown for each circulation setting (Ω) with the

corresponding Reynolds number (Re) of the axial flow. From this, Sarpkaya saw that increasing

axial Reynolds number generally moved the breakdown structure upstream.

In closed cylinders, Watson & Neitzel (1996) tracked the radius of the breakdown bubble through

an existence domain, finding that after inception the bubble diameter decreased with increasing

rotation rate. Co-rotating the opposite end-wall and side-walls in conjunction also decreased its size

until it disappeared completely. But it was not until Fujimura et al. (2004) that a deliberate tracking

of the stagnation point of the vortex breakdown as a response to input parameters was followed. In a

closed cylinder apparatus, they visualised the position of the stagnation point using fluorescein dye

and a zoom lens for various combinations of rotational Reynolds number and co- and

counter-rotation of the side- and end-wall combination.

Shown in figure 2.15(a), Fujimura et al. (2004) first measured the position of the stagnation point

in the closed cylinder with a single end-wall rotating, for various height ratios. This confirmed the

earlier observation of Sarpkaya (1971) that increasing the rotational Reynolds number moved the

stagnation point upstream. Furthermore, Fujimura et al. found that by varying the ratio of the

magnitude of side- and end-wall rotation (ΩSW ) to the rotation rate of the opposite end-wall (ΩT ),
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Figure 2.14: Reproduction of the measurements of Sarpkaya (1971) of vortex breakdown
location for each circulation setting, Ω.

(a) (b)

Figure 2.15: Stagnation point locations inside a closed cylinder by Fujimura et al.

(2004), observed using dye visualisation. (a) Axial stagnation point locations (h/H) for
various rotational Reynolds numbers of the top disk (Ret). (b) The case of HR = 1.75.
Stagnation point locations for various rotational Reynolds numbers against the ratio of
rotation of the side-wall/bottom-disk combination (Ωsb) with that of the top disk (Ωt).

25



2. LITERATURE SURVEY

the stagnation point moved upstream as ΩSW increased in co–rotation for a given ΩT , and moved

downstream as ΩSW increased in counter–rotation. This can be seen in figure 2.15(b), where the

stagnation point distance away (downstream) from the top rotating end-wall is plotted as a function

of the ratio ΩSW /ΩT . These results were later confirmed numerically by Koide & Koyama (2005).

In open tank swirling jet flows, Liang & Maxworthy (2005) detailed the movements of the

stagnation point for only one particular flow setting, for the purposes of validating the appearance of

the vortex breakdown, and not of a systematic exploration of its movement through a parameter

range. As shown in figure 2.16, Liang & Maxworthy noticed that after changing the swirl setting,

the position of the stagnation point settled on a mean value .

Figure 2.16: Stagnation point location in an open tank flow by Liang & Maxworthy
(2005), after changing the swirl setting (arrow). This plot shows the transient movement
of the stagnation point position to a mean location that contains only a long period
oscillation.

In a study on blockage effects in a swirling pipe flow, Mattner et al. (2003) noticed a vortex

breakdown bubble forming ahead of the sphere, but without providing measurements only

mentioned that the the breakdown region moved upstream with increasing swirl until it became

unsteady. Bar-Yoseph et al. (1992) observed vortex breakdown forming in the polar cavity between

concentric spheres. The position and shape of the breakdown was documented for a few occurrences,

and this will be revisited in section 2.6.2.
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2.5 Control

Since first discovered occurring over aircraft wings, vortex breakdown research has attempted to

identify reliable methods of controlling the phenomenon. It is known that vortex breakdown can

affect the lift over a wing, but Kim et al. (1995) also showed that the vortex breakdown structure

can buffet the tail-fin of an aircraft, placing undue stresses on the structure (Okamoto 2003).

Despite much work with swirling jets and the interaction of instabilities, control of breakdown

has been difficult to achieve. Mitchell & Delery (2001), in a review on delta wing vortex breakdown

research, noted that attempts to control vortex breakdown can generally be described as falling into

one of two categories: control by pneumatic or by mechanical means. Pneumatic techniques involve

manipulating the targeted swirling vortex with fluid of either a secondary flow addition (blowing),

removal of fluid (suction) or of a zero net-mass flux flow (pulsing). Mechanical devices attempt to

either alter the entire flow field and of the flow patterns directly responsible for the vortex (fences,

winglets, strakes), or attempt to place a physical object directly into the swirling vortex at some

pre-determined location. These two broad definitions of control methods can be seen to have been

applied in various other open flow swirling jet experiments. However, few studies of similar control

methods exist for closed flows, such as the cylinder or pipe flows.

2.5.1 Pneumatic

Many studies on pneumatic techniques have aimed at modifying the flow over a delta wing model

with limited effectiveness at controlling the vortex breakdown. Moeller & Rediniotis (2002) blew a

jet both upstream and downstream on the surface of a delta wing and were able to vary the lift

acting on the delta wing. Badran et al. (1998) investigated the effects of suction on the leading edge

vortex, and was able to delay vortex breakdown. Johari & Moreira (1996) found that pulsing a

blowing jet at its natural frequency was able to delay breakdown. However, in a pipe flow, Kurosaka

et al. (2003) affected the form of breakdown by a zero-net pulsing mechanism in the radial direction,

positioned in the upstream nozzle section of the pipe (these results were shown previously in

figure 2.6 on page 13).

Some attempts at altering the vortex breakdown behaviour in open tanks have also been

performed. Gallaire et al. (2004) used radial jets to excite particular swirling jet mode-shapes in an

attempt to alter the behaviour of the vortex breakdown. It was found that the actuator used in the

nozzle of the jet was effective in altering the mode shapes of the swirling jet, but was unable to affect
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the breakdown bubble itself. It was speculated that this was because the vortex breakdown is

affected by flow features in the core of the jet, and not by the peripheral shear-layer instabilities.

Khalil et al. (2006) later attempted a similar experiment, pulsing the flow in an axial direction. This

was found to be more successful in moving the position of the stagnation point, as the amplitude of

pulsing was increased at near the Strouhal frequency of the shear-layer shedding.

In closed cylinder flows, pneumatic methods are fairly limited, in terms of net mass flux into or

out of the cavity. However, if the use of the remaining surfaces in a cylinder in creating secondary

flows can be considered as a pneumatic technique, then there is much knowledge developed about

the effects of pneumatic controls in closed cylinder on the primary vortex breakdown flow.

Variations in this form of flow modification have included, (in conjunction with the single rotating

end-wall), rotating the side-wall (Jahnke & Valentine 1996), the opposite end-wall at some ratio of

the first (Shen et al. 2006 and Brøns et al. 2001), and at the same speed as the first (Valentine &

Jahnke 1994), rotating the side-wall and end-walls combined (Watson & Neitzel 1996, Fujimura

et al. 2004 and Koide & Koyama 2005), and rotating a partial disk on the opposite end-wall

(Mununga et al. 2004 and Brøns et al. 1999).

Mununga et al. (2004) partially rotated a small disk on the opposite end-wall of a closed cylinder.

As shown in figure 2.17, Mununga et al. (2004) determined the critical Reynolds number of the main

rotating disk for the appearance of bubble-type vortex breakdown, as a function of the rotation ratio

of the opposite end-wall disk to the main disk. This shows that co-rotating the disk with the main

flow-driving end-wall promoted the onset of breakdown (for a lower Reynolds number), effectively

moving the bubble breakdown upstream for the same Reynolds number than without the opposite

disk spinning.

2.5.2 Mechanical

In the context of vortex breakdown control, a mechanical control method attempts to manipulate

aspects of the swirling flow directly with a solid-body to achieve a measurable effect on the vortex

breakdown. Most mechanical control methods are investigated in flows over delta wings, although

recently more studies are being undertaken on the interaction of vortical flows with bodies in more

controlled vortex breakdown experiments.

In delta wing flows, the mechanical devices have included: using deflector plates on the surface of

the wing (Gangulee & Ng 1995, finding they promoted breakdown at high angles of attack); placing

apex fences near the nose of delta wings (Wahls et al. 1986, preventing the interaction of vortices
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Re

α

Figure 2.17: The results of Mununga et al. (2004), showing that the critical Reynolds
number for the appearance of bubble breakdown in a closed cylinder decreases with the
co-rotation rate of a small disk on the opposite end-wall.

that would lead to bursting); and varying the delta wing structure to have a staggered double-wing

shape (Hebbar et al. 2000, finding that the double-wing could prevent the interaction of leading edge

vortices).

Mechanical means of control inside a closed cylinder have been achieved in a wide variety of

ways, with differing degrees of success in altering the vortex breakdown. The simplest form is to

place some physical object into the swirling flow at some position. This technique has been applied

by Husain et al. (2003) who placed a rod down the central axis of the cylinder and rotated it. They

found that a stationary rod (of diameter DR = 0.03R) on the central axis of the flow barely affected

the end-wall generated base flow. However, co-rotating the rod with the rotation of the base plate

was found to suppress the appearance of breakdown bubbles, and counter rotation was found to

increase the number of recirculation regions, before becoming unsteady in their locations and form.

Dusting et al. (2006) reported the effect on shear in a vortex breakdown environment with the

addition of a disk scaffold for bio-reactor research, finding that the bubble was extremely robust in

form to the physical intrusion. A recent report by Lo Jacono et al. (2007) found that the addition of

a partial rod into the central axis of a closed cylinder was able to significantly alter the shape of the

vortex breakdown bubble for a short (≤ 0.4R) spinning rod.

One means of controlling the closed cylinder flow mechanically has been the altering of the shape

of one of the walls, such as replacing the flat rotating base plate with a cone shape. Pereira & Sousa

(1999) used as a rotating base a cone of height R. It was found that rotating this cone inside a

closed cylinder, the vortex breakdown phenomenon already seen in flat-bottomed vessels was easily
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reproduced, as shown in figure 2.18(a). Pereira & Sousa also found that the existence domain was

altered for the breakdown bubble, and this is shown in figure 2.18(b), superimposed on the existence

domain determined by Escudier (1984).

(a)

Re

HR

(b)

Figure 2.18: (a) Flow visualisation of Pereira & Sousa (1999), showing the formation of
the breakdown bubble in a closed cylinder with a conical base. (b) The existence domain,
superimposed on the results of the flat-rotating base existence domain of Escudier (1984)
in grey.

The conical base vortex breakdown bubble was later also seen numerically by Yu et al. (2006),

finding that the bubble size could be increased with the use of a conical base. Furthermore, Yu et al.

found that a concave spherical lid was able to completely suppress the breakdown bubble, whereas a

convex spherical lid was able to precipitate breakdown at Reynolds numbers lower than otherwise

possible.

In swirling pipe flows, the study by Mattner et al. (2003) seems to be the only one to investigate

mechanical vortex breakdown control methods, although Lai (1964) originally investigated it

theoretically. It also appears to be the only study presently to look at the effects of a sphere on the

formation of vortex breakdown, and so can be considered an investigation into bluff body control

methods. In this study, Mattner et al. placed a single sphere of blockage ratio 0.263 inside a pipe

apparatus similar to the one used by Sarpkaya (1971). A swirling jet flowed onto a sphere at a

constant flow rate Reynolds number, while the blade angle of the pipe setup, β, was varied. For no
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(a)

(b)

(c)

Figure 2.19: Mattner et al.’s results. (a) swirl vane angle 0, showing a typical wake
structure behind the sphere. (b) 19◦ with an upstream stagnation point. (c) 20◦, with the
upstream breakdown in spiral form. Flow is left to right.

swirl (β = 0) a typical wake-like structure existed behind the sphere (seen in the first image of

figure 2.19), with the initial addition of increasing swirl producing a shortening of that wake

structure. As shown in subsequent images of figure 2.19, by increasing the swirl on the flow a

stagnation point could be formed upstream of the sphere, just as was seen numerically by Miles

(1971) in a similar experiment with a sphere in a rotating fluid. Furthermore, the angle of the swirl

vanes at which this first occurred was found to be “much” less than that required to form a

stagnation point without the sphere. The wake of the sphere was also affected by the degree of swirl

imparted on the jet, reducing in length with increasing swirl. Furthermore, it was found that as the

guide vane angle increased, the stagnation point moved further upstream before degenerating into an
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unsteady spiral structure. Mattner et al. suspected that the sphere was forcing the premature

divergence of streamlines, causing the axial stagnation, in the manner suggested by Brown & Lopez

(1990).

As stated previously, despite Mattner et al. (2003) only investigating the features of only one flow

Reynolds number and one sphere size, this study appears to have been the only one to consider the

effect that a sphere has on a vortex breakdown inducing flow. However, there is a large body of work

that has investigated more generally the interaction of spheres with non-vortex breakdown inducing

flows and swirling jets. The following section will present an overview of this work.

2.6 Spheres in fluids

Research into spheres in fluids has been quite extensive, with a large part of this focussing on the

downstream side of the sphere with specific regard to the wake structures, such as originally studied

by Achenbach (1974), who investigated the a wide range of Reynolds number flows past a stationary

sphere. Fornberg (1988) determined that steady incompressible flow past a sphere would generate

vortices in the wake of the sphere of the form of Hill’s spherical vortex. Sketched in figure 2.20 are

the lengths of the wake structure behind a sphere as measured by Fornberg (1988).

Figure 2.20: Results of the numerical studies of Fornberg (1988) into the steady wake
structures behind a sphere in steady flow. Plotted here are the length and width of the
recirculating wake region, along with the diameter of an equivalent Hill’s spherical vortex,
against the Reynolds number R of the flow.

32



2.6. Spheres in fluids

The interaction of spheres with vortices has also been investigated, and research into this

interaction can be seen as either involving initially separate systems of a sphere and vortex, or

coincident systems, where the vortex axis passes through the sphere. Often the focus in

non-coincident axes is the effect that the vortex has on the lift coefficient of the sphere, such as by

Kim et al. (1995), who studied the interaction of a cylindrical vortex being washed downstream by

an axial flow. The more fundamental work by Dhanak (1981), and later Pedrizzetti (1992), showed

numerically that as a sphere approached a vortex filament from infinity, the filament was attracted

to the sphere by an induced velocity on the sphere.

Swirling jets coincident with the sphere have also been investigated. Elcrat et al. (2001)

performed a numerical investigation into the wakes behind spheres in steady, inviscid axisymmetric

vortex flows. This study found a wide variety of solutions to the flow as it interacted with the

sphere. Defining the vortex in terms of a Stokes’ stream function, Elcrat et al. first defined the

vorticity vector of the vortex as (0, Lψ/r, 0), and expected steady flow in this system if:

Lψ = ωr2f(ψ). (2.3)

A solution to this equation of the form f(ψ) = 1 −H(ψ − α) was then assumed, where H is the

Heaviside function, and α is the value of the stream-function on the boundary of the vortex. It was

found that for constant values of α and ω, solutions to equation 2.3 were not unique, and instead

described a family of solutions. For various α settings, the solutions were found to produce a family

of wake-like structures from the sphere, as shown in figure 2.21(a). For α values equal to zero, four

distinctive families were found, three of which are shown in figure 2.21(b), with the fourth being an

analytical solution to equation 2.3 that produced vortices concentric with the sphere.

2.6.1 Spinning spheres in fluids

There has been much interest in understanding how a spinning sphere might behave and

consequently affect the surrounding flow. Barkla & Auchterlonie (1971) revived interest in spinning

spheres moving through otherwise stationary fluid, describing the curved path they take as a result

of both their spinning and the flow speed: the so-called Magnus-Robbins effect. But there has also

been much work on stationary spheres spinning in otherwise stationary flow.

It is well known that as a sphere spins in an otherwise stationary fluid, a flow across the surface

of the sphere develops. At the pole of rotation, the surface of the sphere behaves similarly to a
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(a) (b)

Figure 2.21: The family of solutions obtained by Elcrat et al. (2001) for Euler flow past
a sphere. (a) Solutions for various α settings, showing the attached vortex of α = 0, the
vortex ring of α < 0, and the infinite vortex tube of α > 0. (b) Three of the subset families
of α = 0, showing two symmetric attached vortex regions, the attached trailing vortices,
and attached vortex bands.

spinning flat plate, with fluid spun radially outwards. This has the effect of drawing fluid from the

axis of rotation. As the fluid moves radially out, it moves across the surface of the sphere towards

the equator, where, as fluid from the opposite pole is also met, the flow is then ejected radially out in

the equatorial plane.

Sawatzki (1974) discovered that the laminar boundary on a sphere can undergo a transition to

turbulence for high enough sphere rotation rates. But it was not until Kohama & Kobayashi (1983)

that the nature of this transition was first discovered to include the formation of surface vortices. As

shown in the reproductions in figure 2.22(a), laminar flow away from the pole of rotation (seen here

in the horizontal plane) only becomes turbulent after undergoing a transition regime that generates

vortices. These can be seen in the visualisation of Kohama & Kobayashi (1983), in figure 2.22(b).

Here, the axis of rotation is in the centre of the image (indicated by the marker ‘P’), and the vortices

of the transition region are seen near the edges of the white sphere, which is the equatorial region.

From this figure it can also be seen that these vortices form at an angle to the general flow, and

Kohama & Kobayashi (1983) measured this angle to be ǫ = 14◦ at their onset. Garrett & Peake

(2002) later found close agreement with this value numerically, determining this angle numerically to

be between 11.4◦ and 19.4◦. A later study by Garrett & Peake (2004) found that including an axial

flow on the spinning sphere increased the critical sphere Reynolds numbers at which these vortices

form.
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(a)

(b)

Figure 2.22: (a) Reproduction of the schematic diagram of Kohama & Kobayashi (1983),
showing the development of the turbulent boundary layer on the surface of a spinning
sphere. ǫ indicates the measured angle of the vortices in the transition region. (b) View of
the experiment of Kohama & Kobayashi (1983) along the axis of rotation at the pole,
marked P . Seen are the angled vortices forming near the equator at the edge of the visible
white sphere.
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Much numerical work on spinning spheres has focused on understanding the nature of these

surface vortices. Taniguchi et al. (1998) discovered that although cross-flow instabilities were

present, and dominant at the pole, there also existed streamline curvature instabilities that

dominated closer to the equator. This led Garrett & Peake (2002) to speculate that these two

instability modes occur at different critical Reynolds numbers, but that a discrepancy in the results

of Kohama & Kobayashi (1983) might also be explained. Kohama & Kobayashi (1983) had measured

the critical Reynolds number, based on the sphere radius, and latitudes at which instabilities began.

Two different sphere sizes were found to have significantly different critical Reynolds numbers.

θ

ReS
Figure 2.23: Reproduction of the results of Garrett & Peake (2002), showing the latitude
θ of the critical Reynolds number ReS based on cross-flow and streamline-curvature
instabilities. Comparison is also made to the experimental results of Kohama & Kobayashi
(1983), showing the likelihood that two different sphere sizes were measuring two different
instabilities.

As shown in figure 2.23, Garrett & Peake (2002) found that the experimental results matched

identically with the numerical predictions for the two instability mechanisms, if it was accepted that

the different spheres of Kohama & Kobayashi (1983) were actually measuring different instabilities.

With regards to studies of spinning spheres in spinning fluid, there have only been a handful of

studies. Wang et al. (2004) moved an initially non-spinning sphere through a spinning fluid (in a

pipe) to observe the behaviour of inertial waves, and understand the Coriolis effect on the wake of

the sphere. (The Reynolds number was too low for breakdown to occur in this case). The sphere was
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pulled through the flow at two different speeds, for the same fluid rotation rate, and allowed to spin

under the effects of viscosity. They found that the rotation of the sphere affects most the wake of the

sphere in the central core region, which became unsteady for higher sphere rotation rates. (Since

they were not interested in the coupling effects, they fixed the sphere rotation velocity at some value

between zero and the rotation rate of the cylinder).

Niazmand & Renksizbulut (2003) rotated a sphere on an axis perpendicular to the vortex in the

context of measuring lift and drag forces of the sphere, and how they varied as the sphere was spun

in an intermediate range of Reynolds numbers, of 20 < Re < 200. Spinning the sphere on an axis

normal to the vortex axis produced the largest variations in lift, with drag being primarily affected

when the axis of sphere rotation was parallel to the vortex (The lift force was identical to the

stationary sphere in the parallel axis case).

2.6.2 Concentric bodies

Much research has investigated flows inside concentric geometric bodies, largely for the study of

fluid instabilities. The concentric cylinder problem identified the formation of a stable set of vortices

known as the Taylor vortices when the Couette flow became unstable. Taylor vortices have been

shown to depend on the gap ratio inside concentric cylinders, and the speed at which they rotate.

Similar structures have also been observed in concentric spherical shells, where Taylor recirculation

cells were formed for various gap ratios and rotation rates.

Concentric sphere research is generally defined by just two parameters; the gap ratio, which can

be described various ways, but usually taken as a measure of the gap in terms of the inner sphere

size:

β =
ro − ri
ri

, (2.4)

where ri is the radius of the inner sphere, and ro the outer; the second variable is the rotation rate of

the sphere, measured as a rotational Reynolds number. Occasionally, the outer sphere is rotated, in

which case a third parameter is needed, and this is usually measured as a ratio of the outer to inner

sphere rotation rates.

Some of the earliest experimental work on concentric spheres was by Munson & Menguturk

(1975), who, using gap ratios of β = 1.27 and 2.29, measured various distinct changes in the torque

required to maintain the sphere spinning while carefully varying the Reynolds number. They were
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able to measure a transition to turbulence, which occurred at Re = 407 and 429 for these gap ratios,

which was later discovered to be, in fact, a transition to non-axisymmetric flow. Investigations more

recently have focussed on ever-increasing gap ratios, especially with the focus on finding the upper

limit of the existence of Taylor vortices. Liu et al. (1996) experimentally extended the available

range of gap ratios that could contain Taylor vortices from 0.24 to 0.33 using specialised initial

conditions. Loukopoulos & Karahalios (2004) extended this domain even further numerically to 0.48.

Hollerbach et al. (2006) built on a significant number of previous studies on concentric spherical

shells, and considerably expanded the aspect ratio considered. For the very large range of

0.1 < β < 10, they found that a base flow was common to all gap ratios. This base flow is a

recirculation in each hemispherical gap, where the radially ejected fluid in the equatorial plane of the

spinning sphere reaches the outer sphere, moves towards the poles and is again drawn along the

surface of the spinning sphere. Hollerbach et al. (2006) then increased the Reynolds number until

the flow became asymmetric to instabilities of a particular mode. An example of this flow is shown

in figure 2.24, where the results of gap ratios of β = 1.5 and 2.5 are shown.

Figure 2.24: Flow features of the concentric sphere work of Hollerbach et al. (2006). The
first row is a gap ratio of β = 1.5 and a critical Reynolds number of Rec = 377. The
second row is β = 2.5 and Rec = 416.

The first column shows contours of the azimuthal velocity of the base state and the second shows

streamlines of the meridional circulation. The velocity profiles in the third column show the

azimuthal (solid) and radial (dash-dot) velocities of the base state. The fourth column shows the

instability modes in the equatorial plane, looking down from the axis of rotation. The first row

shows the m = 2 instability for β = 2.5, and the second row shows the m = 3 instability for β = 1.5.
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The critical Reynolds number for each gap ratio was found, and is reproduced in figure 2.25. The

numbers around the curves represent the mode to which the flow became asymmetric.

Rec

β

Figure 2.25: The stability limits determined by Hollerbach et al. (2006). Plotted is the
critical Reynolds number Rec for each aspect ratio β. The mode number at which the flow
becomes unstable is marked for each region on the curve. The label ‘TV’ indicates an
approximate existence domain of Taylor-vortices, which were not a part of this study.

Bar-Yoseph et al. (1987), and later Bar-Yoseph et al. (1992), showed that concentric spheres

could produce vortex breakdown in the polar region. Defining a gap ratio s = 1 − η = 1 −Ri/R0,

Bar-Yoseph et al. rotated the inner sphere and found that bubble breakdown occurred for a narrow

parameter space range s = 0.4 − 0.65 for Re > 3000. This is shown in figure 2.26, along with the

definition of the gap ratio, which also accounted for off-axis sphere placement (e). In comparing

their results to an axisymmetric numerical simulation, it was found that the bubble breakdown was

very sensitive to the alignment of the experimental apparatus, more so than a closed cylinder

experiment, and this manifested itself as asymmetries in the bubble shape. It was also found that

slightly co-rotating the outer shell sphere stabilised the breakdown, and promoted its formation.
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(a) (b)

Figure 2.26: The study of Bar-Yoseph et al. (1992) on developing vortex breakdown in
the polar region between concentric spheres. (b) The existence domain determined for this
experiment, showing the limited range over which the breakdown occurs.
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2.7 Summary

Despite many studies on a theoretical basis for breakdown, a complete picture has not yet

emerged. Instabilities in the vortex have been shown to play a role in determining the breakdown

form, but the initial appearance is a steady transformation into an initially axisymmetric form. As

for determining the location of breakdown, theoretical predictions still offer no explanation. Detailed

measurements of stagnation point locations have shown particular trends, but have not had a

theoretical basis for comparison.

Uncovering the reasons for the formation of breakdown can often be seen as determining a

method of controlling the breakdown. Mechanical devices in real-world situations, such as for the

flow over delta wings, seem to be very specific in trying to achieve particular outcomes in breakdown

position over the wing. Although no doubt useful in the aeronautical field for immediate engineering

solutions, the limited scope of these investigations has had little bearing on the fundamental

understanding of the mechanics of vortex breakdown, which undoubtedly would lead to more

efficient control methods. Despite this work on aircraft solutions, there seems to be very limited

investigation of physical intrusions into more easily controlled breakdown experiments.

Single-parameter studies by Mattner et al. (2003), Husain et al. (2003) and Pereira & Sousa (1999)

have shown that breakdown manipulation can be significant, but systematic exploration of the

parameters affecting the flow have not been undertaken.

In light of the current state of the art, this thesis document will examine an area of mechanical

control methods on vortex breakdown, specifically to provide a body of work that systematically

tracks the effects that variations in the body parameters have on the flow. The intention is that this

will provide insight to how the prediction of the location of vortex breakdown could be made, or at

the very least, to determining some of the parameters that need to be considered, and what form a

solution to determining the breakdown position may take. In contrast to the majority of studies to

date performed in the complex parameter space of delta-wing flows, the present investigations were

conducted in the closed flow torsionally driven cylinder, and the open tank swirling jet flow.
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Chapter 3

Experimental method

To investigate physical means of influencing, and possibly controlling, the vortex breakdown

phenomenon, two parameter-space investigations were performed in two separate experimental

apparatus.

The first experimental apparatus was designed to study the bluff body effects on the open tank

form of vortex breakdown. A swirling jet was created to issue into a large open tank of stagnant

fluid. The large geometry of the tank ensured a minimisation of any wall effect on the jet, but also

restricted the nature of the mechanical control devices used, limiting the parameter space

investigation to look at sphere position and size. This open tank apparatus was designed to be able

to adjust two components of the vortical flow independently, and provide greater control of the

parameter space investigation. Flow information was obtained from this apparatus using a novel

flow-visualisation technique.

The second apparatus was a closed cylindrical container, where the rotation of one end-wall disk

could be controlled to create vortex breakdown; this is the torsionally driven cylinder. This

apparatus was designed with a small geometry to allow the easy addition of vortex breakdown control

methods, and this meant that an additional parameter could be investigated, namely the rotation of

the sphere. The sphere itself was positioned on the central axis of the cylinder with a sting attached

to the centre of the stationary end-wall. The parameter space investigation in the torsionally driven

cylinder looked at the effects of the bluff body on the vortex breakdown behaviour and geometry,

and in particular noting the specific effects of varying the axial location of the sphere, the size of the

sphere, and sphere rotation rate. The size of this apparatus was designed specifically to obtain

quantitative velocity measurements, and these were the primary data obtained from this apparatus.
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This chapter is divided into two parts; the first will look at the open flow tank; the second will

look at the closed flow of the torsionally driven cylinder. Each section will detail the methods used

to validate the experimental setup, and how experimental data were obtained.

3.1 Part A — Open tank swirling jet

The first experimental apparatus used to study vortex breakdown interaction with a bluff body

was an open flow tank, where a swirling jet issued into a tank of stagnant water. The jet was

generated by a head unit, and exited through a contraction nozzle that was held under the water

level. The bluff body was then placed on the central axis of the jet by means of a sting arrangement

held to the side walls of the tank.

3.1.1 Parameter Space

The parameters that defined this investigation in an open tank are summarised here as follows:

• Q(m3/s) - Flow rate of fluid in the axial direction.

• ωM (Hz) - Rotation rate of the head unit swirl generator.

• ν(m2/s) - Kinematic viscosity of water, determined by measuring the temperature.

• D̂N (m) - Diameter of the outlet nozzle through which issues the swirling jet.

• D̂S(m) - Diameter of the sphere.

• x̂S(m) - Distance between the nozzle outlet and the sphere surface. This was measured to the

top of the sphere, as the first surface in contact with the on-coming swirling jet.

• P̂ (m) - Distance of the stagnation point location away from the nozzle outlet

Given that the movement of the stagnation point position is the dependent variable to be

measured, it can be stated that:

P̂ = f (D̂N , x̂S , D̂S , ν,Q, ωM ). (3.1)

The choice of a characteristic length scale is fairly arbitrary, but chosen here to be the nozzle

diameter, D̂N , because this was not varied in the investigation. The remaining parameters of the
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stagnation point distance, sphere diameter and position can then be non-dimensionalised by this

length:

P =
P̂

D̂N

, (3.2)

DS =
D̂S

D̂N

, (3.3)

xS =
x̂S

D̂N

, (3.4)

where the removal of the hat symbol (̂) denotes non-dimensionality.

In determining a Reynolds number to describe the flow:

Re =
UL

ν
, (3.5)

where characteristic length, D̂N , is used as the length scale, L. The average axial velocity was

determined from the flow rate, Q, as:

U =
4Q

πD̂N
2
, (3.6)

so that the axial Reynolds number can be defined,

Rex =
4Q

πD̂Nν
. (3.7)

In the manner of Liang & Maxworthy (2005), a rotational Reynolds number for the azimuthal

component of flow generation was defined using the rotation rate of the motor generating the

azimuthal velocity component:

Reω =
ωM D̂N

ν
. (3.8)
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3.1.2 Experimental apparatus

The open tank swirling jet experiments were visualised in a plane parallel with the axial direction

of the swirling jet. This section describes the apparatus that generates the swirling jet in the open

tank, along with the control methods and the imaging process.

3.1.2.1 The Tank

The tank was a large clear rectangular box, (1540mm high, 570×600cm cross-section) made of

polished Perspex and sitting clear off the ground in a large metal frame. The sides of the tank were

flat, and perpendicular to one another, enabling the light-sheets to pass through two parallel sides

for illuminating the jet, and the camera viewing perpendicular to the sheet and the side wall. The

bottom of the tank had an evenly spaced set of holes in it, through which the tank water was drawn

at a constant rate for recirculation to the swirl generator. The top of the tank was open to the

surrounds, allowing a head unit to be lowered into the tank, which was used to generate the swirling

jet. The fluid drawn from the bottom of the tank was pumped using a viscous disk pump to the

head unit. Inside the head unit, a honeycomb mesh was set in rotation by an external motor

(attached to the platform holding the head unit), which imparted swirl on the axial motion of the

fluid through the honeycomb. The diameter of the fluid exiting the honeycomb (∼ 30cm) was then

reduced to the working jet diameter by a contraction nozzle, with an exit nozzle diameter of

D̂N = 39.5mm, which was held under the water level of the tank. The vast volume of water in the

tank, head unit and pipes meant that after filling the apparatus, filtering the water and allowing it

settle at a constant temperature took a few days. This was done with the axial and azimuthal

pumps run at speed, and after a few days the bulk tank temperature was compared to the jet

temperature for similarity. The tank temperature was regularly monitored throughout the

acquisition of data. A schematic of the apparatus is shown in figure 3.1.2.1, along with a photograph

of the experimental arrangement. Specifications of all equipment can be found in Appendix A.

3.1.2.2 Illumination

Illumination of the flow was by means of two identical 300W spot-lamps, which were able to

remain on continuously for many days. Each lamp was self-contained with adjustable apertures to

generate a vertical light-sheet, and two optical lenses to focus the light sheet and give a sharp edge to

its profile. Each lamp was adjusted to give a 3mm thick light-sheet at the nozzle outlet under water.

Physical space restrictions on the right-hand side of the tank meant that the light source there had to

be reflected off a mirror to pass into the tank, and consequently images may show some differences in
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Figure 3.1: Schematic diagram of open tank apparatus used to perform these
experiments. Its design was based on that of Billant et al. (1998).

illumination intensity between each vertical half of the image, but this did not affect any final results.

3.1.2.3 Flow controls

The swirling jet comprised both axial and azimuthal components of flow. The axial flow

component was provided by the viscous-disk pump, and azimuthal flow was provided by the motors

attached to the head-unit. Each of these motors was controlled independently by one inverter each,

which had been reconfigured to receive operating instructions from a single controlling computer.

Using a governing LabVIEW code, both inverters could be adjusted at any given time to create the

jet conditions required. The governing software was run on a single controlling computer, which

would adjust the flow conditions, record the settings, wait for a pre-determined steady-state time,

and trigger the visualisation camera at the correct time. Images were then acquired on a second

computer, which was programmed in C, to acquire a pre-determined number of frames and perform

some parts of the post-processing tasks.

The Reynolds number of the axial flow is the main indicator of the flow conditions, and depended

on the flow rate, Q, and the kinematic viscosity of fluid, ν, which was measured from the

temperature of the tank. The temperature was measured near the nozzle outlet at regular intervals

throughout the acquisition period, with temperature values at individual data acquisition times
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interpolated from these. The kinematic viscosity, defined by

ν =
µ

ρ
,

was determined from the dynamic viscosity, µ, and density, ρ, which are in turn defined (by White

1999) in terms of the temperature, θC,K (subscripts indicate whether to use degrees Celsius or

Kelvin), by

ρ ≈ 1000 − 0.0178 |θC − 4|1.7 ± 0.2%, (3.9)

and

ln
µ

µ0

≈ −1.704 − 5.306

(

273

θK

)

+ 7.003

(

273

θK

)2

, (3.10)

where µ0 = 1.788 × 10−3kg/(ms).

The flow rate, Q, was monitored using a magnetic flow meter installed downstream of the

viscous-disk pump, but upstream of the head-unit. The axial flow inverter used the feedback from

the flow meter to adjust its power output. Knowing the temperature of the fluid, and therefore the

viscosity, the flow rate was adjusted with the inverter to maintain a constant axial Reynolds number

at all times.

3.1.2.4 Software

As mentioned previously, two separate software codes were written to control the data

acquisition. The first was a controlling code, written using LabVIEW and consisted of a two-level

approach: The lower-level code was designed to interact with the hardware to generate the required

flow conditions, based on such input values as the hardware setup, fluid temperature and required

flow settings. The outputs of this code were used to log the flow conditions throughout the data

acquisition period. The upper-level code controlled the timing of the experiment and used the

lower-level code to generate the experimental conditions required.

The second software code operated on a second computer and was a modified version of the

proprietary software of the digital camera to control the image acquisition. The long exposure of

each image, and the long sequence of images to be taken were not able to be performed using the

standard proprietary software versions, so code was written using supplied software drivers to
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acquire the required images. The code was also modified to accept a trigger signal from the

controlling code to indicate when to begin acquisition. Modifying the software also allowed the

camera controls to be automated (not possible with standard code), allowing many data sequences

to be obtained, recorded, and stored under the control of the first software code.

3.1.3 Calibrating experiments

Before taking any experimental data for analysis, the physical flow conditions had to be obtained

to determine if the image acquisition method was appropriate.

3.1.3.1 Head unit rotation speed

The inverter controlling the head-unit motor provided a set voltage to the motor for a required

rotation rate, and returned a value that could be interpreted as a rotation speed. To determine the

actual rotation rate of the head-unit for a given flow condition, it was measured for a range of

rotation rates and this showed that the actual rotation rate of the honey-comb section, ωM (Hz), was

a linear function of the set rotation rate, M , in the inverter:

ωM = 9.66050 × 10−6M − 2.34977 × 10−3, (3.11)

where M is an arbitrary scaling value. The motor itself rotated at 240 times the ωM value because

of a reduction gearbox.

3.1.3.2 Positioning the sphere

Positioning the sphere in the open tank was difficult because of the ability for lateral movement

of the sphere. The sphere was attached to the end of a stainless-steel rod (external diameter of

5mm), which was attached on the downstream side of the sphere. The sting length behind the

sphere was approximately 7DS in length, and the whole sting-sphere arrangement was held to the

side of the Perspex tank with an adjustable clamp. The sphere position was monitored throughout

the experiment for any movement in its position.

The axial position of the sphere was determined by imaging the sphere and nozzle arrangement

using a single digital camera, shown in figure 3.2(a). In this image, the outlet nozzle of the head-unit

can be seen as the ellipse at the top of the image, the pixel coordinates of which gave the nozzle

diameter measurement, and their mid-point gave the axial origin, both described in pixels, as shown

in figure 3.2(b).
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Figure 3.2: (a) Image from front-on camera, used in positioning the sphere under the
nozzle. (b) Schematic diagram of various features in the image, specifying the X or Y
pixel coordinate of the sphere (subscript S) or nozzle (N), on the left (L), top (T ) or
bottom (B) of each feature.

Here the dimensional nozzle diameter, D̂N , could be described in terms of the pixel

measurements from the image as:

D̂N = XNR
−XNL

, (3.12)

and dimensional axial origin of the jet (on the central axis), x̂0, as:

x̂0 =
YNR

+ YNL

2
. (3.13)

Using these coordinates, the non-dimensional sphere position, xS , could then be determined by

measuring the coordinates of the top of the sphere, YST
:

xS =
YST

− x̂0

D̂N

, (3.14)

Using the prefix δ to indicate an uncertainty for a particular value, the uncertainty in the

non-dimensional position of the sphere, δxS , was then defined as:
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δxS = xS

(

δD̂N

D̂N

+
δYST

+ δx̂0

(YST
− x̂0)

)

, (3.15)

For dimensional quantities, measurement uncertainty was typically ±2 pixels.

The lateral positioning of the sphere was determined by calculating the offset of the centre of the

sphere from the centre of the nozzle, by defining complete alignment of the sphere centre under the

nozzle centre as zero-offset, and the sphere positioned outside the nozzle diameter as 100% offset. A

ratio of the separation between centres and the complete offset case gave the percentage off-set Of :

Of =

(

(XSR
+XSL

) − (XNR
+XNL

)

(XSR
−XSL

) + (XNR
−XNL

)

)

. (3.16)

Positioning the sphere in the correct lateral position was achieved using two digital cameras at

right-angles to both the central axis and each other. The two cameras imaged the sphere-nozzle

region simultaneously live enabling the effects of moving the sphere in the camera image of one

direction to be seen instantly in the other. The calculation of equation 3.16 was performed on both

camera images, and both the lateral and axial positions were adjusted until the sphere was located

under the nozzle in both images, within a calculated uncertainty.

Another measurement to further assist accurate sphere placement was defining a blockage-ratio

BR,

BR =
T

πR2
N

, (3.17)

which described the proportion of the nozzle area that was covered by the sphere, as viewed along

the axial direction. The blockage-ratio was defined as being greater than 1 for spheres aligned on the

central axis that were equal to or larger than the nozzle diameter. Furthermore, if the blockage ratio

calculated from images, such as in figure 3.2(a), was within a 1% of the maximum allowable blockage

ratio, the sphere was considered to be accurately placed. The covered area of the nozzle, T , was

defined as:
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T = R̂N
2
cos−1

(

d2 − R̂S
2

+ R̂N
2

2dR̂N

)

+ R̂S
2
cos−1

(

d2 + R̂S
2 − R̂N

2

2dR̂S

)

−

1

2

√

(−d+ R̂S + R̂N )(d+ R̂S − R̂N )(d− R̂S + R̂N )(d+ R̂S + R̂N ), (3.18)

and

d =

∣

∣

∣

∣

(XNR
+XNL

) − (XSR
+XSL

)

2

∣

∣

∣

∣

.

Here, the dimensional nozzle radius, R̂N , and dimensional sphere radius, R̂S , were used in the

derivation.

3.1.4 Temperature effects

In the large body of water of the open flow tank, the extent to which temperature differences

between a surface and the fluid could drive convection in the flow needed to be understood. The

Rayleigh number can give a measure of this, and is defined as

Ra =
gβ∆TH3

νk
,

where β is the thermal expansion coefficient, k is the thermal diffusivity of the fluid, H is the

characteristic length and ∆T is the temperature difference. In large tanks such as in the present

investigation, the characteristic length can make the Rayleigh number very large, to the point of

convective turbulence (Ra >∼ 109) — a temperature difference on the tank wall of only 0.1◦ is

enough to cause this. For this reason, before conducting experiments the tank water temperature

was allowed to equalise with that of the lab by running both axial and azimuthal pumps at speed for

at least two days at a constantly maintained lab temperature, until the temperature of the tank was

found to have reached a steady state. (At the same time, the water was filtered for sediment, stains

and odours using a combination of particulate and charcoal/carbon filters). The temperature was

measured using a glass thermometer suspended near, and slightly upstream of the nozzle outlet, and

had a measured uncertainty of ±0.3◦.

Temperature effects in the jet exiting the nozzle were harder to monitor, and could also be more

significant in altering the behaviour of vortex breakdown. Recall Billant et al. (1998) showed that

structural differences between a bubble and a cone form of breakdown (expressed as the relative
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difference in their upstream axial velocity) were on the same order of magnitude as buoyancy effects

of a 0.1◦ temperature difference between the swirling jet and surrounding fluid. Reproducing these

calculations in the context of the current apparatus, the Richardson number Ri of the flow can be

defined as

Ri =
∆ρgDN

ρV 2
x

,

where Vx is the mean axial velocity of the exiting jet, and the relative density difference, ∆ρ/ρ, for a

temperature difference between the tank and the jet of 0.1◦is 2 × 10−5. For the lowest Reynolds

number used in the current investigation (and therefore the flow most susceptible to convection

effects), the mean axial velocity was Vx = 0.0127m/s (from a measured flow rate of 0.056m3/h) and

so the Richardson number of the open flow tank was Ri = 0.048. Extending the calculations of

Billant et al. (1998), the pressure difference described by this Richardson number value between the

open and closed form of vortex breakdown then corresponds to a velocity difference of 5% in the

upstream axial velocity of the jet. This is speculated by Billant et al. (1998) to be in the order of the

velocity difference between a cone and a bubble state of breakdown, meaning buoyancy effects are

non-negligible.

In a similar open flow swirling jet experiment, Mourtazin & Cohen (2007) adjusted the

temperature difference between the jet and the surrounding stagnant fluid, and showed that both the

onset and shape of the breakdown bubble could be altered by a temperature difference. Reproducing

the results of Billant et al. (1998), Mourtazin & Cohen redefined the Richardson number in terms of

the temperature difference between the jet and the surrounds, as

Ri =
gHβ∆T

V 2
x

, (3.19)

where ∆T is positive for a jet warmer than the surrounding fluid. They found that in the Re–Ri

parameter space a boundary existed that separated the cone and bubble states. Reproduced in

figure 3.3 is this parameter space, showing (in open circles) the boundary between the cone and

bubble forms of breakdown. This shows that for Reynolds numbers above ∼ 300, a small positive

Richardson number (∼ 0.1) will produce a cone state of breakdown.
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Figure 3.3: Boundaries for the formation of a bubble or cone breakdown for Reynolds
numbers as a function of the Richardson number, as determined by Mourtazin & Cohen
(2007). Open circles (◦) are for the honeycomb section head unit, while closed circles are
for a different setup.

From figure 3.3, using an axial Reynolds number of 450 requires a Richardson number of 0.1 in

order to change the form of breakdown. With the current characteristic length scale based on the

nozzle diameter (0.0395m), equation 3.19 requires a temperature difference of ∆T = +0.2◦ between

the jet and the tank water. Unfortunately this is below the uncertainty level of a standard K-type

thermocouple (which is ±0.5) and below the ±0.3 uncertainty of the glass thermometer used in these

experiments. For this reason, the previously described process of equalising the fluid temperature

was performed over a period of several days until the fluid from the nozzle had stabilised to that of

the bulk tank fluid.

The effect of temperature gradients on the open jet swirling jet was also related to the work of

Khalil (2006), which found that temperature gradients as small as 1 degree were able to affect the

velocity components of the jet, and so alter the swirl number for a given honeycomb-motor rotation

rate. This work has been reproduced in figure 3.4, which shows the percentage change in the critical

swirl ratio of the jet, ∆SC , with the temperature difference, ∆T , between the jet temperature, Tj ,

and the tank, T∞, where ∆T = Tj − T∞.

From this work, the plot of figure 3.4 can be interpolated to find that for a Reynolds number of
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Figure 3.4: The reproduced work of Khalil (2006) showing for the open tank apparatus
the change in the critical swirl ratio ∆SC produced by a temperature difference ∆t
between the jet and the tank, where ∆T = Tj − T∞.

450 and a temperature difference of 0.3 degrees (uncertainty of measurements) the change in the

critical swirl for a warmer jet is ∆SC = −5.2% and for a cooler jet ∆SC = 6.2%. As will be seen in

chapter 4, for a critical swirl ratio of SC = 1.4 (Billant et al. 1998) this results in an uncertainty in

the rotational Reynolds number of ∆Reω = ±4. This is approximately the same value as the total

measurement uncertainty of Reω.

3.1.5 Flow visualisation method

Flow visualisation in this tank originally focused on using the technique of stereoscopic particle

image velocimetry (SPIV). However, it was found that automating such a method on this tank was

not possible for the long periods of acquisition that would be required. A summary of this

non-automated technique and some preliminary results can be found in Appendix B. The difficulties

that could not be overcome in this apparatus were:

1. Particle injection into the vortex core was achieved by injecting a standardised mix of particles

in a point upstream of the head unit, but downstream of the filters and pump. This injection

point was in a pipe of diameter D̂P = 30mm, and so to keep the axial Reynolds number of the

generated vortex within the uncertainty measurement of the flow rate, the injection of particles

had to be at a rate no greater than 9.7ml per second, which is very slow.

2. Particles needed to be added before every data point was visualised. Attempts were first made
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to visualise the flow by seeding the entire tank with the particle mix, but this primarily

resulted in the tank water becoming too cloudy to visualise the illuminated plane. It was also

attempted to seed the flow repeatedly before acquiring a data set, but the time required for the

injected particle mix to sufficiently seed the vortex core issuing from the head unit was in the

order of a few minutes. This is much less than steady state time, meaning that firstly the

manual injection of particles required constant presence throughout the experiment (no

automation), and secondly that it could not be concluded that the injection was not disturbing

the steady state conditions of the flow. The stability and sensitivity of the flow to any

disturbance is well documented by others (such as Mourtazin & Cohen 2007, Liang &

Maxworthy 2005 and Billant et al. 1998), and can be very difficult to quantify the level of

disturbance that will not affect steady-state.

Instead of using SPIV to look at the stagnation point position, it was found that using the low

volume of particles that remained entrained in the flow (and did not settle out), the flow could be

visualised with long-exposure photography, similar to the method used by Chrisohoides &

Sotiropoulos (2003) in identifying Lagrangian structures in flows. Long exposure images tended to

outline the stagnation region accurately enough to usefully measure the stagnation point location.

The low volume of particles meant imaging the illuminated plane was not obscured by cloudiness or

dispersion of the light sheet. Any further addition of particles to the flow was only required on time

scales many orders of magnitude greater than steady state, meaning that the technical difficulties in

automating particle delivery did not need solving, and that steady state was not affected.

Locating the stagnation point in a the image relied on the fact that the brightness of a region in a

long-exposure image would depend largely on the velocity of illuminated particles passing through

that region. In the low velocity regions, such as that in a vortex breakdown recirculation zone,

particle streaks appeared in an image as brighter than the surrounding fluid, as they had a higher

residence time for a given area of pixels. Similarly, comparatively higher velocity regions, such as in

the shear-layer or upstream vortex region, appeared darker in the same image. In visualising the

vortex breakdown, a clear separation could therefore be seen in any such image of the stagnation

region, where a recirculation zone meets a shear-layer and incoming jet. This was the method of

identifying the stagnation point.

To assist in the identification of a mean stagnation point location for a particular acquisition

period, image sequences were compiled to form a single image that was considered representative of
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the average stagnation point location over the entire acquisition period. Figure 3.5 shows the

sequence of image processing used to produce a single, averaged image of the acquisition period. In a

single period of acquisition, a subset of individual frames (Fig 3.5a) was layered together into a

single image (Fig 3.5b), giving an image with an apparent exposure time equal to the sum of all the

frames, but without the over-exposure problems encountered by lengthening the camera exposure of

a single frame. This layered image is then averaged with all subset-layered images (pixel intensity

value averaged at each position over all layered images). This produced the final image, an example

of which is in figure 3.5(c), and can be considered to represent a time-average of the acquisition

period. The stagnation point was then located by eye from this image, sometimes using the shape of

the shear-layer surrounding the recirculation to guide location of the stagnation point. Shown in

figure 3.5(c), the left-most line represents the determined axial position of the stagnation point. The

two right-most lines represent an uncertainty range in this measurement, and were determined by

taking a reasonable bound on the stagnation point: The upper limit was determined by where

horizontal streak-lines appeared in the vortex region; The lower limit was determined by where the

longer streak-lines of the shear-layer were no longer visible and the region was dominated by the

short length recirculation zone streaks.

Figure 3.5: Three stages of developing a single image for flow visualisation, highlighting
the ability of long-exposure imaging to resolve the stagnation point. Images are in
negative for clarity. (a) Single frame of flow, with little detail available. (b) Results of
layering together 10 consecutive frames, before (c) averaging together all layered images
together to form a single, time-averaged image depicting the stagnation point location.
DS = DN , xS = 2, Rex = 450, Reω = 109 ± 2.
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Nuances

The method of using long-exposure imaging could result in a slight upstream bias in the apparent

location of the stagnation point. This is because any transient movement in the brighter, slow

recirculation zone during the acquisition period will obscure on the same image region any previous

imaging of a darker, fast moving region. For any images that appeared to demonstrate transient

behaviour within the acquisition period, the layered subset images were assessed individually, and a

mean stagnation point position was taken from these results, with corresponding error bars

determined from the upper and lower limits of the vortex breakdown bubble’s transient motion.

It should be mentioned here that, due to the shear volume of data obtained from the

experimental apparatus, attempts were made to automate the data analysis. However, automation

was unsuccessful due to excessive noise in particle streak-lines, and the complexity of the appearance

of the vortex breakdown form under various flow and lighting conditions. A summary of the

automation technique developed and the considerations involved in optimising this can be found in

Appendix C.

3.1.5.1 Image exposure time

The exposure time of individual frames was determined by what appeared to make the best

image, as there was no measurable method of determining an optimal time. Since visualisation of

the stagnation point was by identifying particle movements in an image, the exposure chosen here

was one that gave the longest streak-lines possible without over-exposing the image to stray

illumination from internal reflections of the lamps. It was found that the best exposure time to get

an optimal contrast between the fast moving particles in the vortex flow and the slow moving

recirculation zone particles was an exposure of E = 2 seconds for Rex = 450, with other Reynolds

numbers having the exposure time adjusted relative to this:

E =
900

Rex
. (3.20)

For the higher axial Reynolds numbers, the lower exposure time resulted in reduced pixel

intensity for higher-speed flows, but this was overcome by adjusting the image brightness and

contrast before averaging, and otherwise did not alter the image.
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3.1.5.2 Flow steady-state time

In determining a steady state time, the primary assumption made here was that after changing

flow settings, the stagnation point would reach a steady position. This was found to be true for

nearly all settings. It was also found that the smaller the variation in flow conditions, the shorter this

steady state time. Shown in figure 3.6 is the position of the stagnation point plotted over time after

a change in motor setting of 50 (corresponding to ∆Reω = 4), for an axial Reynolds number of 600.

This plot form, where the axial position of the stagnation point is on an axis that increases in a

downward direction, will be used throughout this investigation to be analogous to the experimental

apparatus that issued down into the tank. In this figure, it can be seen that after the initial change

in rotation rate, the stagnation point moves rapidly upstream before settling on a final value at

around t = +10min. Note the similarity with the results of Liang & Maxworthy (2005), as discussed

in section 2.4.2 (page 26).
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Figure 3.6: Sample of the steady state investigations, showing the stagnation point
location through time after swirl change. Here, Rex = 600 ± 20, for Reω increasing from
99 to 104 (M = 1300–1350) at t = 0.

Some characteristic time scales involved in this apparatus were also determined, and were based

on the Reynolds numbers used. In the axial flow direction, the time scale was based on the axial

Reynolds number of equation 3.7 (page 45).
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tx =
4Q

πDN
. (3.21)

Using the maximum possible flow-rate in these experiments, (Q = 0.115m3/s for Rex = 900 at

15◦C), the longest time scale in the axial direction is tx = 99s. Similarly, in the rotational direction,

a time scale based on the azimuthal Reynolds number (eq. 3.8, page 45) was determined, which then

reduced to simply the rate of rotation of the honeycomb section inside the head unit,

tω =
D2

N

Reων
=

1

ωM
. (3.22)

For the lowest rotation rate used in these experiments, (Reω ∼ 100), the characteristic timescale

is tω = 121s. The minimum allowed settling time for the stagnation point (as shown in figure 3.6) is

then 10mins, which is much greater than the characteristic time scales involved. This means that the

final stagnation point position obtained is most probably a true steady state, and will not vary with

the flow settings. Typically, with the variation in stagnation point movement for different Reynolds

numbers, a conservative steady state time of 25mins was taken, where resolution in Reω was around

∆Reω = ±2 (∆M = 20).
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3.2 Part B — Torsionally driven cylinder

The second experimental apparatus in which vortex breakdown experiments were conducted was

a closed cylindrical container, where one end-wall could be rotated at a given speed to generate a

recirculating flow that would create a vortex breakdown bubble under certain parameter values. The

other stationary end-wall was used to hold a thin straight tube, through which a thinner tube was

used to hold a sphere. The use of an outer tube enabled the sphere to be rotated without the driving

rod coming into contact with the recirculating flow. The length of the double-sting arrangement

could also be adjusted to position the sphere at a given range of axial locations on the central axis of

the cylinder.

3.2.1 Defining the parameter space

The parameter space that describes most aspects of a flow inside a closed cylindrical container

has been determined by other researchers in similar experiments (such as Escudier 1984), and these

parameters are reproduced here, along with additional parameters used in these experiments. First,

the geometry of the cylinder was described by a non-dimensional height ratio, Γ, using the

dimensional measures of the tank height, Ĥ, and radius, R̂,

Γ =
Ĥ

R̂
. (3.23)

The rotation of the end-wall was characterised by its rotation rate, ωB , and this is used to define

the Reynolds number of the flow:

Re =
ωBR̂

2

ν
, (3.24)

where ν is the kinematic viscosity of the fluid. For the inclusion of a sphere in the tank, its

geometric properties are also characterised, defining the non-dimensional radius of the sphere, RS , as

a ratio of its dimensional radius, R̂S , and the cylinder radius:

RS =
R̂S

R̂
. (3.25)

Here, the sphere location was always held on the central axis, so the only positional parameter
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defined was the axial location, measured from the stationary end-wall supporting the sting. The

non-dimensional position of the sphere in the axial direction, XS , was measured to the top of the

sphere, or the length of the outer non-rotating sting, x̂,

XS =
x̂

H
. (3.26)

The axial sphere position was non-dimensionalised to the cylinder height in line with the work of

Fujimura et al. (2004). However, where images representing the meridional plane of the tank are

presented here along with vertical measurements, the marks will be presented in fractions of the tank

radius, R, rather than normalising to the tank height, H, to clearly show the different height ratios.

Finally, when rotating the sphere, the rotation rate of the sphere, ΩS , was defined not in terms of

a sphere Reynolds number, but as a ratio of the base plate rotation rate, Ω,

γ =
ΩS

ΩB
. (3.27)

3.2.2 Experimental apparatus

The experiments in the closed cylinder arrangement were visualised in a meridional plane

through the central axis of symmetry of the cylinder. The following section describes the

construction of the apparatus, including the method of achieving visualisation, the methods of

controlling the parameters, and how the data were acquired.

3.2.2.1 The tank

The cylinder was made from a single piece of clear Perspex, with an inner diameter of 65mm and

a wall thickness of 2mm. The cylinder sat flush in a circular groove in a stainless steel base plate,

which also held a separate aluminium disk that acted as the rotating end-wall. A water-tight

rotating shaft passed through the base plate, and aligned with the central axis of the cylinder, drove

its rotation. As shown in figure 3.7(a), the cylinder sat on the base-plate inside a recess to hold it in

place against the end-wall. To the edges of the base plate were secured plate glass pieces, to form an

octagonal tank around the cylinder at approximately 60mm from the cylinder. The purposes served

by this glass tank surrounding the cylinder were:

1. To contain a constant temperature bath. The temperature of the fluid that would circulate

inside the closed cylinder could not be directly controlled, so based on methods used by
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Figure 3.7: (a) Schematic diagram of the experimental apparatus, showing the inner
cylindrical working section in which the sphere was held, and the outer water bath. (b) A
photograph of the actual rig used.
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previous researchers on similar apparatus, it was decided that a bath of fluid was to surround

the cylinder, which could be maintained at a constant temperature by some means separate

from the experimental region. Any circulatory motion of the fluid in the bath region would not

affect the flow inside the cylinder, except to ensure that at the very least the walls of the

cylinder were kept at a constant temperature. Recirculating the bath fluid was done through

an inlet/outlet pair of holes in the base-plate, on opposite sides of the cylinder, to ensure

maximum mixing of the bath fluid. Bath fluid was drawn through the outlet hole and into the

temperature controlling tank of a constant-temperature device. In this device, heating and

cooling elements adjusted the temperature of the liquid inside the tank, to ensure that the

octagonal bath temperature was maintained at a fixed 20◦C, to within ±0.2◦C. The octagonal

bath temperature was monitored near the outlet nozzle by a thermocouple probe connected to

the constant-temperature device. Fluid inside the warming/cooling tank was continuously

drawn into a filter unit to ensure no particles would obstruct a view of the cylinder through the

octagonal glass tank. Once filtered, the water was returned to the warming/cooling tank. The

fluid then returned to the bath from this tank through the inlet hole of the base plate, with

this flow rate adjusted to ensure little disturbance of the octagonal tank water surface. The

whole system was allowed to come to thermal equilibrium over the course of a few days,

allowing air-bubbles trapped in the bath liquid to escape, and ensure that all the liquid inside

the filter unit had also reached temperature equilibrium with the bath fluid.

2. The octagonal shape of the bath tank reduced optical distortions of the meridional plane. The

curvature of the cylinder causes refraction problems when attempting to image any surface

inside it. To reduce these effects, a flat viewing window would ideally be located opposite the

viewing plane. But a similar effect can be achieved by creating a flat viewing window in the

bath wall, and filling the region between the objective plane and the viewing plane with a

substance of a single refractive index. This is clearly not possible if a water filled objective

plane is to be confined and viewed in an air-filled viewing environment, so wall materials used

had very similar refractive indices to water, and thereby minimised the distortion due to

refraction. The inner water column was surrounded by a Perspex wall, then by a water filled

bath, and finally by clear glass. The greatest loss in imaging quality was near the extremes of

the cylinder, where the curvature of the Perspex was so great that total internal reflection

occurred, obscuring part of the meridional plane. For this reason, it was not possible to

visualise a full 100% of the radial distance.
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Further to the purpose of the octagonal shape of the tank, all the viewing windows were set at angles

135◦ to each other. This meant that a camera could be placed to visualise the meridional plane in the

central cylinder at a 45◦ angle, yet still be normal to the outer glass surface – ideal for Stereo PIV.

3.2.2.2 Producing rotation

To rotate an end-wall inside the cylinder, a circular aluminium plate, machined to within 0.05mm

of the Perspex cylinder inner diameter, was attached to a shaft that protruded through the

base-plate. The disk sat clear above the base plate, and served as the end-wall of the cylindrical

container. The disk was anodised black to minimise visualisation reflections from light sources. The

rotation of the shaft was controlled using a high-precision stepper motor, fixed to the underside of

the base-plate. A flexible coupling joiner between the end-wall shaft and the stepper motor shaft

ensured any slight misalignment between the two shafts would not be translated to the motion of the

rotating end-wall. It was important to minimise end-wall movement out of its plane of rotation,

since axial, or processional variation in cylinder height have been found to produce asymmetries in

the flow (see, for example, Thompson & Hourigan 2003). The stepper motor rotating the end-wall

was controlled using a motion controller with micro-stepping, allowing 5.12 × 104 steps per

revolution. The high precision meant that the staggered rotation of the stepper motor would not be

seen by the experiment for the rotation rates of this investigation. A similar stepper motor was also

used to drive the rotation of the bluff body from the other end-wall location, and was controlled

from the same motor-controller for ease of operation. Proprietary data acquisition software was used

to control the rotation rate of both stepper motors, after calibrating the rotation rates for the range

of Reynolds numbers that was to be investigated. Calibration involved setting a certain number of

steps, and measuring the time of a number of rotations of the end-wall. This then allowed a

particular Reynolds number (Re) to be set in terms of the number of steps (N) in the motor

controller. The same procedure was undertaken for the sphere Reynolds number (ReS), although the

number of steps there (NS) was slightly different because of different software channels. These

results are summarised in equations 3.28.

N = 0.305Re− 0.866 (3.28)

NS = 7.773γRe− 24.402
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3.2.2.3 Illumination

Illumination of the apparatus for visualisation of the meridional plane of the flow needed to

consider several requirements:

1. The light needed to illuminate a thin vertical sheet through the meridional plane of the

cylinder, with an ideal width in the order of millimetres.

2. The illuminated light sheet needed to be bright enough to be seen by a camera.

3. The light source would need to have the ability to illuminate for a very short period of time, in

two rapid consecutive illuminations, for the PIV visualisation technique to be discussed shortly.

Figure 3.8: A photograph of light sheet optics arrangement on the traversing mechanism,
which moved the optics left-right in this image. The closed cylinder tank is seen at the top
of the image. The regularly spaced dots were 1 inch threaded holes, manufactured for
precision aligning of equipment.

For these reasons, a single Minilite PIV laser was used, which is commonly used to satisfy the

aforementioned requirements. The light emitting from the laser was a green light (λ = 532nm), and

had a circular cross section of approximately 3mm. To generate a vertical light sheet from this beam
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profile, a series of 45◦ mirrors were first used to position the incident light beam normal to the glass

surface, which itself was normal to the meridional plane to be illuminated. The whole experimental

apparatus was fixed to an optical table, which had guide holes set in 1 inch squares (seen in

figure 3.8), assisting in aligning all components, including ensuring that the beam was perpendicular

to the viewing direction. The beam profile was then altered into a vertical sheet by a series of optics,

shown in the photograph of figure 3.8. First, the overall diameter of the beam was reduced with a

pair of double-convex spherical lenses. These were adjusted in position along the same traversing

mechanism, ensuring that the beam would always pass through the centre of each lens. Once the

optimum beam thickness was produced, a concave cylindrical lens (curvature of 5mm radius)

diverged the beam into the vertical light sheet. This arrangement produced a sheet that was

measured to have a maximum thickness of 2.1 ± 0.1mm.

3.2.3 Data acquisition and analysis

The primary visualisation method used in these experiments was the technique of particle image

velocimetry, or PIV, and a brief overview of this technique is presented in this section. The software

used to perform the PIV analysis was an in-house developed algorithm written primarily by

Mr. Andreas Fouras of Monash University, and incorporated several error correction algorithms that

have been suggested in the literature.

3.2.3.1 Using PIV — Particle image velocimetry

PIV is an experimental visualisation technique that is used to determine instantaneous vector

fields of a flow. A flow is first seeded with particles, and two consecutive images of a plane of

illumination through a region of interest of the flow is taken a time ∆t apart. In each pair of images,

a small sub-region of the image is interrogated with a cross-correlation algorithm that identifies

where in the second frame the group of particles in the first has moved to. A vector is then drawn in

the centre of the first image interrogation window with a length and direction corresponding to the

offset (to sub-pixel accuracy) of the particle group. Then, by knowing the image resolution and the

time between images, the vector can be linearly scaled to represent a fluid velocity in that region.

This process is repeated over the whole image, resulting in a grid pattern of velocity vectors, which

is typically presented in horizontal and vertical components of the resultant velocity vector.

The in-house algorithm used here also determined a bound on the velocity results of the

experimental interrogation. At each interrogation location, theoretical velocity vectors were

determined using a deconvolution of a simplified Navier-Stokes equation fit through surrounding
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vectors. Any experimental measurements that were not within 2 pixels of the predicted value at that

location were then replaced with the theoretical vector. This vector is then known as filled, and a

count of the number of filled vectors in any given image gave an estimate of the adequacy of the

experimental data. Any data set that had more than 5% of vectors filled was discarded.

From the sequence of images obtained, an averaged flow field was required for each parameter

setting. The simplest method of doing this is by averaging the vectors at each interrogation location

of all the PIV images in a given sequence. A more accurate technique that has also been

incorporated was developed by Meinhart et al. (2000), who showed that greater accuracy could be

obtained by averaging the correlation space peaks of the same interrogation region of each image

before determining the real-space vector. However, this method assumes that the flow is steady in

time as any temporal variation in the flow will be smoothed out by this procedure.

Also included in the PIV algorithm used in this investigation was a technique developed by Hart

(2000) to improve the accuracy of cross-correlation by successively reducing the interrogation

window size. In this technique, an initial interrogation is performed on all images in a sequence with

a large interrogation window size. The velocity vectors produced by this method are then used as a

first approximation to a second interrogation using a window size reduced by half. This process is

repeated for successively smaller window sizes and can be repeated theoretically until the window

size matches a particle size. However, to minimise noise, this is usually limited in practice to a

window size that includes at least 7 particles. In this investigation, it was found that a 32 × 32 pixel

window size on a 16 × 16 pixel grid could be used, with an initial approximation using a window size

of 64 × 64 pixels. Larger initial sizes significantly increased the processing time with no great

improvement in accuracy.

3.2.3.2 Streamlines from PIV data

To best illustrate the flow, streamlines of the flow were calculated using the component velocity

information from the PIV software. In determining streamlines, recall that a change in streamline

value corresponds numerically to a change in flow rate between the streamlines,

Q1−2 = ψ2 − ψ1. (3.29)

Then, assuming axisymmetry, and defining the central axis as having a streamfunction value of

zero, the axial velocity component of flow is integrated (at a given axial location, z) in the radial
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direction, r:

q(z, r) = 2π

∫ r+dr

r

urdr. (3.30)

Discretising and replacing the flow rate with the streamfunction value ψ, the streamfunction is

calculated from the discrete axial velocity data of PIV by,

ψr,z =
n=r
∑

n=0

un.r. (3.31)

Stream lines are then determined from interpolating streamfunction contour levels. It is noted

here that the derivation of these equations dictates that for axial direction streamlines, if the value

of the streamline increases radially, the flow is in a positive axial direction. In this investigation,

z = 0 was at the stationary end-wall, and so radially increasing streamfunction values implied flow in

the axial direction towards the rotating end-wall.

3.2.4 Calibrating experiments

In ensuring accurate information could be gathered from the PIV technique, various parts of the

experiment needed to be calibrated. These were (i) the laser sheet position, (ii) the particle seeding

density, (iii) the optimal ∆t, (iv) the steady state time, and (v) the correct cylinder geometry. Since

each of these parameters could affect the results being obtained to measure any other parameter, the

order in which these investigations were conducted could affect the results in some way. A strategy

to overcome this problem is to pick a random order and loop through the experiments in an iterative

manner until all values converge. But there is no guarantee that iterating should necessarily

converge all results simultaneously, and so in this case, the order was based on determining first

those parameters which would probably affect the results the greatest. Although the order of these

experiments is not shown here to be optimal, they are presented in the order in which they were

performed.
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3.2.4.1 Laser sheet position

The laser sheet was required to pass through the central axis of the cylinder, perpendicular to the

viewing direction. To determine where the exact centre of fluid rotation was, the symmetric

properties of the flow were used. For a low Reynolds number flow in a closed cylinder, the flow was

symmetric, and free from any recirculating flow from vortex breakdown bubbles. PIV measurements

recorded with a light sheet that passes through the exact centre of rotation will be symmetric about

the central axis. A light sheet that does not pass through the exact centre will display some

asymmetry, and this property was exploited here to determine the centre. First, the laser was

positioned to pass through the centre using optical calibration. Then, using a lateral traversing

mechanism that maintained the perpendicular incident of the light sheet on the outer glass tank

(seen in figure 3.8, page 66), the light sheet was moved in 0.5mm increments away from this

estimated central position to a maximum distance of 3mm away either side. Image acquisition was

repeated multiple times at each of these various light sheet positions, to ensure that data obtained

were not time-dependent. All other required variables were chosen to reflect their optimum values:

seeding density was adjusted to show approximately 7 particles at least 4 × 4 pixels in size per

32× 32 pixels windows, and a PIV ∆t value of 60ms was chosen based on previous work on the same

equipment by Dusting et al. (2006).

PIV images were acquired for each location, and from the resulting images, a series of velocity

contours were extracted at a location that could be considered symmetric in a perfectly central

alignment. These are shown in figure 3.9, where the section of the PIV image (a) from which the

radial velocity contours (b) are extracted. Here the value of the peak can be seen to vary with

position, and by plotting the peak value of the left plane with the negative value of the right plane,

the location where the velocity values are the same can be determined (fig. 3.9c), and this was taken

to be the centre of rotation. In this case, the light sheet passed through the centre of the rig at

0.5mm from the original optically determined location.

3.2.4.2 Seeding density

The amount of particles required to accurately get a PIV image is approximately 7 particles per

PIV interrogation window. For the 11MPixel camera used here, window sizes of 32x32 pixels were

used. The method for determining the optimal amount of particle mix to use was based on counting

the filled vectors in an image of the flow for a particular seeding concentration. A set volume of a

standardised particle mix was added to the fluid inside the cylinder, and a PIV sequence was taken.

This was repeated for successive additions of particle mix, and for each sequence the number of filled
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Figure 3.9: (a) PIV image of radial velocity contours, showing the line along which
velocity information was obtained. (b) Radial velocity values along this line. (c) Values of
radial velocity of the peaks on either side of the central axis, with the ideal laser position at
around 0.51mm. This value was close enough to the experimental point taken at 0.5mm to
suggest that the light sheet should be placed at 0.5mm. Here, Re = 800, Γ = 1.73 ± 0.02.
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vectors from the PIV analysis was then taken as a measure of the image clarity. This could then be

compared across seeding densities to determine the ideal concentration of particle mix.

The standardised mix was made using polymer paint particles (Visitint) of a mean particle size of

20µm. The density used was a mixture of 200ml of water, 2 drops of liquid surfactant (Triton X)

with 0.5ml of polymer particles. This mixture was then added to the cylinder liquid (at Γ = 1.75) in

5ml increments, with a corresponding volume of liquid removed from the cylindrical test section

after each addition of particle mix to maintain the same height ratio of fluid.

The number of filled vectors was used as a clarity measurement, because if there are not enough

particles in an FFT interrogation region, the PIV algorithm is unable to determine an accurate

displacement, and the vector for that position is “filled”. This way, with increasing seeding, the

percentage of vectors not filled for an image should increase, until the image becomes too clouded

with particles (or the fluid is no longer transparent to the incoming light sheet), and the percentage

of vectors not filled decreases again.
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Figure 3.10: Plot of the percentage of total number of vectors not filled as a function of
volume of particle mix added for a constant height ratio of Γ = 1.75.

In this analysis, the whole image was used to count filled vectors, since attempts were being made

to minimise errors across the entire flow field. The Reynolds number was set at 1000 (no

breakdown), with a steady-state time of 20mins, and a ∆t of 60ms. Figure 3.10 shows that the
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percentage of not-filled vectors peaks at around 10ml, indicating that this concentration of the

standard particle mix was optimal.

3.2.4.3 PIV ∆t time

For a given PIV image set, the longer the pixel lengths of the velocity vectors, the better the

velocity resolution and accuracy. The length of this velocity vector is determined by the distance

traveled by a particle group within a certain time period, ∆t; the bigger the movement in the

particles in motion, the larger the pixel length of the vectors describing the velocity at that point.

However, there are limitations to the value of ∆t that can be used. The first is that particles to be

used in determining a velocity field need to be fully illuminated by the light sheet for the duration of

the two image captures, including the ∆t time separation. This is especially relevant in highly

azimuthal flows, as found in torsionally driven cylinder flows. The upper limit of PIV image

separation, ∆tMax, is limited by the requirement to ensure that the motion of a particle over this

time is entirely within the light sheet thickness ∆d. For a given known velocity v, the maximum

possible delay between exposures is simply:

∆tMax =
∆d

v
. (3.32)

However, since the velocity v is not usually known (this is partly the reason for performing PIV!),

a similar filled-vector approach to that in section 3.2.4.1 can be used, and equation 3.32 can be used

to verify these results.

In this case, a filled vector can be caused by particles moving out of the light sheet before the

second comparison frame is taken, and resulting in a second frame that has little or no correlation

with the first. The number of filled vectors for a frame of a particular ∆t setting can then be used as

an indicator of the adequacy of that chosen ∆t. For the purposes of the closed cylinder investigation,

this needs to take into account the fact that there may be a large variety of velocity values in the

flow, and so in order to capture usable information of the entire flow field, the measurement of filled

vectors is performed only in an area of the highest known velocity.

To ascertain whether pixel lengths are appropriate, figure 3.11 (a) shows a plot of pixel length of

the resultant velocity vector against the ∆t setting. This shows the expected general trend of

increasing pixel length with increasing ∆t. The fact that the plots appear for the most part to

continue linearly suggests that no significant number of particles were moving in or out of the light
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Figure 3.11: (a) Pixel length of resultant vectors for both Reynolds numbers of
Re = 1100(△) and Re = 2500(◦). (b) Percentage not filled vectors with increasing ∆t.
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sheet to drastically affect velocity measurements. Figure 3.11(b) shows the competing plot of the

percentage of not-filled vectors of the total number of vectors calculated, showing that as the time

step is increased, this number decreased. This suggested that there actually were some particles

being lost from the light sheet. In attempting to balance the competing requirements of maximising

the percentage not filled and the velocity vector pixel lengths, the values of Re = 1100, ∆t = 80ms

and Re = 2500, ∆t = 50ms were used, and linearly interpolated to give a general equation for any

other Reynolds number:

∆t =

( −30

1 400

)

(Re− 1 100) + 80. (3.33)

For the case of using a spinning sphere in the flow, care also had to be taken to ensure that this

∆t value was small enough to visualise the movement of the surface of the rotating sphere within the

light-sheet thickness. For a given sphere size, DS , rotating at a rate of ω, ∆t was constrained as

follows:

∆t ≤ 2∆l

ωDS
=

∆lDS

2ReSν
, (3.34)

to ensure that fluid at the surface of the sphere remained in the light-sheet for both PIV images.

This limit can then also be used to determine an upper limit on γ for a given disk Reynolds number.

3.2.4.4 Accurate lid placement

It is known that variations in the alignment of either the rotating end-wall or the stationary lid

can have dramatic effects on the formation and transient behaviour of the vortex breakdown.

Therefore, it was essential that as far as possible, the apparatus was axisymmetric, with minimal

deviation in the gap width between the end-walls in an axial direction.

To measure the symmetry, it was simply a matter of placing the lid, imaging the apparatus, and

measuring the pixel values of the location of the lid and of the base plate off the resulting image.

When a discrepancy in the two-point measurement was found, the lid was removed, adjusted and

reinstalled for another measurement. This process was repeated until alignment deviation was below

10 pixels across the width of the visible region, or 0.2◦, which was less than 0.007R in height

variation.
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3.2.4.5 Steady state times

As with the open flow experiment, it was assumed in the closed cylinder flow that once a

Reynolds number setting had been made, the flow eventually would settle on a steady state, be it a

single steady position or a transient, long-period oscillation about a stationary mean location. The

time required to reach steady state was found by comparing images of the flow field in regular time

intervals after the initial variation of the flow conditions. These experiments were repeated for most

of the measurements in this research. However, it was not possible to be done for all data

measurements, as the volume of images that were to be collected would have been prohibitively high.

So for each experiment, a few data points were measured in this manner to give a general trend,

with steady state times for remaining points interpolated from these.
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Figure 3.12: (a) Comparison of streamfunction contour plots for different time intervals
after setup: (blue) t = 15mins, (red) t = 20mins, (green) t = 25mins and
(orange) t = 30mins.

Figure 3.12 shows a sample of the method used to determine steady state. The image shows

streamfunction contours in a region where a breakdown bubble is forming, with contours of four

different steady state times plotted overlapping. Each colour (blue, red, green then orange)

represents times of +15mins, +20mins, +25mins, and +30mins after beginning disk rotation. From

this plot, it can be seen that steady state is reached after 20 minutes, since there is no more

variation in contour lines, as evident by the 15min blue line that does not align with the others,

whereas the 20min red line does.
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3.2.4.6 Number of frames to capture

Since each data point was an averaged image of a sequence of frames, the number of frames to be

captured for an accurate average needed to be determined. Ideally, an increasing number of

individual frames are averaged together until variation from an ideal solution becomes less than

some arbitrarily chosen threshold. To do this, a series of 100 frames was first collected, and the

vector fields of N averaged frames were compared with averaging all 100 frames. Seen in

figure 3.13(a) is the standard deviation σ of this difference for N number of frames, showing that

averaging around 70 frames appears sufficient to produce an acceptable average image (σ < 0.1).
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Figure 3.13: (a) Plot of standard deviation of resultant subtracted field, comparing N
averaged frames with 100 averaged frames. (b) Comparison of ideal solution (70 averaged
frames) with each cumulative average of N frames of remaining 30 frames.

Using these 70 frames as the acceptable ideal solution, the remaining 30 frames (not used in the

averaging of the 70) were cumulatively averaged, with the ideal solution subtracted from each

average. This result is plotted in figure 3.13(b). This shows that increasing the number of frames to

be used in averaging improves the standard deviation only slightly past approximately 25 frames,

and so this was the number of frames taken for each data set.

3.2.4.7 Bias errors

The velocity data generated by PIV interrogation is prone to bias errors. As shown in figure 3.14,

bias errors occur when a radial motion of a particle is detected, that might otherwise be in a solid

body-rotation position. This figure shows that for the extreme case of solid body rotation

illuminated by a light sheet of thickness ∆l, off-set from the central axis, flow that is radially

stationary can be perceived to have a radial component ∆r.
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R∆l
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Figure 3.14: Schematic representation of what a bias error is.

For a given light sheet thickness in a fluid of solid-body rotation, the bias can be described as:
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A plot of this equation for various light sheet thicknesses is presented in figure 3.15, showing the

bias at various radial positions. It can be seen from this graph that in the region r > ∆l, the bias is

limited by the light sheet thickness, and for r < ∆l the bias is limited by the time of residence in the

light sheet, ∆t. For the current case where the light sheet thickness is 2.1mm, for a particle

illuminated for both PIV frames at the maximum radius of R = 32.5mm, this results in a bias of

0.0679R — equivalent to 3.13 pixels for a resolution of 46.1px/mm. (Details of all these calculations

can be found in Appendix D.)

For a worst-case scenario, using a Re = 2750, and ∆t = 44.643ms, a light sheet positioned exactly

on the central axis of rotation has a maximum illuminated subtended angle of θ = 0.0646 radians.

Solid body rotation at the worst case scenario will subtend an angle of θo = 0.12 radians, resulting in

a second image taken when the particle is out of the light sheet by 1.74mm. Furthermore, only the

flow within a radial distance of 0.37R (37% of vectors) would remain illuminated throughout this ∆t.

How is it then that 63% of vectors are not filled? The reason is that the flow in the closed

cylinder is not in solid body rotation, meaning that these estimates of bias are too severe. Only fluid

near the rotating end-wall can be considered anywhere near solid-body, which itself is not the major

focus of this investigation. Dusting et al. (2006) found that the peak azimuthal velocity away from
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Figure 3.15: Bias values plotted for various light sheet thicknesses against radial
distance. Bias close to the centre is dependent on light sheet thickness, whereas further
out, is dependent on the ∆t chosen. All values non-dimensionalised to cylinder radius.

the Eckman layer was for Re = 1800, and had a velocity 17% that of solid body rotation. With the

worst-case ∆t, fluid travel ling at 0.17 times solid-body rotation subtends an angle of only θ = 0.02

radians, which is well inside the subtended light-sheet angle of 0.0646 radians.

In summary, for a given Reynolds number to be investigated, 10ml of a standardised particle mix

was injected to a fluid volume equivalent to Γ = 1.75. The laser light-sheet illumination operated at

a ∆t proportional to the required Reynolds number (eq. 3.33), and a sequence of 25 frames was

taken for each setting to determine a single averaged image of the flow. The particle mix was stirred

regularly between data acquisitions, each time ensuring the lid was replaced with accurate alignment.
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Chapter 4

Open flow swirling jet

The interaction of a bluff body with a swirling jet undergoing vortex breakdown has not been

extensively investigated. The only study in this field appears to have been by Mattner et al. (2003),

which presented the results of a swirling pipe flow investigation, with a sphere on the central axis.

However, this study did not vary the bluff-body parameters, and only focused on one axial Reynolds

number. The present investigation aims to expand this parameter space considerably, and to make

the results more comparable with the open flows of delta wing research. It is known that

confinement effects in pipe flows can affect the form of vortex breakdown, so to reduce these effects,

the Mattner et al. (2003) investigation was expanded here by being performed in an unconfined open

flow apparatus.

Shown in figure 3.1.2.1 (page 47), the open flow swirling jet apparatus was designed to produce a

swirling jet with independent variation of axial and azimuthal velocity components possible, as was

possible in the pipe flow studies of Mattner et al. (2003) and Sarpkaya (1971). The jet was created

by rotating a section of honey-comb in the azimuthal direction allowing flow to pass through it in an

axial direction. The rotation rate of the honeycomb determined the amount of swirl imparted to the

jet. The tank design was based on the work of Billant et al. (1998), where the tank cross-sectional

area was ∼ 30 times larger than the nozzle outlet area to limit the confinement effect of the tank. In

the current investigation, this area was further increased to ∼ 70 times. The disadvantage of

expanding the pipe flow work into an open flow tank is the need to account for the effect of

buoyancy forces on the jet. Whereas the pipe flow is only concerned with the inflow conditions as an

indicator of the flow, the open tank was concerned with the the stagnant fluid conditions as well as

the conditions of the inflow jet; in particular, the possibility of convective flows caused by a

temperature difference between the inflow jet and the stagnant tank fluid. These have been shown to
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4. OPEN FLOW SWIRLING JET

be non-trivial, and this is a factor that the pipe flows have not had to consider. However, studies

have shown these convective effects are quantifiable, and can be adequately monitored.

To study bluff body interaction with swirling jet vortices, spheres of various sizes were placed at

set distances from the nozzle outlet. It was found that the formation and location of a vortex

breakdown upstream of the sphere could be described by an empirical relationship, involving the

position of the vortex breakdown stagnation point as a function of the amount of swirl imparted to

the jet for a given axial velocity.

4.1 Scope of the study

The investigation presented in this chapter had two main components. The first was to determine

how the position of the stagnation point is affected by axial Reynolds number. A set of discrete

Reynolds numbers was chosen, and for each, the swirl was varied in increasing and then decreasing

directions, and the location of the stagnation point was recorded for each setting. The axial

Reynolds number range was chosen to cover the hysteretic range determined by Billant et al. (1998)

but extended slightly beyond this. Above the chosen upper limit of axial Reynolds number, the

vortex breakdown bubble became unsteady. This corresponded to Rex ≥ 900. The jet and vortex

breakdown structure are actually very sensitive to thermal gradients which are difficult to eliminate

from the rig, despite care to allow sufficient time for thermal equilibrium to be established, and this

factor effectively determined the practical lower axial Reynolds number limit of the experiments.

This corresponded to Rex = 450. The lower limit of the swirl setting was set to slightly less than the

value leading to stagnation upstream of the sphere surface (in the second set of experiments

described below). Finally, the upper limit of the swirl setting was determined by a practical

consideration, whereby as the stagnation point location continued to move upstream, it eventually

moved into a position so close to the nozzle outlet as to not be visible against the backdrop of the

nozzle outlet in the image. This can be seen in figure 4.1, where the clearly defined stagnation point

location in (a) moves into the nozzle image region of (b). This component of the study was at least

partially a repeat of the investigations of Billant et al. (1998) and Khalil et al. (2006), but intended

to extend these to resolve finer parameter space resolution for validation and provide base-case

results for the bluff body studies.

Indeed, the second component of the study was an investigation into mechanical means of

affecting the vortex breakdown structure. This was done by placing a bluff body, in the form of a
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Figure 4.1: Flow visualisation images typical of the data recorded for each parameter

setting. Shown in (a) is the stagnation point P̂ (indicated by the arrow). As the rotational
Reynolds number is increased, it moves towards the nozzle, until it is out of view, (b),
because either the actual stagnation point moves inside the nozzle itself, or the stagnation
point becomes indistinguishable from the nozzle backdrop.

sphere, on the central axis of the swirling jet at some axial distance downstream of the outlet nozzle.

The axial and azimuthal Reynolds numbers were then varied in the same manner as before, again

with the location of the stagnation point recorded. The effect of the sphere position and size was

determined by varying each of these parameters in turn and repeating the variation in axial and

azimuthal Reynolds numbers.

4.1.1 Identification of image features

The method used to determine the stagnation point from images, as was described in section 3.1.5

(page 55), was also used to determined the cone angle of the vortex breakdown. The study of Liang

& Maxworthy (2005) described a method of determining the cone angle by a linear trend through an

arbitrarily determined range of axial velocity profiles downstream of the nozzle. However, this would

result in a smaller cone angle for vortex breakdown structures further downstream, even if the cone

angle of the breakdown region itself remained unchanged. In the present investigation, velocity

measurements of the flow were not possible, so to produce a more appropriate quantitative descriptor

of the cone angle, a geometric construction based on the image of the vortex breakdown was used.

As shown in figure 4.2, after determining the position of the stagnation point (along with an

uncertainty bound), the location of the jet shear layer was determined at a further distance of 1/3

nozzle diameters downstream of the stagnation point. This value of one-third was somewhat
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Figure 4.2: Schematic overlay of the determination of the cone angle α, based on the
visualised shear layer position at a distance of 1/3 of the nozzle diameter downstream of
the determined stagnation point.

arbitrary, but found to balance the need to measure data far enough from the stagnation point to

ascertain whether the vortex breakdown was in the cone or bubble form, but be close enough to avoid

substantial modifications to bubble geometry induced by the different spheres. The chosen position

of the shear layer (shown in figure 4.2 as A and B), was determined by looking for streak-lines that

indicated the boundary between the fast moving shear layer and the slowly recirculating flow in the

vortex breakdown region. The cone-angle was then measured based on the triangle from the central

axis to the shear layer at that point, as shown in figure 4.2. It was defined as

α = tan−1

(

3(xB − xA)

2DN

)

∗ 180

π
, (4.1)

where xA and xB are the left and right radial pixel coordinates of points A and B in figure 4.2. A

measurement uncertainty was also then determined for the cone angle, by measuring the maximum

and minimum possible radial distance to the shear layer (∆xA and ∆xB), and this was used in

determining the maximum (α+) and minimum(α−) possible cone angles to give an maximum range

for the uncertainty in the cone angle α of ±2◦.

α+,− = tan−1

(

3(xB ± ∆xB − xA ∓ ∆xb)

2DN

)

∗ 180

π
, (4.2)

As will be seen later, this gave uncertainty ranges on the value of α that are in the order of 10%,

and as such are probably an overly conservative estimate of the cone angle uncertainty.
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4.2. Initial investigation

4.2 Initial investigation

As an initial investigation into the influence of a downstream bluff body on breakdown, a sphere

was placed inside the open tank apparatus, and a broad but rapid parameter space exploration was

undertaken. The related study by Mattner et al. (2003) allowed many nozzle diameters between

their bluff body and the inlet of the pipe. But from the study by Billant et al. (1998) in the case of

the open tank, the range of movement of the stagnation point was typically in a region restricted to

a distance of greater than 1 nozzle diameter away, and so the sphere was placed initially at an axial

distance xS of 2 nozzle diameters (measured from images to be xS = 1.93 ± 0.02). The sphere size,

though arbitrary at this stage, was chosen to be larger than the nozzle diameter, and measured to be

DS = 1.454 ± 0.006 (in nozzle diameters).

The location of the stagnation point between the sphere and the nozzle was measured as a

function of the rotational Reynolds number Reω (equation 3.8, page 45), and the measurements of

four different axial Reynolds numbers are plotted in figure 4.3.
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Figure 4.3: Stagnation point position P (in terms of nozzle diameters downstream of the
nozzle outlet) measured for increasing and decreasing swirl directions, plotted against the
rotational Reynolds number. Four evenly spaced axial Reynolds numbers are shown,
starting from the left-most at Rex = 450, 600, 750, 900, for a sphere of size
DS = 1.454 ± 0.006 located at an axial position of xS = 1.93 ± 0.02 downstream of the
nozzle outlet.
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4. OPEN FLOW SWIRLING JET

Figure 4.3 shows firstly that the trajectory of the stagnation point location is S-shaped, with

greater concentration of data points at both extremes. The shapes of these curves indicate that both

near the sphere and near the nozzle are preferred positions for vortex breakdown, and that the

stagnation point moves rapidly between these (semi-stable) regions as the control parameter is

varied. The second general feature of this plot is that as the axial Reynolds number is increased, a

higher rotation rate of the honeycomb is required to achieve the same stagnation point location as

required for a lower axial Reynolds number flow. The spacing between the different axial Reynolds

number curves in the Reω direction is fairly even, and the shapes similar, suggesting that some form

of collapse might be possible. Before determining a rescaling leading to a collapse of the curves, it

can also been seen that there is hysteresis-like behaviour in the movement of the stagnation point,

which is particularly evident in the axial Reynolds number cases of Rex = 600 and Rex = 750.
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Figure 4.4: (a) Expanded view of the cases of (△)Rex = 600 and (�) Rex = 750, with
arrows indicating direction Reω variation. (b) Determination of the best collapse
parameter for the data of figure 4.3. Blue line represents the collapse using mean of data
and increasing Reω only, and red line represents using decreasing Reω data.

Reproduced in figure 4.4(a) is an expanded region for these two Rex cases, with lines joining data

points for clarity. For the case of Rex = 750, the increasing and decreasing directions show a clear

separation in the movement of the stagnation point in the middle region away from both the

near-sphere and near-nozzle regions. This suggests that there may be an inherent stability to the

location of the stagnation point in both the near-sphere and near-nozzle regions. This separation of

movement is also seen with the case of Rex = 600, where, especially closer to the near-sphere region,

the stagnation point moves upstream from the sphere later than when it returns. In determining a

collapse parameter for this entire axial Reynolds number range, a first guess to an appropriate
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scaling parameter S̃ is taken to be:

S̃ = Reω/Re
a
x. (4.3)

Essentially, this form of a collapse parameter is a swirl ratio, similar to that used in the open flow

swirling jet study of Liang & Maxworthy (2005), where the swirl ratio was based on the honeycomb

rotation rate and the mean jet axial velocity, and could be defined in terms of the current

parameters as S = Reω/2Rex. The swirl parameter used here, and indeed that of Liang &

Maxworthy, is in contrast to the swirl parameter used in the open flow swirling jet study by Billant

et al. (1998), which was based on axial and azimuthal flow velocity measurements of the jet after

exiting the nozzle upstream of breakdown. To determine a value for the power index a of

equation 4.3, the spread SP of the data sets was minimised. The spread is defined as the relative

difference between the maximum and minimum S̃ values calculated for a give a. The data used in

determining the spread were taken from a subset of each curve, in the range of 0.6 < P < 1.6, as

being representative of the position of the data set in Reω. The optimisation was done by computing

the spread while varying a, as a percentage of the maximum S̃ value found in all subsets. The

minimum value of the spread could then be determined. To take into account the apparent

hysteresis, this was undertaken for both the increasing and decreasing swirl cases separately. The

results of this search are shown in figure 4.4(b). In this figure, the spread of the data using just the

increasing swirl data set (blue line) resulted in a minimum spread at a = 0.570, whereas the

decreasing swirl case (red line) resulted in a minimum spread at a = 0.568. Using both increasing

and decreasing cases (green line) was coincident with the increasing data set.

Rescaling the data of figure 4.3 using a = 0.570 for equation 4.3 gives the plot of figure 4.5(a),

and shows that the minimum spread value can produce a reasonable collapse of the data set. The

fact that the power-law scaling value is close to 1/2, indicates it is worth investigating how well an

alternative scaling with a = 1/2 actually fits the data. With this in mind, the data of figure 4.5(a)

have been re-plotted in figure 4.5(b) using a = 0.5 as a comparison. It can be seen that the

increasing-swirl case of Rex = 750 in this figure approximately coincides with the location of

Rex = 900; The decreasing-swirl case of Rex = 750 seems to align well with the remaining axial

Reynolds number cases. This indicates that although this scaling parameter results in a collapse that

is not as compact as the minimised a of 0.570, (and that within measurement uncertainty the data

sets do not entirely align), it is possible that the scaling power of the stagnation point movement is
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Figure 4.5: (a) Stagnation point location for four different Reynolds numbers, plotted
against the collapse swirl parameter (eq. 4.3), with a = 0.570. (b) Comparison to a
hypothetical swirl parameter scaled with a = 1/2. Colours are consistent with figure 4.3,
and triangle directions indicate data for increasing (N) or decreasing (H) directions of Reω.
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still close to 1/2. The scaling was investigated further with the intention of allowing direct

comparisons with other work using similar rigs (e.g., that of Billant et al. 1998). To achieve this, the

relationship between the honeycomb angular velocity and the (Billant et al. 1998) swirl number,

S = 2Uθmax/Uzmax, was sought. This relationship was previously determined using Particle Image

Velocimetry to extract the velocity components in the swirling jet at the exit of the nozzle. It was

undertaken as part of another study, by Khalil (2006), with which the author assisted. Further

details can be found in Khalil (2006).

Figure 4.6(a) shows the variation in swirl number with rotation rate of the honeycomb for

different axial Reynolds numbers. The behaviour can be approximated by an empirical relationship

S = a(1 − e−bω),

with a and b fitting parameters. Fitting these parameters for the three axial Reynolds numbers

using a least squares fit gives a ≃ 1.50 and b dependent on Reynolds number but it can be

approximated by b ≃ −0.425/Re
1/2
x with ω in units of revolutions per minute. The approximating

curves are also shown in figure 4.6(a). Given the nozzle diameter and the kinematic viscosity, the

relationship can expressed

S = S(Reω/Re
1/2
x ) ≃ 1.50(1 − e−0.425Reω/Re1/2

x ). (4.4)

Hence, the swirl number S is functionally related to the same scaling parameter used to collapse

the data at different axial Reynolds numbers. While the original rescaling is used throughout this

chapter to collapse data at different Reynolds numbers, an equivalent collapse would occur if the

swirl number S was used instead and it is possible to convert between parameters through

equation 4.4. Figure 4.6(b) effectively shows this alternative collapse using the same data as

previously, and demonstrates the similarity with the plot of figure 4.5(b), which used the power-law

approach of equation 4.3.

As mentioned previously, and as can be seen in both collapses of figure 4.5, there is a rapid

transition region about the midpoint between the nozzle outlet and the sphere, as well as two

almost-linear regions near the sphere and near the nozzle. A reason for this sudden transition

between two apparently stable regions can be seen by looking at flow visualisation images

characteristic of these regions.
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Figure 4.6: (a) Variation of the swirl number with rotation rate of the honeycomb from
Khalil (2006) for different axial Reynolds numbers. Symbols are for (•) Rex = 300,
(�) Rex = 600 and (N) Rex = 900. The empirical fits to the data are shown by the solid
lines. (b) Comparison to figure 4.5(b) using the collapse formulation of equation 4.4.
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(a) (b)

Figure 4.7: Flow visualisation of the same rotational Reynolds number (Reω = 113 ± 1)
for the cases of (a) increasing and (b) decreasing rotational Reynolds number.
P = 1.52 ± 0.03 and 0.60 ± 0.02.

Figure 4.7 shows two images for the same rotational Reynolds number taken in (a) an increasing

direction, and (b) a decreasing direction. For the case of the stagnation point located closer to the

sphere, the shear layer is attached to the surface of the sphere, but when the stagnation point is

closer to the nozzle, the shear layer is clear of the sphere. In this near-nozzle region, the shear layer

displays the conical form of breakdown seen by Billant et al. (1998), where the shear layer diverged

away from the central vortex axis. For the case where the stagnation point is closer to the sphere,

the shear layer encloses a region of recirculating flow, much like that of the bubble state of vortex

breakdown, and identical in form to the recirculation zone seen by Mattner et al. (2003) ahead of a

sphere.

4.3 Base case

The base case investigation provides results for the swirling jet without the downstream sphere to

provide a set of reference results for comparison with cases including the sphere presented

subsequently. Previous vortex breakdown studies in open tank flows have not given much attention

to using the location of the stagnation point as a descriptor of the flow. The original open-tank

vortex breakdown work by Billant et al. (1998) presented some results of the stagnation point

movement, but only used these to demonstrate the appearance of hysteresis for certain axial

Reynolds numbers. Since then, work in open tanks has largely focused on mode shapes of the shear

layer (for example, Gallaire et al. 2004). The work of Liang & Maxworthy (2005) modified the swirl
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apparatus, and provided measurements of the cone angle of breakdown, which will also be

investigated in this section.

For each axial Reynolds number, the experiments were performed in increasing and decreasing

swirl (Reω) directions multiple times. As indicated previously, vortex breakdown can demonstrate

not only some fluctuation in position (hence the averaging of images) but also the presence of

hysteresis in the stagnation point positions for some axial Reynolds numbers. For this reason,

multiple runs were used to try to establish a more reliable indication of the average movement of the

stagnation point for both the decreasing and increasing swirl cases. Considerable care was taken to

ensure temperature effects were minimised, but nevertheless some of the lack of repeatability of the

experiments for the same control parameters is likely to be caused by the difficulty in sufficiently

controlling temperature differences between various components of the rig and different parts of the

fluid system.

As before, four axial Reynolds number values were investigated: Rex = 450, 600, 750, and 900,

each with a calculated uncertainty based on both temperature variation and axial flow rate

measurements, of ±20. The rotational Reynolds number Reω was varied for each Rex from a value

below the point of breakdown appearance, to a maximum rotation rate at which the stagnation

point could be determined in the image against the background of the nozzle. For each axial

Reynolds number, the detection of hysteresis was also considered by making multiple passes through

the existence domain of the bubble in the azimuthal Reynolds number parameter. Shown in

figure 4.8 is the stagnation point location measured for all axial Reynolds numbers through variation

in rotational Reynolds number Reω. The up-triangles (△) indicate data points measured with

increasing Reω, and down-triangles (▽) are for decreasing Reω.

This figure shows that, as before, the data sets for each axial Reynolds number are separated by

a relatively constant increase in Reω, with Rex = 450 represented by the left-most data set, and

increasing in Rex across the four sets in increasing Reω. Before determining a collapse parameter,

we can see that the right-most set, which represents Rex = 900, shows some variation in Reω that is

not observed to the same extent for other Rex. Separating each increasing and decreasing swirl loop

reveals a possible reason for this.

Figure 4.9 shows each loop separated, with each data point surrounded by a box that bounds its

measurement uncertainty. In each case there is some separation in the paths taken by the stagnation

point in the increasing (blue) and decreasing (red) directions, suggesting that there may be some
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Figure 4.8: Raw data set of stagnation point location mapped through various swirl
(Reω) settings, for each of 4 axial Reynolds numbers (Rex). Triangle directions indicate
direction of Reω variation (△ increasing, and ▽ decreasing), with colour indicating the
axial Reynolds number value as before: (△)Rex = 450, (△)Rex = 600, (△)Rex = 750, and
(△)Rex = 900,

hysteresis for this axial Reynolds number value. Billant et al. (1998) found that the upper limit of

detectable hysteresis was Rex = 839 ± 27, so hysteresis at Rex = 900 should not be expected.

Comparing the first loop (fig. 4.9a) with the others, the variation in the stagnation point position

appears greatest for the first loop, with minor variation for the other loops.

Furthermore, by comparing the common directions in this Rex = 900 set (figure 4.10) all loop

trajectories in the decreasing direction are seen to align, whereas the increasing direction

measurements vary considerably. It may be possible that the increasing direction stagnation point

location has been affected by the restricted range of Reω, and that the lower limit of the Reω range

was not low enough to completely allow the flow conditions to return to settle, or the vortex

breakdown to disappear. The Reω range for each axial Reynolds number was set prior to acquisition,

and the experiments were run continuously until the entire programmed Reω range was investigated.

The fact that the decreasing direction data sets align suggest that the upper limit was more than

adequate to observe the stagnation point movement, however the lower limit may have prevented the

increasing swirl sets to begin at a common flow condition.
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Figure 4.9: Stagnation point location through Reω at Rex = 900 for each loop of swirl
variation. (a) First loop, (b) second loop, and (c) third loop. Direction of swirl variation
indicated with blue lines (−−−) for increasing Reω, and red lines (−−−) for decreasing
Reω.
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Figure 4.10: For Rex = 900, the stagnation point position for (a) all data points for the
increasing Reω direction, and for the (b) decreasing Reω direction. First loop indicated by
(△), second by (�) and third by (▽). Uncertainties in both position and Reω

measurements are indicated by bounding boxes on all data points.
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4.3. Base case

As with the previous section, a collapse of the regularly spaced data was attempted using both

the modified swirl parameter S̃ of equation 4.3 (page 87) and the fitted swirl parameter S of

equation 4.4 (page 89). Since the data set of Rex = 900 was known to not be entirely reliable, the

spread-minimisation technique of section 4.2 was performed on data sets that selectively exclude

parts of the Rex = 900 set. The results of this are shown in figure 4.11(a), which shows the

following: the minimisation of the entire data set shown by the green dotted line (including the first

Rex = 900 loop); the result of minimisation excluding the increasing Reω data (red line); thirdly,

excluding the entire first loop (blue solid line). Although there is a difference between using the

entire set and using only the decreasing-set from Reω = 900, there is little further effect in only

discarding the first entire loop.
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Figure 4.11: (a) Determination of the best collapse parameter a for the base-case data
set, by finding the minimum spread SP (as defined in section 4.2 on page 87) of the data
set in the range P > 0.5. Three different cases are investigated of selectively excluding
parts of the Rex = 900 data set: (−−) uses the entire data set, (−−) discards the
increasing Reω set of loop 1, and (−−) discards the first data loop entirely. (b) Stagnation
point location P for all axial Reynolds numbers investigated, plotted as a function of the
modified swirl parameter S, from equation 4.4.

These results show that there is a small range of values that gives the best collapse parameter

value a for this base-case data set. Using the case that only discarded the increasing data set from

the first loop resulted in a mean minimum spread of data for a = 0.526. Once again, this value is

close enough to 1/2 that the same collapse parameter of equation 4.4 was considered. Scaling the

data with this equation has been done with the entire data set (including the first loop of

Rex = 900) in figure 4.11(b). This figure shows a distinctive trace of the stagnation point, as being a

single curve, with very rapid movement of the stagnation point with increasing Reω in the region

furthest from the nozzle. Contrasting this, the near-nozzle region has only very minimal movement
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4. OPEN FLOW SWIRLING JET

with varying Reω, as seen previously with the test case involving the sphere. Both this case and the

previous sphere case suggest that the form of the stagnation point movement path in the near nozzle

region is primarily a nozzle effect.

4.3.1 Temperature variation

During acquisition of data, the temperature of the tank fluid near the nozzle outlet was carefully

monitored. This was important, since, as discussed in chapter 3, the buoyancy forces due to

temperature gradients were considered to be of the order of the velocity difference between a cone

and bubble breakdown state. Furthermore, the azimuthal Reynolds number used as a measure of the

rotation imparted to the flow was based on the rotation rate of the motor (as was that of Liang &

Maxworthy 2005), and not of the azimuthal velocity of the fluid after exiting the nozzle — implicitly

stating that the effect of temperature on the imparted azimuthal velocity is negligible. However, the

following example illustrates how this can be problematic: If for given Reω and Rex values the

temperature in the tank was to increase slightly, the flow rate Q would have to be decreased to

maintain constant Rex. However, since ωM would remain the same, a decrease in the axial velocity

for a constant rotational velocity would increase the swirl ratio of the vortex (as defined by Billant

et al. 1998). If this were to occur for a rotation rate close to the critical swirl, vortex breakdown may

be initiated for a ωM setting that otherwise would not have generated it.

The main difficulty in the monitoring of this potential problem was that temperature data were

not continuous, but recorded at regular intervals. This meant that if the temperature had increased

between measuring intervals, and Q had not been adjusted accordingly, then it could be expected

that at the very least the increased axial velocity would instead decrease the swirl number and move

the stagnation point further downstream than expected for that particular Reω setting. This

possible anomaly in the observed stagnation point position is a drawback of basing the rotational

Reynolds number on the rotational motor speed, but the anomaly can be monitored by looking at

the variation in the stagnation point position in conjunction with the temperature variations.

Figure 4.12 shows this in what are essentially time-series of temperature and stagnation point

location variation for each axial Reynolds number experiment. The temperature and stagnation

point position are plotted together for each data setting number N , which can be interpreted as a

time axis. For each axial Reynolds number setting, Reω was increased, then decreased, and this is

seen by the repeating pattern in the movement of the stagnation point location.

Close inspection of figure 4.12(a), for Rex = 450, shows that there indeed appears to be the
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Figure 4.12: Acquisition plots of the data for (a) Rex = 450, (b) Rex = 600.
(c) Rex = 750 and (d) Rex = 900. In each image, the left axis is the position P of the
stagnation point, marked with blue circles (◦), as a function of the data collection number
N , which increased with time. The right side axis is the tank temperature T , and marked
with red crosses (×). Vertical dotted lines (−−) are used to indicate the change of
direction of varying Reω from increasing to decreasing direction.

expected downstream movement in the stagnation point at N < 30 where the temperature can be

seen to increase. This is contrast to the cases of Rex = 600 (fig. 4.12b) and Rex = 750 (fig. 4.12c)

where the temperature appeared to be relatively steady. However, recall that the Rex = 450 case

displayed little or no hysteresis-like effects, despite a variation in temperature for the entire

Rex = 450 set of 1.2◦C. The adjunct to this is that the Rex = 600 and 750 cases only varied in

temperature by 0.1◦C at most, and yet did show hysteretic behaviour. This suggests that variations

in stagnation point location observed and attributed to hysteresis are themselves not as a result of

temperature variation in the tank.

The Rex = 900 trace of figure 4.12(d) further demonstrates the earlier stated problem, of where

the lowest swirl number limit was probably not low enough to ensure accurate and repeatable

measurements. This is seen firstly in the near-nozzle region, where the region where no stagnation

point could be measured is much broader than for other Rex settings. Secondly, this is seen in the

separation between loops in the far downstream region, which is much less for Rex = 900 than for

the other axial Reynolds numbers investigated.
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4.3.2 Hysteresis

Multiple passes were performed through the Reω domain to find evidence of hysteresis in the

stagnation point location. As mentioned previously, the data of Rex = 900 were found to not be

entirely reliable for hysteresis observations. So from the remaining axial Reynolds numbers,

hysteresis was first investigated in the range determined by Billant et al. (1998) to exhibit hysteresis,

of 620 ≤ Rex ≤ 839 ± 27. The results of the experiments performed at Rex = 600 are shown in

figure 4.13, where each plot represents one loop of increasing and decreasing rotational Reynolds

number. The first observation to make of this data set is that the near-nozzle region is fairly broad

in the Reω domain, with no significant difference between the increasing and decreasing directions of

Reω. Also, further downstream of this region the stagnation point moves very rapidly with small

variations in Reω. The uncertainty limits show that in the region of P & 0.8 hysteresis appears to

exist. However, in contrast to the introductory sphere case of section 4.2, the stagnation point is

higher for the base case in the increasing direction, and lower in the decreasing direction.
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Figure 4.13: Stagnation point location for each azimuthal Reynolds number investigated,
for Rex = 600. (a) The first loop of increasing, then decreasing Reω, and (b) the second
loop. Data captured while increasing Reω is shown in blue, while the decreasing Reω is
shown in red. Boxes represent experimental uncertainty, and arrows indicate data points
used in the flow visualisations of figure 4.14.

Flow visualisation of the data indicated by the arrows are shown in figure 4.14, where

Reω = 105.1 ± 0.6. Figures 4.14(a) and (b) show the flow of the first loop, with the breakdown

having moved further upstream than for the same swirl in the decreasing direction. Also seen is that

the lower position breakdown appears to correspond to a smaller cone angle. These observations are

also true for the second loop, seen in figures 4.14(c) & (d), where the increasing direction

Reω = 103.3 ± 0.6 and Reω = 103.0 ± 0.6 in the decreasing direction.

98



4.3. Base case

(a) (b)

(c) (d)

Figure 4.14: Flow visualisation images of the base-case flow at Rex = 600 for the region
in figure 4.13 near the edge of the near-nozzle region. The first row shows results from the
first loop of (a) Reω = 105.1 ± 0.6 increasing, and (b) decreasing. The second row shows
images from the second loop, where (c) Reω = 103.3 ± 0.6 increasing and
(d) Reω = 103.0 ± 0.6 decreasing.
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Figure 4.15: Stagnation point location for each azimuthal Reynolds number investigated,
for Rex = 750. (a) The first loop of increasing, then decreasing Reω, and (b) the second
loop. Data captured while increasing Reω is shown in blue, while the decreasing Reω is
shown in red. Boxes represent experimental uncertainty, and arrows indicate data points
used in the flow visualisations of figure 4.16.

A similar occurrence can be seen for the case of Rex = 750, where in figure 4.15 for both the first

and second loops, the region around Reω = 118 displays the same variation in stagnation point

location as the Rex = 600 case. Flow visualisation of the points marked with arrows are shown in

figure 4.16. Once again the stagnation point is slightly further downstream in the decreasing Reω

direction than increasing, and the breakdown cone angle also appears once again to be smaller,

suggesting that the vortex breakdown may be in the bubble state. This trend of a bubble state being

further downstream than a cone state is consistent with the findings of Billant et al. (1998). The

cone angle shall be returned to in more detail shortly.

The traces of figures 4.13 and 4.15 show that hysteresis exists for the axial Reynolds numbers of

600 and 750 independent of a downstream bluff body. Flow visualisations of the hysteretic regions

show clearly the position of the vortex breakdown stagnation point higher for the increasing cases

than the decreasing ones. The fact that in figures 4.13 and 4.15 all traces of Rex = 600 and 750 in

the near-nozzle region align well for all passes indicates that the problems seen previously for the

Rex = 900 data are not present, showing that the separation in paths is not as a result of limiting

the Reω observation domain.

In the case of the lowest axial Reynolds number used (Rex = 450), significant evidence of

hysteresis was not found. Figure 4.17(a) shows plots of all Rex = 450 data in both directions of Reω

variation. This shows that despite some apparent spread in the position of the stagnation point for

Reω . 95, the spread is not consistent within the same direction. This point is further highlighted in
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(a) (b)

(c) (d)

Figure 4.16: Flow visualisation images of the base-case flow at Rex = 750 for the region
in figure 4.15 near the edge of the near-nozzle region. The first row are results from the
first loop, at a slightly higher value than for Rex = 600 of (a) Reω = 115.1 ± 0.6
increasing, and (b) decreasing. The second row are images from the second loop, where
(c) Reω = 118.8 ± 0.6 increasing and (d) decreasing.
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Figure 4.17: For the case of Rex = 450, stagnation point location through azimuthal
Reynolds number, for (a) all three loops of increasing (△) and decreasing (▽) direction of
Reω variation performed. Colours are blue for loop 1, black for loop 2 and red for loop 3.
(b) Only the decreasing direction data set. Arrows indicate data points of interest, for flow
visualisation imaging in figure 4.18.

figure 4.17(b), which shows all the data for just the decreasing Reω values. Of particular interest is

the second loop data set, indicated by the black squares (�), which shows a faster movement away

from the nozzle than the first and third sets. Looking at the flow visualisation of these indicated

points suggests a reason for this feature. Figure 4.18 shows flow visualisation images of all three

loops in the decreasing direction for Reω ∼ 93. The location of the stagnation point in figure 4.18(a)

shows evidence of movement within the acquisition period, as indicated by the two horizontal lines

showing the lowest (left) and highest (right) points recorded of the stagnation point location, as

measured from the individual frames that make up this image. For both the first and second loops

(figs. 4.18a & b), the stagnation point moved downstream during the acquisition period. However,

the third loop showed only a slight oscillation. The fact that the paths traced out by the various

loops in figure 4.17(a) for P & 0.8 are not coincident within the same direction suggests that

hysteresis is unlikely to be present for this Reynolds number. Furthermore, the flow visualisations of

figure 4.18 show that transient behaviour can adequately explain the variation in stagnation point

measurements for Rex = 450 and P & 0.8.
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(a) (b) (c)

Figure 4.18: Flow visualisation of the data points indicated by arrows in figure 4.17(b)
in the decreasing Reω direction. Rex = 450 for (a) the first decreasing loop, where
Reω = 92.8 ± 0.5 and P = 0.74 ± 0.07, (b) the second decreasing loop, where
Reω = 92.1 ± 0.5 and P = 1.06 ± 0.06, and (c) the third decreasing loop, where
Reω = 93.0 ± 0.5 and P = 0.62 ± 0.03.

4.3.3 Cone angle

Recall from section 4.1.1 that the cone angle of the vortex breakdown can be determined, as

defined in the image of figure 4.2 (page 84). Figure 4.19 shows the results of the cone angle

determination for each axial Reynolds number plotted against the position of the stagnation point

for each rotational Reynolds number that displayed a vortex breakdown. In figure 4.19(a), the

results of Reω = 750 have been plotted with uncertainty bounds, as determined by the schematic

diagram of figure 4.2 (page 84). Figure 4.19(a) shows that the method of determining an uncertainty

on the cone angle is fairly generous, and for clarity these error boxes will not be presented for the

remaining data.

In each axial Reynolds number data set (figs. 4.19 b–e), the same general trend in the cone angle

can be seen for a particular stagnation point location. From first appearance, as the stagnation point

moves upstream, the cone angle increases in a fairly linear fashion, to a peak cone angle of α ∼ 60◦

for a position of P ≈ 0.5. Further upstream movement of the stagnation point then results in the

cone angle decreasing very rapidly, until the stagnation point location cannot be determined. In

figure 4.19(f), all the individual axial Reynolds number data have been plotted together to further

highlight the appearance of these general trends, especially the linear movement upstream indicated

by the line. This shows that a cone angle of 60◦ appears to be the upper limit for all axial Reynolds

numbers, at a stagnation point position of around P = 0.5, and that a limiting envelope on cone

angle can probably be drawn over the entire data set.
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Figure 4.19: Scatter plots of cone angle measurements at each stagnation point location.
Clockwise from top left: (a) Measurement uncertainties plotted for Rex = 750,
(b)-(e) Rex = 450 − 900. (f) All data points together, with linear trend-line. Colours
matching axial Reynolds numbers maintained.
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To the knowledge of the author, the only other recorded measurement of the cone angle in the

open tank swirling jet flow is by Liang & Maxworthy (2005), where they measured the cone angle of

the vortex breakdown for a specific flow swirl ratio (defined as the ratio of azimuthal to axial

velocity components, measured at a distance of 3–5mm downstream of the nozzle). Unfortunately

they did not measure the stagnation point position making absolute comparisons to the present work

difficult. Their cone angle measurements for an axial Reynolds number of Rex = 967 are reproduced

in figure 4.20, where the cone-angle has been plotted as a function of the swirl ratio .

Figure 4.20: Cone-angle measurements performed by Liang & Maxworthy (2005). The
cone-angle (half-angle) measured from half-peak axial velocity measurements, plotted
against the swirl ratio imparted on the flow. Rex = 967.

Liang & Maxworthy made specific mention of the fact that they did not record a slow increase in

the cone angle, but observed a sudden jump. This can be seen in figure 4.20 at around S = 0.87.

The reasons for their finding are that firstly, their method of determining a cone angle was based on

determining a linear fit through multiple locations (not a single distance) of the half-maximum axial

velocity downstream of the nozzle, and not from the stagnation point. This meant that not only

could they measure a cone-angle (which they called a half-angle) for flows that did not exhibit a

conical breakdown, but the cone angle value would be more dependent on vortex breakdown position

than its geometry! Secondly, in the region where the cone form of vortex breakdown actually existed

(S > 0.86 in figure 4.20), the increase in cone angle in fact was linear, up until their recorded value

for S = 1.03 which they said was “close to the nozzle exit”. This is consistent with the general trend
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observed in figure 4.19(f), and suggests that this linear trend can be observed regardless of the exact

method of describing the spread of the shear layer.

It should also be noted that it seems the cone form of breakdown was the dominant version that

appeared. Lower cone-angle values (especially for P > 1) corresponded to when the bubble

breakdown occurred more commonly, far downstream of the nozzle. The breakdown in the near

nozzle region was always in the conical form.

Recall from section 3.1.4 that a jet temperature more than 0.2 degrees above the temperature of

the surrounding fluid could ensure that only a cone form of breakdown could exist (Mourtazin &

Cohen 2007). This would explain why stagnation point locations further from the nozzle enable the

bubble breakdown form to be more likely as the jet cools in the bulk tank fluid.

4.4 Standard bluff body test: DS=xS=DN

The first investigation in to bluff body effects on the base case of unimpeded vortex breakdown

was to use a standard sphere case, defined as a sphere of diameter equal to the nozzle diameter,

placed one nozzle diameter downstream of the nozzle.

4.4.1 Forms of the plot

Performing the same investigation method as for the base case, the rotational Reynolds number

Reω was increased then decreased in a range that was slightly larger than the existence domain of

the vortex breakdown in the axial region between the nozzle and the sphere. Reω was slowly

increased first and then decreased, as an initial investigation of the presence of hysteresis. Results

from this investigation are shown in figure 4.21, where open circles (◦) represent measurements for

increasing Reω, and closed circles (•) for decreasing Reω.

Figure 4.21 shows that the movement of the stagnation point with varying Reω follows a path

that is different to that of the base case, and similar to the introductory sphere case, in that it

assumes an S-shaped curve. As Reω is increased, a stagnation point appears upstream of the sphere

surface, and a recirculation region forms between it and the sphere. This is indicated by the letter A

in the flow visualisation of figure 4.22(a). The recirculation zone consists of the standard two-cell

recirculation, with stationary counter-rotating vortices providing the reverse axial flow. These cells,

which presumably are of the single same structure, namely a toroid, completely fill the volume

defined as the vortex breakdown bubble. As Reω increases, this double-cell recirculation region
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Figure 4.21: Stagnation point position against rotational Reynolds number for the four
axial Reynolds numbers used. From the left Rex = 450 (◦), Rex = 600 (◦), Rex = 750 (◦),
Rex = 900 (◦). Open circles represent increasing Reω, and closed circles represent
decreasing Reω. Indicated is the branching region for Rex = 450.

increases in size, and the stagnation point moves correspondingly upstream, with the shear layer

remaining attached to the sphere, as indicated by the letter B. Continuing the increase in Reω

moves the stagnation point steadily upstream, before the shear layer detaches from the sphere, and

the vortex breakdown changes to open form shown in figure 4.22(b). This form occurs closer to the

nozzle, and is similar in form to the cone breakdown observed by others in open tank flows (such as

Billant et al. 1998, Liang & Maxworthy 2005, Khalil et al. 2006 or Mourtazin & Cohen 2007).

Further increase in Reω causes the stagnation point to move closer towards the nozzle, until the

stagnation point disappears into the nozzle, and the vortex breakdown region becomes unsteady.

Reducing Reω back from this point moves the stagnation point downstream, with the vortex

breakdown initially restored to the cone-like form, before re-attaching the shear layer to the sphere

surface and once again enclosing a recirculation region against the sphere.

The identification of data in the increasing and decreasing directions in figure 4.21 clearly shows

some features that were not expected from the previous experiments. The first difference is the

appearance in the left most data set (Rex = 450) of an apparent hysteresis in the stagnation point

movement, indicated in figure 4.21 with the arrow. Increasing Reω moves the stagnation point

upstream in a fairly steady manner, with a slight decrease in the steepness of the curve as it nears

the nozzle. But upon decreasing Reω, the stagnation point moves downstream steadily, this time at

a slightly slower rate, until the stagnation point drops abruptly from around P = 0.4 to the surface
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Figure 4.22: Flow-visualisation images of the stagnation point movement with Reω for
Rex = 450 ± 20. (a) The closed recirculation form of vortex breakdown in the near-sphere
region for Reω = 97 ± 2 and P = 0.75 ± 0.04. A indicates the stagnation point, and B the
reattachment point of the shear layer to the sphere. (b) The open form of recirculation in
the near-nozzle region for Reω = 104 ± 2 and P = 0.28 ± 0.04. (c) The open form of
recirculation that exists in the upper-branch region of the Rex = 450 data set, for
Reω = 95 ± 2 and P = 0.36 ± 0.03.

of the sphere. This trend was seen to occur for both times the increasing and decreasing cycles were

performed, and does not appear to follow the typical S-shape of the other curves. The open form of

breakdown, as seen in the flow visualisation of figure 4.22(c) for a decreasing Reω close to the

inception Reω value, suggests that temperature effects may be responsible for this branch, and not

hysteresis. This aspect will be discussed in more detail in the following section. Interestingly, the

second data set for Rex = 600 does not appear to show any sign of the hysteresis seen in the base

case (section 4.3). The third trace of Rex = 750 shows similar behaviour to the Rex = 450 case,

however this time the decreasing Reω causes the stagnation point to move downstream at a faster

rate than the ascent in the increasing direction. At around P = 0.5, the two paths converge with no

more appearance of any hysteresis-like deviations.

The second main feature of figure 4.21 is the regular separation between the four axial Reynolds

numbers investigated here in the same way as seen with previous cases. Similarly, the collapse

formulation of equation 4.4 was used here, and the results are plotted in figure 4.23. In this plot, the

collapse appears to be quite broad, so a comparison was once again made to the previously used

spread minimisation method. This produced a minimum spread of data for a value of a = 0.523 —

very similar to the value of 0.526 found in the base case. This supports the consistency of the

current data set collapse to the previous cases, and suggests that the underlying physics responsible

for the scaling may be similar in both cases.
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Figure 4.23: Stagnation point location plotted against modified swirl parameter S of
equation 4.4 for the entire data set of DS = DN = xS = 1. Rex = 450 − 900 with colours
consistent with previous figure 4.21.

The spread minimisation was also repeated for subsets of the data. These partial sets discarded

the decreasing direction data for both Rex = 450 and 750 as they did not appear to trace out the

general curved path similar to those shown in section 4.2. Comparisons were also made using subsets

of the axial range: the near nozzle region of 0.1 < P < 0.4; and the near sphere region 0.5 < P < 0.9.

These results are summarised in table 4.1, where the minimum spread value has been determined for

each subset range of the data, and using either all (“All”) of the data, or only the partial set just

described (“Part”).

All Part
0.1 < P < 0.9 0.536 0.523
0.1 < P < 0.4 0.563 0.557
0.5 < P < 0.9 0.608 0.564

Table 4.1: Best collapse parameter a for various ranges of data set in P , taking either all
the data (“All”) or a partial set (“Part”) that excludes the decreasing direction data for
Rex = 450 and 750.

This shows that although the case of the near-sphere region using the entire data set appears to

have a slightly higher minimum a value of 0.608, the remaining cases give a similar fitting parameter.

This suggests that although the entire data set may be quite noisy, there is little difference
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(∆a ∼ 0.04) in the best fit value of a, and the data set is still well described by the swirl scaling of

equation 4.4.

4.4.2 Comparisons to previous cases

The standard test (with the sphere) was also compared to to the previous work (the base case) to

further understand and characterise the effect of the sphere. Figure 4.24 shows a comparison of these

data, with the base case data represented by black crosses. (For clarity, only the decreasing direction

data of the base case have been plotted). Of immediate interest is the fact that the data sets of

corresponding regularly spaced axial Reynolds number do not align.
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Figure 4.24: Comparison between the base case data, represented by black crosses (×)
and the measurements of the standard sphere case, for all four Reynolds numbers
investigated. Colours are consistent with previous plots.

The reason for this misalignment is not entirely known at this stage, but it is believed to be

related to temperature effects in the flow. It was known that, for example, the tank temperature of

the Rex = 750 case was recorded to be 19.9◦, whereas for the standard sphere test it ranged between

18.7–18.8◦. Although the temperature has been accounted for in the azimuthal Reynolds number

definition through the viscosity (eq. 3.8), it may be that either some higher-order temperature effects
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are present in the head-unit or, in line with the study by Mourtazin & Cohen (2007), that

immeasurably small differences in temperature between the swirling jet and tank water are affecting

the flow. With this in mind, the data set of figure 4.24 was scaled with a crude temperature ratio to

give a better alignment of the data sets with axial Reynolds number. This scaling was based on the

ratio of the temperatures of each data set to give a new scaled rotational Reynolds number Re∗ω as

Re∗ω = (
T2

T1

)2Reω, (4.5)

where T1 and T2 represent the temperatures of the first and second sets to be compared at the same

axial Reynolds number. It must be stated that although this is perhaps not with sound physical

basis, it is used here purely to make clearer trends in each data set. It will be shown that this has

little effect on any further data processing. Shown in figure 4.25(a) is the comparison plot of

figure 4.24 scaled by this temperature-based factor with now the data sets separated showing clearer

the effect of the sphere.
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Figure 4.25: (a) Comparison between the stagnation point location of the base case data
with that of the standard sphere case. Azimuthal Reynolds number of base case data has
been scaled by a temperature-based factor to better align each axial Reynolds number
data set (Re∗ω). (b) The same data set, plotted against the swirl parameter of
equation 4.4, but swirl determined using Reω data scaled with temperature (S∗).

From this figure, it can be seen that the near-nozzle region data for each axial Reynolds number

case have been reasonably well aligned. This now shows that in the near sphere region, the

instigation of breakdown appears earlier than in the base case. This is consistent with the study by

Mattner et al. (2003), which also found that breakdown appeared at a lower azimuthal velocity

setting than for a base case flow. Using this same temperature-based rescaled data, the regular

spacing of the data sets once again suggests the use of the swirl scaling of equation 4.4, and this has
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been plotted in figure 4.25(b), where S∗ is used to indicate that the swirl has been calculated using

the temperature-based scaled data. This figure shows that the data in the near nozzle region

collapses well to a narrow band of values, but further downstream the match is not as good. This is

mainly due to the hysteresis effects seen in this part of each data set, and not a result of the

temperature scaling. A spread minimisation of the un-scaled data (using equation 4.3) resulted in a

minimised collapse for a = 0.4860, which is once again close to the swirl collapse parameter which

uses a = 0.5. It should be noted that performing the spread minimisation on the scaled data resulted

in a = 0.5960, but this slightly larger value is still close to the expected value of 0.5.

A comparison can also be made of the standard sphere case to the introductory sphere case. This

is shown in figure 4.26(a), where the distance has been normalised to the sphere position. Once

again, the temperature-based scaling has been used to show better alignment between each axial

Reynolds number.
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Figure 4.26: Comparison between (a) the standard sphere case and the base case (×),
and (b) the standard sphere case to the introductory sphere case (×). A scaling factor has
been applied to the standard sphere case based on the temperature ratio of the data, and
the stagnation point position, P , has been normalised, ‖P‖, to the sphere surface.

The scaled version of the data comparison in figure 4.26(a) shows that the S-shape to the paths

taken by the movement of the stagnation point in the Reω parameter space is a common feature of

the addition of the sphere. In the near-sphere region, there is a small region where the stagnation

point movement is only slight, before its more rapid movement upstream with increasing Reω. The

other region of a slow increase in axial position is seen near the nozzle.

The variation in the standard sphere case of Rex = 450 to the introductory sphere case shows

that most of the data matches well with the path of the introductory sphere case. The branching

part of this data set that does not appear to match the S-shaped path of the introductory sphere

112



4.5. Sphere size effect

case, was discussed previously in section 4.4.1 (page 107) as not being a hysteretic effect. It is

further suggested here that the movement of the stagnation point in this branching region is related

to temperature effects that can vary the vortex breakdown form, especially for lower axial Reynolds

numbers. Recall from section 3.1.4 (page 52)that the buoyancy effect of a jet warmer than the tank

fluid is to decrease the critical swirl number, being especially significant for Rex . 300. Also, as seen

in section 4.3.3 (page 103), a change in vortex breakdown form is associated with a change in

stagnation point position. The flow visualisation of the standard sphere case for Rex = 450

(fig. 4.22c) showed that the breakdown was indeed in an open form for this entire branching region.

A slightly warmer jet in the decreasing loop for this low Rex would then account for the tendency of

the open form of vortex breakdown to occur. Its stagnation point would then be closer to the nozzle

than otherwise, and so for a decreasing Reω appear to remain in this stable region for longer.

The hysteretic effect in the case of especially Reω = 750 is also seen to be much larger in the

standard sphere case than in the introductory case of section 4.2. Since this effect is most probably

due to hysteresis in the breakdown movement, and not as a result of temperature variation, the

sphere geometry and position can be identified as also being responsible for some effects in the

stagnation point movement.

4.5 Sphere size effect

The next question to be answered is to determine the effect that varying the sphere size has on

the movement and form of vortex breakdown. For ease of comparison, sphere sizes were varied at the

same distance as the standard sphere experiment, of 1 nozzle diameter downstream of the nozzle.

The standard sphere size (DS = DN ) was compared to one sphere approximately 50% smaller than

the nozzle diameter, measured to be DS = 0.622± 0.004, and one approximately 50% larger than the

nozzle, measured to be DS = 1.454 ± 0.006. That is, stock sphere sizes were chosen with diameters

varying in increments of approximately half the nozzle diameter.

For an axial Reynolds number of Rex = 600, the rotational Reynolds number Reω was increased

and decreased (once), and the position of the stagnation point measured at each Reω. The results of

all three different sphere sizes is shown in figure 4.27. This shows that the stagnation point follows

the general S-shaped trend upstream once again with all data appearing to lie roughly along the

same curve. But further insight into the effect of the sphere size can be gained by isolating each

sphere case and comparing them one at a time.
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Figure 4.27: Raw stagnation point location data for the sphere size comparison
investigation, at Rex = 600. The standard sphere size of DS = DN (◦) is compared to a
sphere size DS = 0.622 ± 0.004(▽), and DS = 1.454 ± 0.006(�).

4.5.1 DS = 0.622

Figure 4.28 shows the same data of figure 4.27 without the large sphere case to show the major

difference between these first two sphere sizes. Firstly, the upstream region, from around P ≤ 0.4

(Reω ≥ 112), can be seen to be coincident as seen previously, although in this case the lower limit of

this region (P = 0.4) appears to be slightly closer to the nozzle than the previous P = 0.5 case.

Secondly, the clear difference between the two sphere sizes is the separation of the curves below this

near-nozzle region, where in the range of 97 ≤ Rex ≤ 112 the stagnation point for the smaller sphere

size is further upstream than for similar values for the larger, standard sphere. Once again, flow

visualisation images in this range can help understand the reasons for this.

Figure 4.29(a) and (b) shows flow visualisation for the two sphere sizes at a constant azimuthal

Reynolds number, Reω = 102 ± 2 for (a) and Reω = 103 ± 2 for (b). In the small sphere case (a) the

shear layer of the vortex breakdown is clear of the sphere and the stagnation point is at

P = 0.62 ± 0.02. The standard sphere case (b) shows that for the same rotational Reynolds number

the shear layer is instead attached to the surface of the sphere and encloses the recirculation zone

(although some detachment again can be seen to occur around the equator of the sphere). The
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Figure 4.28: Stagnation point position data for sphere size comparison, at Rex = 600,
showing only the standard sphere case (DS = DN )(◦) and that of DS = 0.622 ± 0.004 (▽).

stagnation point for this case is much closer to the sphere, at P = 0.84 ± 0.03.

As was done for the base case of section 4.3.3, a cone-angle for the vortex breakdown can be

measured here. However, since the form of the breakdown will be important to understand, a

maximum angle αMax of a re-attached shear layer is first determined, as shown by the schematic

diagram of figure 4.30. This would then be used to indicate the difference between an open (cone)

and closed (bubble) breakdown form.

115



4. OPEN FLOW SWIRLING JET

Figure 4.29: Flow visualisation images of the sphere-size testing at Rex = 600 ± 20,
comparing constant rotational Reynolds numbers. The first row is for
(a) DS = 0.622 ± 0.004, (Reω = 102 ± 2) and (b) DS = 0.970 ± 0.005 (Reω = 103 ± 2).
The second row compares (c) DS = 0.622 ± 0.004 (Reω = 120 ± 3) and
(d) DS = 0.970 ± 0.005 (Reω = 119 ± 3).

x

y αMax
P

r

Figure 4.30: Schematic diagram showing the determination of the maximum cone-angle
α of a shear layer completely attached to the surface of the sphere.
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The maximum cone-angle αMax of an attached vortex breakdown recirculation zone is

summarised for all sphere sizes in table 4.2.

DS αMax

0.662 58.8◦

0.970 65.5◦

1.454 70.21◦

Table 4.2: Maximum cone angle αMax for shear layer attachment to the sphere, for
various sphere sizes DS . Cone angle measured at DN/3 away from the stagnation point.

For the smaller sphere, the vortex breakdown appears to be in the open form, and has a

measured cone angle of 72◦, which is greater than its shear layer-attached maximum of 58.8◦. The

cone angle for the standard sphere case is measured to be 69◦, which is only slightly higher than the

maximum cone-angle of a completely attached shear layer for this sphere size of 65.5◦, but still

approximately of bubble shape. For this case, the cone angle included the appearance of a slight

detachment in the image average on the right of the sphere, but its value (with uncertainty of 2◦) is

still greater than αMax.

The second row of flow visualisation images of figure 4.29 shows the results of increasing the

rotational Reynolds number further, to Reω = 109. This has the effect of moving the stagnation

point upstream. The stagnation point location for the smaller sphere (c) is at P = 0.42 ± 0.04, but

the cone angle has remained steady in the cone-form, at 71◦. The standard sphere case has the

stagnation point at P = 0.61 ± 0.02, which is the same position now as the previous smaller sphere

case (a). This shows that the the rotational Reynolds number has to increase to achieve the same

stagnation point position for a larger sphere, outside of the near-nozzle region. Furthermore, the

cone angle measured for the standard sphere was measured to be 66◦, and confirms that the shear

layer is enclosing a recirculation zone, and not in the cone-form of breakdown.

It should be noted here that the temperature of the tank for these two sphere cases was 18◦ for

DS = 0.662, and increased slowly for DS = 0.970 from 17.8◦–18◦. This shows that despite a

measurable variation in the temperature, the higher axial Reynolds number chosen of 600 reduced

possible temperature variation effects. This is indeed seen by the consistency of results in the

increasing, then decreasing direction of Reω variation of figure 4.28.

117



4. OPEN FLOW SWIRLING JET

4.5.2 DS = 1.454

As was seen in figure 4.27, the results of the DS = 1.454 sphere tests are different from the

others, and do not seem to fit the expected pattern of having a greater influence on the shape of the

stagnation point path than the DS = 0.622 case. Plotting the data from DS = 1.454 alongside

DS = 0.970 can help explain this. Figure 4.31 shows that the path taken by the stagnation point for

both sphere sizes is identical in form, but with the large sphere size off-set from the standard sphere

case by ≈ 2%. Once again, it would appear from the similarity of these two curves that the

horizontal offset has been caused by an inadequacy of the non-dimensionalising parameter in Reω,

and indeed a temperature difference existed between these two sets, with the large sphere case being

performed at 17.4◦. However, despite the temperature difference, flow visualisation images showed

that this had no effect on the flow structure.
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Figure 4.31: (a) Stagnation point location data for the two sphere cases of
(◦) DS = 0.970 ± 0.005, and (�) DS = 1.454 ± 0.006. (b) The same plot from (a) with
superimposed uncertainty bounds of each data point.

Figure 4.32 shows the flow visualisation of the stagnation point at P = 0.73 ± 0.02 for this larger

sphere with a cone angle measured to be α = 71◦. This shows that the vortex breakdown is in the

closed (or bubble) form of breakdown, with the shear layer attached to the surface of the sphere.

This is identical to the case of the standard sphere, and contrasted to the smaller sphere of

DS = 0.622, where not only was the shear layer clear of the sphere but at a greater cone-angle.

Since the two experiments were performed when the tank was at different temperatures, the data

of figure 4.31(a) have been re-plotted in (b) with the addition of uncertainty bounds of each

measurement. This shows that for this larger sphere case, uncertainties are large enough to

accommodate the temperature difference between the two data sets. However, the similarity in the
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Figure 4.32: Flow-visualisation of the larger sphere case, showing the closed form of
breakdown for a stagnation point location of 0.73.

forms between the paths of these two sphere sizes is more likely to be as a result of the higher axial

Reynolds number chosen for this experiment, Rex = 600, which as seen previously is less likely to be

affected by buoyancy jet.

From the two comparisons seen here between the three sphere sizes used, a conclusion can be

drawn regarding the form of breakdown in relation to the sphere size. That is, there exists some

critical sphere size of between DS = 0.66 and DS = 0.99 that defines whether the vortex breakdown

will be in an open or closed form (cone or bubble), and whether or not it will experience the stability

zone near the sphere that would keep it downstream for higher swirl than would otherwise be the

case.

4.6 Distance to the sphere

It was previously seen that the general trend in the movement of the stagnation point varied little

when comparing the introductory case of a sphere at xS = 2 to the sphere placed at xS = 1. A

similar shape to the curve taken by the stagnation point in its movement through the rotational

Reynolds number parameter range was seen in both these distances, but for different sphere distances

(albeit, also for different sphere sizes, although this variable has already been explored). In this

section, a single standard sphere size of DS = DN , in this case measured to be DS = 0.970 ± 0.005,

was investigated comparing various axial positions for a constant axial Reynolds number
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Rex = 600 ± 20. Five sphere distances were chosen throughout a range considered extensive in the

open tank flow, with each position measured to the top of the sphere for xS = 0.75, 1, 1.5, 2 and 2.5.

For each sphere position, the rotational Reynolds number was increased and then decreased.
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Figure 4.33: (a) Raw data of stagnation point location plotted against rotational
Reynolds number for sphere positions ranging from 0.75 to 2.5, along with the base data
(×) case of section 4.3. (b) Uncertainty bounds on each data set in the upstream region of
the investigation. Colour coding is consistent across plots. Rex = 600 ± 20.

Plotted in figure 4.33(a) is the raw data of measuring the stagnation point location for both

increasing and decreasing Reω directions for the five different sphere positions. Included also is the

no-sphere case of section 4.3 as comparison. From this plot the general trend of the stagnation point

path can be seen once again in the near-nozzle region for all data sets as they converge with

increasing Reω at a slower rate than downstream. The uncertainty bounds plotted in the enlarged

view of figure 4.33(b) show that in this near-nozzle region, the apparent convergence is significant

and not as a result of measurement uncertainties. The downstream part of the data set in

figure 4.33(a) shows the S-shape to the curve in the near-sphere region suggesting from the previous

section that the flow topology has changed, and indeed the flow visualisation confirms this.

Shown in figure 4.34 are flow visualisation images of the case of xS = 2.00 ± 0.02. Figure 4.34(a)

shows the stagnation point measured to be close to the sphere, and the flow in the closed form of

breakdown. Increasing rotational Reynolds number moves the stagnation point upstream

(fig. 4.34b), and by this stage the shear layer is clear of the sphere diameter and vortex breakdown is

in an open form. Further increases in Reω results in the steady stagnation point moving closer to,

and finally into the nozzle.

Since both increasing and decreasing directions have been shown in figure 4.33(a), the two

direction traces can be better clarified by determining an average position for each Reω value, and
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(a) (b)

Figure 4.34: Flow-visualisation images for a standard sphere placed at xS = 2.00 ± 0.02.
(a) The closed form of vortex breakdown with the stagnation point close to the surface of
the sphere (Reω = 93 ± 2) (b) The open form of breakdown with the stagnation point in
the near-nozzle region (Reω = 101 ± 2).

this has been done in figure 4.35. Here it can be seen clearer that the trace of the no-sphere case

appears to cross over the path taken by the stagnation point for the sphere cases of xS ≤ 1.5. For

each of these cases, there is a small range of Reω . 110 where the stagnation point position is further

downstream than the no-sphere case, and this can be expected because of the apparent stability of

the near-sphere region. However, the no-sphere case then appears to be further upstream once Reω

is increased beyond ∼ 110 for DS = 1.5, and ∼ 115 for DS ≤ 1. This suggests that the sphere may

have some upstream influence from its downstream position, but this assessment needs to account

for, firstly, the fact that the rotational Reynolds number scaling of equation 3.8 adequately describes

the flow, and as shown in section 4.4.2, this may not be the case entirely. Secondly, the region

downstream of a vortex breakdown is known to be super-critical, meaning that information

downstream, such as that caused by a bluff body, should not affect the upstream flow conditions. So

before any conclusions can be drawn about the upstream vortex breakdown behaviour, the common

region to each sphere position is first inspected: that of the near nozzle region.

Figure 4.36 shows the recorded stagnation point measurements in the region near the nozzle,

along with a linear trend-line of best fit to each set in the region 0.4 ≥ P ≥ N3, where N3 indicates

the axial position (in each image) of the nozzle arrangement, which hinders the ability to measure
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Figure 4.35: Stagnation point data for a standard sphere placed at various axial
distances xS . Averaged data have been used for clarity, and to illustrate the mean path
movement.
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Figure 4.36: Linear trend-lines passed through the near-nozzle region of (a) each sphere
position data set, using the raw (non-averaged) data. (b) The base case (no sphere) is also
shown, using the raw data.
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the stagnation point. N3 is typically very close to the x0 position and less than 0.04DN . The trend

lines shown in figure 4.36(a) appear to be regularly spaced, where, with the exception of xS = 2.5,

the order of the lines from left to right is in decreasing sphere distance. The fact that the xS = 2.5

case is not on the left of xS = 2 suggests that the azimuthal Reynolds number may not able to

entirely account for differences in the conditions that were measured for these two sets despite the

axial Reynolds number being at 600 and temperatures not varying by much (17.5◦ for xS = 2.0 and

17.6◦ for xS = 2.5).
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Figure 4.37: Gradient m of the linear trend in the near-nozzle region for each position
xS of the standard sphere (DS = DN ). Horizontal line at m = −0.0187 corresponds to the
gradient of the base-case near-nozzle region.

The linear trend was also passed through the base case data, as seen in figure 4.36(b). In this

figure, it appears as though the near-nozzle region might extend further downstream than just the

P ≤ 0.4 region, but it is truncated there for consistency with the sphere-distance cases. By

measuring the gradients of these linear trend lines, a variation can be seen through the sphere

position parameter space. Figure 4.37 shows the gradient of the linear trend-line in the near nozzle

region as a function of the axial position of the standard sphere. This shows that the general trend

of the gradients is to decrease in steepness as the sphere is moved away from the nozzle. This would

usually suggest that as the sphere distance tends towards infinity, the gradient would tend towards

the base case (which is essentially a sphere at infinity). But for the limited range of sphere positions

tested here the gradients do not yet appear to be converging on the no-sphere case. Furthermore, the

gradient value appears to match the base case gradient for a sphere position somewhere in the range
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of 1 ≤ P ≤ 1.5. This suggests that even a sphere at xS = 2.5 can affect the upstream flow behaviour,

which may be contrary to the super-critical theory.
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Figure 4.38: Averaged stagnation point position normalised (‖P‖) to the sphere
position, as a function of rotational Reynolds number for each sphere size. Shown also is
the comparison to the base case (no-sphere) with (×).

The different gradients of the stagnation point movement path can be seen clearer by normalising

the distance to the sphere surface of the entire data set (using the averaged data set), as shown in

figure 4.38. Of particular interest here is the crossover in the gradient values in figure 4.37, which is

shown here to be a real phenomenon by the fact that the curve of the no-sphere case separates the

various paths by their axial sphere position. Some horizontal shift in the location of these cases may

affect the precise crossover sphere-distance, but this plot still manages to show that for the sphere

locations of xS ≤ 1 the path of the stagnation point movement is fairly steady upstream, whereas for

distances greater than xS = 1, there is the rapid upstream movement in the stagnation point position

associated with the vortex breakdown transition from the near-sphere to the near-nozzle region.
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4.7 Summary

The effects of a mechanical vortex breakdown control method have been investigated in an open

tank swirling jet flow. Spheres of various diameters, DS , were suspended on the central axis of a

swirling jet, a distance, xS , away from the outlet nozzle. The rotational Reynolds number, Reω, was

varied for a give axial Reynolds number, Rex, and the position, P , of the vortex breakdown

stagnation point was measured along with a cone-angle measurement, α, of the spread of the vortex

breakdown shear layer. The key findings of this investigation can be summarised as follows:

1. It was found that the position of the vortex breakdown, after initially moving upstream rapidly

upon formation, moved into a near-nozzle region, where the upstream movement of the

stagnation point was slower. This, together with the lack of any hysteresis in this region,

suggested that the vortex breakdown was in a region of relative stability near the nozzle.

2. It was known that the critical swirl number based on the ratio of the azimuthal to axial

velocity components (2Uθ/Uz) scaled with Re
1/2
x . Applying this scaling to the multiple

Reynolds numbers used here showed a reasonable collapse of all the data to a single curve. A

minimisation on the spread of the values was also performed to find the best collapse according

to a power-law relationship with Rex, and this was found to produce minimum spreads at

values very close to 0.5.

3. The cone angle, α, was defined by the width of the shear layer at one-third of a nozzle

diameter downstream of the stagnation point. The cone angle increased in size as the

stagnation point moved closer to the nozzle outlet (with increasing Reω) to a peak of 60◦ for

P = 0.5. For P < 0.5 the cone angle decreased rapidly. Both these observations were consistent

with Mourtazin & Cohen (2007), who used a different method of determining a cone angle.

4. In the base case, hysteresis was found for Rex = 600 & 750, but was not clearly defined for

either 450 or 900. This was consistent with range of Rex values displaying hysteresis found by

Billant et al. (1998). Discrepancies in the cases of Rex = 450 & 900 were respectively found to

be due to transient and temperature variations, and an experimental domain for Reω that very

likely did not extend low enough to allow complete settling of the flow before increasing in

value again.

5. The addition of a sphere initiated the formation of an upstream stagnation point for a lower

swirl setting than for the base case. This was consistent with the earlier onset of a stagnation
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point found by Mattner et al. (2003). A second region of relative stability was found near the

surface of the sphere, where the position of the stagnation point also moved upstream

relatively slowly, as in the near-nozzle region.

6. A temperature ratio scaling was used to compare data sets of different recorded temperatures.

Although without any sound physical basis, this ratio enabled better comparison between

equivalent axial Reynolds number data sets, and did not interfere with the collapse parameters

used.

7. A critical sphere size of between 0.662 and 0.970 was found for Rex = 600 at a sphere position

of xS = DN that would determine if the vortex breakdown would become open or closed in

form in the region P > 0.4. A critical sphere distance existed between 1.0 and 1.5 nozzle

diameters downstream of the nozzle was also found for DS = DN (Rex = 600) that defined

whether the gradient of the upstream stagnation point movement in the near nozzle region was

either less than or greater than that of the base case. Temperature effects in both these cases

were found to be negligible, due to the nature of the flow visualisation and the use of an axial

Reynolds number sufficiently high to not experience significant buoyancy effects.
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Chapter 5

Closed flow — Torsionally
driven cylinder

The previous chapter showed the extension of the confined pipe flow vortex breakdown into an open

flow tank setup, and detailed its interaction with a sphere. However, the interaction of a bluff body

with a swirling jet flow is also relevant to the field of biological mixing flows. In developing methods

of mixing inside bio-reactors for the cultivation of biological cells, vortex breakdown has been

implemented as a means of increasing mixing efficiency. Of particular interest in this field is the

interaction of the vortex breakdown structure with scaffolds suspended in the flow, used for the

cultivation of biological cells with the cylindrical swirling flow. The investigation of this interaction

has been limited and, as such, a fundamental and systematic parameter space investigation would be

of great benefit to the design and use of bio-reactor mixing vessels. For this reason, the sphere

experiments of the previous chapter, and of Mattner et al. (2003), are extended in this chapter to a

recirculating swirling flow of the closed cylinder. This flow differs from the open flow primarily in

that the rotational and axial components of the jet are not independently variable. But most

importantly, the buoyancy effects in swirling cylinder flows can be easily eliminated.

The investigation in this chapter is presented in five main sections: Section one establishes the

base flow in the cylinder, with no physical intrusions, where comparisons are made with predictions

from numerical simulations to give an indication of the accuracy of the current experiments, and an

initial validation of experiments over the parameter space is investigated. Section two will reproduce

experimentally a sample of previously published studies, confirming the methodology of this

experiment. The third section begins the investigation of placing a bluff body in the flow, by first

inspecting the effect that a thin, stationary sting has on the flow. The fourth section then adds the
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sphere to the end of the sting, with comparisons made to the previous sting-only case, as well as to

numerical simulations. The final section presents the investigation into rotating the sphere on the

central axis, and details how the rotating axisymmetric bluff body affects the vortex breakdown.

5.1 Introduction

The torsionally driven cylindrical cavity flow is an arrangement whereby a rotating end-wall

drives a circulation of liquid inside a cylindrical container. The motion of the fluid is such that for

certain system parameter ranges, the central core region of the flow can undergo vortex breakdown,

complete with a stagnation point on the central axis followed by a zone of recirculation. The

torsionally driven cavity has been extensively studied since Escudier (1984) published his parameter

space investigation into determining what combination of cylinder geometry and end-wall rotation

speed produced specific flow features. Since then, much work has been performed to attempt to

understand what causes the recirculation zone to form, and how it evolves through varying the two

fundamental flow parameters. Despite extensive studies since, there seems to be very little

systematic work investigating the effect of physical intrusions into the fluid space. One purpose of

performing such experiments is to influence vortex breakdown by mechanical means, with the

intention of understanding how the phenomenon behaves, and whether its formation and behaviour

can at all be predicted or controlled by mechanical devices.

The advantages of studying vortex breakdown in a closed cylinder arrangement are its simplicity,

and its well-defined and controllable flow conditions. This means that it was possible to set up

complex flow conditions and easily and accurately compare to simpler flows. For this experiment,

the flow conditions were modified to allow for the rotation of the axisymmetric bluff body inside the

cylinder. Fujimura et al. (2004) conducted a detailed investigation mapping the stagnation point

movement and bubble width inside a closed cylinder, and this information was also used for

comparison to the current investigation. Fujimura et al. (2004) also modified the flow by

counter-rotating and co-rotating the end-walls with the base, and repeating the measurements of the

vortex breakdown. Similar to the studies of Husain et al. (2003) and later Mununga et al. (2004),

they found generally that co-rotation caused suppression of breakdown, and counter-rotation assisted

its formation. The current experiments aimed to compare to these general findings, and use the

detailed measurements of Fujimura et al. (2004) to assist in the comparison with our unique flow

modifications.
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5.2 Parameter space defined

Flow in a torsionally driven cavity is governed by two parameters. The first is the rotational

Reynolds number, Re, for the flow and uses the rotation rate of the end-wall, Ω, along with the

radius of the cylinder, R,

Re =
ΩR2

ν
, (5.1)

where ν is the kinematic viscosity of the fluid.

The second parameter is the height ratio, Γ, which accounts for the geometry of the tank and is

defined as the ratio of axial height of the cavity, H, to its radius,

Γ =
H

R
. (5.2)

For the base flow, these two parameters map out what has been described by Stokes et al. (2001)

as an “existence domain” of the variants of the breakdown bubble in a closed cylinder, including the

number of recirculation zones, and the symmetry and steadiness of the bubble. This domain was

first published by Escudier (1984), and has been further refined and studied since.

In the current investigation, parameters were added that related to the sphere placed in the tank.

A sphere of size RS was located on the central axis (to ensure symmetry in the apparatus), at a

distance from the stationary end-wall, XS . These additional parameters were both normalised with

the radius of the cylindrical container. The rotation of the sphere, ΩS , was measured in terms of a

rotation ratio γ, comparing to the rotation rate of the end-wall:

γ =
ΩS

Ω
. (5.3)

In figure 5.1(a), a schematic representation of the experimental domain is shown, which is defined

in cylindrical–polar coordinates. The axial, radial and azimuthal directions, respectively defined as

x, r and θ, have corresponding velocity values of u, v, and w. Both the axial and radial components

can be determined from the meridional plane of the laser sheet. However, the azimuthal component

(out of the plane of observation) cannot be measured using the single camera arrangement in this

investigation and will not be used further. Figure 5.1(b) shows an image of the flow as the
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Figure 5.1: (a) Schematic diagram of the meridional plane through the central axis of
the cylinder, along with the definition of the coordinate system. Indicated are the axial
sphere position, XS , the sphere diameter, DS , the radius, R, and height, H, of the
cylinder. (b) Visualisation of the experiment, with important features indicated: (A) Base
cylinder which adjusts the height ratio, and holds (B) the Perspex lid in place. (C) The
central sting that passes through the cylinder and lid and is adjustable in length. (D) The
sphere in place at the end of the central sting, attached to a thin rod which passes through
the middle of the central sting, allowing the sphere to be rotated. (E) The rotating base
plate, with the laser sheet axis visible as a bright region near the indicating letter. (F)
Entry side for the illuminating laser sheer. Near to the indicating letter are two vertical
bright lines, which are from internal reflections. These do affect the PIV analysis in this
immediate region, but have no effect on the central region of interest. (G) Shadow from
partially reflecting the single incident illumination sheet by means of an angled mirror
outside the cylinder. In this region, dispersion effects have negated any usefulness of the
light sheet, and so the illumination is only used to identify the position of the sphere and
sting arrangement, and not for PIV analysis. Tank height ratio is Γ = 1.73 ± 0.02, with a
sphere size of DS = 0.294 ± 0.004, and the base plate is spinning at a Reynolds number of
Re = 1 300. The sphere is spinning at γ = −2.31.
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Figure 5.2: The existence domain of Escudier (1984), reproduced here to show where the
present investigation was conducted, indicated by squares (�).

experiment was performed. The black–painted sphere is in the centre of the image, attached to a

black–painted sting. The flow is illuminated by the light sheet from the right of the image, resulting

in the flaring seen on the lower right-hand side of the sting. In the PIV analysis, only the right-hand

side of the visualisation plane was used, because the flow on the left was not sufficiently illuminated

by the single light sheet.

The main purpose of conducting these experiments in the closed cylinder was to compare the

vortex breakdown behaviour to other flow conditions, such as an open tank flow, where a complex

flow pattern is difficult to control. Since in these other flow conditions only a single breakdown

bubble and upstream stagnation point is ever seen, the closed cylinder experiments were performed

at a height ratio where only a single breakdown bubble was known to exist. Figure 5.2 shows that

the single bubble exists for a height ratio of between 1.2 and 2.0. In this investigation, the height

ratio of Γ = 1.75 was chosen from this region of single breakdown. This point was sufficiently distant

from the ends of the single bubble existence range to avoid any possibility of a double-breakdown

occurring (This was also the height ratio chosen by Fujimura et al. 2004).

The set of Reynolds numbers used in the investigation were then chosen to be in a range that

would allow observation of the onset and disappearance of the breakdown bubble at this height ratio,
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with intervals chosen to sufficiently describe the main flow features in this parameter space.

5.3 Validation of the experimental setup:
Comparisons to numerical results. Part 1

The results of a preliminary experimental investigation were first validated against numerical

simulations. These experiments were performed for the base case of an empty cylinder (i.e., without

the sphere and sting), with a single rotating end-wall. They were performed at a Reynolds number

of Re = 2200 for a height ratio of Γ = 1.75, experimentally measured to be Γ = 1.73 ± 0.02. The

Escudier parameter space map (fig. 5.2) shows that this height ratio and Reynolds number

combination forms a single breakdown bubble. Comparisons were made with numerical simulations

performed by a post-doctoral fellow within the research group (David Lo Jacono) using a

spectral-element code that has been previously used to verify the stereoscopic use of this PIV

(Fouras et al. 2007).

Figure 5.3 shows a composite image of flow variables in the meridional plane through the central

axis of the cylinder. Figure 5.3(a) shows contours of constant axial velocity and figure (b) shows

contours of constant radial velocity. The left half of each image is the prediction from numerical

simulation, and the right shows the experimental PIV result. Contour values have been chosen to

best highlight features of the flow. These images show good agreement between the experimental

and numerical results, providing confidence in the experiments.

To gain a better understanding of the accuracy of the experimental results, the contour lines of

both results are overlaid, as shown in figures 5.4(a) and (b). These figures show a select number of

contour lines for each velocity component (axial and radial), chosen to best show the largest

discrepancies between the numerical and experimental data. In each image, the black lines indicate

data from the numerical simulation, while the red lines are for the experimental data. The first

column of images in figure 5.4 shows overlapped contours of the numerical and experimental results.

This shows the extent to which the experimental region does not fully cover the entire width of the

cylinder (as explained in section 3.2). Although the contour lines are generally similar in form, there

are small areas of magnitude discrepancy. It is noted here that small asymmetric discrepancies that

have been experimentally observed in closed cylinder flows before have been reproduced numerically

using asymmetries in the boundary conditions too small to measure experimentally (for example, by

Brøns et al. 2007). However, the similarity of these results to the axisymmetric simulations suggest
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(a)

(b)

Figure 5.3: Comparisons between experimental and numerical results for the torsionally
driven cylinder, at a height ratio of Γ = 1.75 and Re = 2200. (a) Contours of constant
axial component of velocity, with numerical simulations on the left and the experimental
PIV results on the right. (b) Contours of constant radial component of velocity.
Experimental height ratio measured to be Γ = 1.73 ± 0.02.
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Figure 5.4: Overlapping contour lines of (a) axial and (b) radial velocity components of
the experimental results (red lines) and numerical results (black lines). The first column
shows the full image with contour lines chosen to show various features in the topology of
the flow. The second column shows an expanded view of a single region of the flow where
the discrepancies appear significant. The third column shows the offset in contour levels,
by overlapping a second experimentally derived contour line with the numerical contour.
The difference in contour levels then gives an indication of the error in experimental
measurements (compared to numerical calculations). Re = 2 200, Γ = 1.75 (with
experimental height ratio measured to be Γ = 1.73 ± 0.02).
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that if these discrepancies occur in the experimental setup, they are small enough to reproduce

axisymmetric simulations to a high degree of accuracy.

The second column of images in figure 5.4 shows an expanded view of a region where

discrepancies were most significant. The contour lines indicated in the first row (axial component)

have a non-dimensionalised velocity value of 0.0483 for the inner, circular pairing, and 0.0277 for the

two outer-line pairs. For the radial component, a single contour line pair is shown and has a

non-dimensional value of 0.00541.

A simple method of determining the accuracy of these experiments is to compare the measured

contour lines with the equivalent location of the contour line in the numerical simulation. These are

shown in the third column of figure 5.4. In the axial velocity contours, a second contour line has

been superimposed on the original so that the inner numerical contour line overlaps with a second

experimental contour, which here has a value of 0.0500. The full spread of velocity contour values for

the axial flow is from -0.0505 to 0.0523, which can be interpreted as an experimental method

accuracy of 1.72%. Performing the same analysis for the radial velocity component, as shown in the

second row of figure 5.4, a second experimental contour level is overlapped (value of 0.0324) with the

numerical contour. Dividing this difference by the full range of contour levels in the radial

component of velocity values, the error in experimental measurements was found to be 1.22%.

Finally, the errors of the axial and radial components give an overall error of
√

1.722 + 1.222 = 2%,

which is consistent with the known typical experimental uncertainty of this form of PIV, of

approximately 3% (Keane & Adrian 1990).

5.4 Further validation of the experimental setup:
Comparisons with results from the literature.

To ensure that the experimental apparatus had been set up in a manner that would first

reproduce the accepted results in the literature, and that the setup had been correctly understood,

the first experiment performed was to reproduce the results of previous researchers. This was done

here in two stages: Firstly, validation experiments were performed to observe the formation and

topology of the vortex breakdown for a given set of parameters. This was done by observation,

comparing the key flow features to the original parameter space mapped out by Escudier (1984).

Recall that Escudier (1984) defined a parameter space with Γ and Re, and for this experiment, two

height ratios were used: Γ = 1.75, measured to be Γ = 1.73 ± 0.02; and Γ = 2.00, measured to be
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Feature Reynolds number
(Γ = 1.75) (Γ = 2.00)

Onset of first breakdown bubble 1 260 1 460
Onset of second bubble – 1 840

Disappearance of second bubble – 2 250
Disappearance of first bubble 2 500 3 000

Table 5.1: Important features of the existence domain of the vortex breakdown in a
cylinder of height ratio Γ = 1.75 and 2, as determined by Escudier (1984) (see figure 5.2).

Γ = 2.02 ± 0.03. From Escudier’s parameter space, the expected occurrence and number of vortex

breakdown bubbles formed can be determined for both height ratios considered, and used to compare

with experimental observations. The features identified from figure 5.2 are summarised in table 5.1.

The stagnation point of the vortex breakdown can be identified from PIV data by mapping

contours of the axial velocity component of each vector and locating the zero-contour line on or close

to the central axis. These have been reproduced in figure 5.5 in the left half of each image, with the

right half showing contours of constant streamfunction.

These plots clearly show some general features that can easily be compared to the literature. The

first case of Re = 1100 shows no evidence of a bubble, with the first onset of breakdown observed in

the case of Re = 1300, which was in the form of a single breakdown bubble. This was expected from

the information supplied in table 5.1. With increasing Reynolds number, the bubble grew in size,

and distorted its shape, before disappearing in the Re = 2500 case, as was also expected for this

height ratio.

As a comparison, the experiment was also repeated for a height ratio of Γ = 2.02 ± 0.02, which

was expected to show some evidence of a second bubble forming. Once again, contours of both

constant axial velocity and streamfunction have been plotted for each Reynolds number, with the

zero contour line of axial velocity indicating the stagnation point position. This is seen in figure 5.6.

For this larger height ratio, the first appearance of the onset of breakdown was found to be in the

Re = 1500 case, as the cases of Re = 1300 and below show no axial stagnation point. With

increasing swirl, the vortex breakdown develops an extended lobe to its form, which can be seen as a

precursor to a second recirculation zone. The extended shape occurs for the Reynolds numbers of

2 000—2 200, which is inside the range expected the occurrence of a second bubble (Table 5.1).

Finally, for the highest Reynolds number of 2 750, the secondary bubble disappears, and the single

bubble form remains. It is interesting to note that it appears as though the case of Re = 1300 shows
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Images of the meridional plane through the closed cylinder for each Reynolds
number investigated. Left half of each image shows contours of constant axial velocity, and
right half shows streamfunction contours, corroborating the general features of the flow
summarised in table 5.1. Reynolds numbers increasing (a) 1 100, (b) 1 300, (c) 1 500,
(d) 1 700, (e) 2 000, (f) 2 200, (g) 2 500, (h) 2 750. Negative contours are indicated by
dashed lines, with contour levels chosen to highlight general features of the flow and are
constant across Reynolds numbers. Γ = 1.73.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Images of the meridional plane through the closed cylinder for each Reynolds
number investigated. Left half of each image shows contours of constant axial velocity, and
right half shows streamfunction contours, corroborating the general features of the flow
with the established results summarised in table 5.1. Γ = 2.02, Reynolds numbers
increasing (a) 1 100, (b) 1 300, (c) 1 500, (d) 1 700, (e) 2 000, (f) 2 200, (g) 2 500, (h) 2 750.
Negative streamfunction contours are indicated by dashed lines, with contour levels chosen
to highlight general features of the flow and are constant across Reynolds numbers.
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Figure 5.7: Stagnation point position away from the stationary end-wall as a function of
Reynolds number as measured by Fujimura et al. (2004) indicated with dashed lines
(−−−), for cylinder height ratios of Γ = 1.50, 1.75, 2.00 and 2.50. Overlaid in red
triangles (△) are the stagnation point measurements from the Γ = 1.73 data of figure 5.5,
and blue circles (◦) for the Γ = 2.02 data of figure 5.6.

incipient breakdown since, although there is no defined zero contour line, the variation in the

contours indicate breakdown onset.

Fujimura et al. (2004) mapped out a parameter space of the stagnation point position with

varying height ratio and Reynolds number. This study provides a second means by which to validate

the current experiments, and also provides a quantitative comparison.

Figure 5.7 shows the measurements from the study by Fujimura et al. (2004) in determining the

position of the stagnation point with increasing Reynolds number for a variety of height ratios. Here

it can be seen that for a given height ratio, the stagnation point moves upstream with increasing

Reynolds number. Stagnation point measurements from the data shown in figures 5.5 and 5.6 are

then superimposed on these results for the two height ratios used. Good agreement can be seen

between these two sets of data in the general trend of movement in the stagnation point upstream

with increasing Re, and in its measured position. Uncertainty in locating the stagnation point was

139



5. CLOSED FLOW — TORSIONALLY DRIVEN CYLINDER

based on identifying the stagnation point for all individual PIV frames, as a spread of values around

the final averaged frame. Despite this good agreement, there can be seen to be a slight overestimate

of the closeness of the stagnation point to the stationary lid in the current investigation compared to

those of Fujimura et al.. However, in understanding this small discrepancy, it should be noted that

Fujimura et al. used dye visualisation and imaged the stagnation point by means of a zoom lens on

the stagnation region. This is in contrast to the present investigation, which determined the

stagnation point position by the interpolated lines of axial velocity contours from PIV data. It would

therefore not be unreasonable that slight differences in stagnation point position be found, since dye

filaments and particles travel differently through flows.

Uncertainties in the location of the stagnation point measured from figures 5.5 and 5.6 were

determined from the spread of contour lines across a time-series of data sets.

These two sets of comparisons have shown that this experimental setup produced the results that

were expected, and quantitatively they were in good agreement with the results of other researchers.

5.5 Effects of a stationary sting

To position a sphere in the middle of the cylindrical container means that it needs to be held in

place by some means. The method of holding was chosen to be with a sting protruding into the

working section along the central axis, ensuring the experiment remained axisymmetric. This also

ensured that axial rotation could be imparted on the sphere by rotation of an inner attaching shaft.

It was further decided that to ensure that the sting itself did not add any additional swirl to the

flow, it was to be surrounded by a secondary sting, or sheath, which would remain stationary and

conceal the rotating motion of the sting attached to the sphere. The whole sting/sphere arrangement

was projected through the stationary roof, primarily to avoid the technical challenges of

independently rotating two coincident axes of rotation.

The only published investigation which has performed any experiment with a sting in the flow

has been by Husain et al. (2003). In their study, they rotated an axial rod of a diameter 0.04R inside

a closed cylinder of a height ratio of Γ = 3.25. As shown in figure 5.8, they performed a single

dye-visualisation comparison between the base case (a) and that of a stationary sting (b). They

noted that the base form of breakdown was “insignificantly” changed by the addition of the

stationary sting.

To ensure that the effect of placing a sphere in the flow could be assessed separate from any sting
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(a) (b)

Figure 5.8: Reproduction of the flow visualisation of Husain et al. (2003) showing the
three-bubble base form of breakdown (a) to be insignificantly affected by the addition of a
thin (< 0.04R) sting (b). Their experiment was performed at Γ = 3.25.

effects, experiments were performed first with a sting in the cylinder with no sphere attached.

Experiments were performed in a cylinder of height ratio Γ = 2.02 ± 0.02, and contour plots on the

streamfunction ψ of these experiments are shown in figure 5.9. In this figure, streamfunction

contours have been plotted in a composite image, where the left half of the image (−1 ≤ r/R ≤ 0) is

the base case (no sphere or sting), and the right half (0 ≤ r/R ≤ +1) is the case of the added sting.

From these images, it can be seen that the stationary sting protruding into the vortex breakdown

bubble has little influence on the general form of the breakdown once formed, perhaps only leading

to a slightly earlier formation of a recirculation zone (in Re = 1500). The bubble width, as

determined by the zero streamfunction contour (ψ = 0), has been plotted in figure 5.10 for each

Reynolds number investigated where a vortex breakdown bubble exists. From this it appears that

adding the sting to the flow has very little effect on the width of the bubble in this flow. The single

experiment performed by Fujimura et al. (2004) for this setting has also been superimposed to show

agreement in bubble size. These observations are consistent with the findings of Lo Jacono et al.

(2007), which showed that a stationary sting of finite length did not significantly alter the shape or

size of the vortex breakdown bubble.

The effect the sting has on the recirculation zone inside the bubble can also be seen by extracting

the position and value of greatest recirculation, denoted by the minimum ψ value of each setting ψn.

These have been plotted in figure 5.11, where (a) is the position in space of ψn in the cylinder, and

(b) is ψn normalised against the minimum streamfunction of the base case ψ0. Figure 5.11(a) shows
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(a) (b)
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Figure 5.9: Images of streamfunction contours for each Reynolds number investigated.
Left half are of the base case, compared to the right half of that with the sting in place.
Reynolds numbers increasing (a) 1 100, (b) 1 300, (c) 1 500, (d) 1 700, (e) 2 000, (f) 2 200,
(g) 2 500, (h) 2 750. Negative streamfunction contours are indicated by dashed lines.
Contour levels are constant across Reynolds numbers.
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Figure 5.10: Plot of bubble width for both the base case (△) and the sting-only cases
(+), showing the measured bubble width is only slightly affected by the sting. Comparison
is also made here to the bubble width measured by Fujimura et al. (2004) (•). Cylinder
height ratio is Γ = 2.02.

that the position of ψn is largely unaffected by the presence of the sting, but figure 5.11(b) shows

that the strength of the recirculation zone is significantly reduced for the sting only case, with the

circulation zone strength constant for Re ≥ 2 000.
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Figure 5.11: (a) The location in the cylinder of the minimum streamfunction value, ψn,
comparing the sting-only case (+) against the base case (△). (b) The minimum
streamfunction value, ψn, normalised against the absolute minimum value of the base case,
ψa, for all Reynolds numbers that produced a breakdown recirculation.

By also inspecting the velocity contours of the sting-only setup, some further information may be

obtained that might contribute to understanding the complete effect the sting has on the flow, and

why the streamfunction position remains level through the Reynolds number range. Axial velocity
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contours have been plotted in figure 5.12, where once again the left half of each image corresponds to

the base case, and the right half to the case with a sting.

From this figure, the low Reynolds number contour lines describe a different flow shape for the

sting case than for the base case. But as the Reynolds number increases, the general form of the

base case is less affected. Plotting the axial location of the maximum axial velocity shows more

clearly what is actually occurring. Figure 5.13 shows the position of the maximum and minimum

axial velocity components for each Reynolds number investigated in both the radial (a) and axial (b)

directions. From figure 5.13(a), the location of the maximum axial velocity moves away from the

central axis at Re=2 200, which can also be seen in figure 5.14(f). Contrasting to this, the sting case

has a gradual movement away from the central axis with increasing Reynolds number, with the peak

never located as close to the central axis as the base case. This is due to the no-slip boundary at the

central sting which prevents an axial velocity at the surface, forcing the local maximum to form at a

radial distance greater than the sting width (0.1R). Also, there appears to be good agreement in

figure 5.13(b) between both the sting and the base cases for the axial positions of both the maximum

and minimum axial velocities. These observations suggest that moving the location of the peak axial

velocity away from the central axis is one aspect of the reduction in the strength of the recirculation

zone in the breakdown bubble for higher Reynolds numbers. The onset of a breakdown-like structure

at Re = 1500 for the sting case when no bubble was found for the base case shows the effects of

reducing an axial velocity on the central axis — in effect increasing the swirl angle of a vortex, and

instigating premature breakdown.

Further evidence is then found in the radial velocities. Contours of constant radial velocity

position are plotted in figure 5.14, where once again the base case is presented in the left half of the

image contrasted to the sting case in the right half of the image. The radial velocity contours show

that the sting has very little effect on the flow structure, aside from the Re = 1100 case, where a

slight local increase in radial velocity can be found at approximately Γ = 0.6, r/R = 0.7. The most

striking feature of these plots is the formation of a pair of velocity maxima and minima near the

stationary wall, which can be seen for both the base case and the sting case. This pairing seems to

be unaffected by the inclusion of a sting.

The pairing of maxima and minima velocity contours can also be seen in figure 5.15, where the

position of the maximum and minimum radial velocity components have been plotted against each

Reynolds number investigated in both the radial (a) and axial (b) distances. Very close agreement
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Images of contour lines of axial velocity component for each Reynolds
number investigated. Left half are of the base case, compared to the right half for sting in
place. Reynolds numbers increasing (a) 1 100, (b) 1 300, (c) 1 500, (d) 1 700, (e) 2 000,
(f) 2 200, (g) 2 500, (h) 2 750. Negative velocity contours are indicated by dashed lines.
Contour levels are constant across Reynolds numbers.
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Figure 5.13: (a) Radial and (b) axial distance to peak axial velocity locations for each
Reynolds number investigated. Comparison is made for the maximum axial velocity
between the base case (△) against that of the sting-only cases (+), as well as the minimum
velocity contour for the base case (▽) and that of the sting-only case (×). Γ = 2.02.

can be seen between both sting and base cases, with only a slight separation between the two cases

for the radial position of the peak. This can be attributed to the change in the width of the cylinder

in the radial direction caused by the presence of the sting, where the peak negative velocity will be

at a slightly greater radial location than the base case. The peak positive radial velocity position

only shows minor variation, because it is influenced by the formation of the breakdown bubble, and

not the sting.

Figure 5.16 shows the value of the peak radial velocities, normalised against that of the base case,

for both the maximum and minimum peaks (positive and negative). This shows that the sting has

only reduced the velocity of the negative radial (towards the central axis) flow for Re ≤ 1 300, and

only marginally affects the positive radial velocity in the same range.

It would seem from these results that the magnitude of the radial velocity is largely unaffected, or

at least not affected to the same extent as the axial velocity component. Therefore, it would appear

as though (1) by slowing the axial velocity near the central axis, the swirl of the vortex generating

the breakdown has increased, and hence the premature breakdown-like structure at Re ≤ 1 300, and

(2) the decrease in the peak velocity values in both the axial and radial directions explains why the

peak streamfunction (or recirculation) value is reduced by the presence of the sting. Both these

observations were not able to be seen or quantified in the simple flow visualisation images of Husain

et al. (2003) (Fig. 5.8), and better explain the impact of the stationary sting in the flow.

146



5.5. Effects of a stationary sting

(a) (b)
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Figure 5.14: Images of contour lines of radial velocity for each Reynolds number
investigated. Left half are of the base case, compared to the right half for sting in place.
Reynolds numbers increasing (a) 1 100, (b) 1 300, (c) 1 500, (d) 1 700, (e) 2 000, (f) 2 200,
(g) 2 500, (h) 2 750. Negative velocity contours are indicated by dashed lines. Contour
levels are constant across Reynolds numbers.

147



5. CLOSED FLOW — TORSIONALLY DRIVEN CYLINDER

1000 1600 2200 2800
0.0

0.1

0.2

0.3

0.4

0.5

Re

r
R

1000 1600 2200 2800
0.0

0.5

1.0

Re

h
R

Figure 5.15: (a) Radial and (b) axial distance to the location of the peak radial velocity
component for each Reynolds number investigated. Comparison is made for the maximum
radial velocity between the base case (△) against that of the sting-only cases (+), as well
as the minimum velocity contour for the base case (▽) and that of the sting-only case (×).
Γ = 2.02.
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Figure 5.16: Plots of the values of peak radial velocity for the (a) maximum velocity, vx,
in both the base case (△) and that of the sting-only cases (+), as well as the (b) minimum
velocity, vn, for the base case (▽) and the sting-only case (×).
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Nearest

D̂S(mm) Stock DS

Blockage ratio Mattner et al. (2003) 17.1 1/2” 0.195±0.003
Bubble diameter Fujimura et al. (2004) 16.3 3/4” 0.294±0.004

Table 5.2: Non-dimensionalised sphere diameters, DS , of nearest available stock size of

nylon ball-bearings used in the experiments for the determined sphere sizes, D̂.

5.6 Introducing the bluff body — Sphere

Following on from the study of Mattner et al. (2003) in producing vortex breakdown upstream of

a sphere in a swirling pipe flow, the current experiments attempt to determine the effect a sphere

has on the breakdown formation in the controlled environment of a torsionally driven cylinder.

Spheres of various chosen sizes were placed at a single location, and investigated for their effect on

the breakdown bubble for various Reynolds numbers.

As a starting point for the selection of sphere sizes to use in the closed cylinder flow, the work of

previous researchers in similar experiments were used. In the study of swirling pipe flows by Mattner

et al. (2003), a 45.2mm diameter sphere was placed inside a 172mm diameter pipe, which gave a

pipe blockage ratio of 0.263. Applying this blockage ratio to the current torsionally driven cylinder

cavity of 65mm diameter, an equivalent sphere size is D̂S = 17.1mm. Although the pipe flow does

not contain the recirculating reverse flow of the closed cylinder, this sphere size is simply used as the

first bluff body diameter. A second comparison size was determined from the visualisation

measurements in a closed cylinder flow by Fujimura et al. (2004) on the dimensions of the vortex

breakdown bubble. In that experiment, a maximum bubble width was found to be 0.25 cylinder

diameters. Once again, basing the sphere size on the expected size of the breakdown bubble, the

current investigation cylinder would have a maximum bubble diameter of D̂S = 16.3mm. Using

these two determined sphere sizes as initial choices for bluff body sizes, the nearest available stock

size of high-precision nylon bearings were used, as summarised in table 5.2.

5.6.1 Validation: Comparison with numerical results. Part 2

After determining that the error in the experimental measurements in the flow was in the order

of a few percent (section 5.3), the numerical and experimental results in this sphere case can be

compared simply through the streamfunction images. Numerical simulations were performed by

Mark Thompson of Monash University using a spectral element code (Thompson et al. 1996). The

results of this comparison can be seen in figure 5.17, which shows composite images of the meridional
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plane through the central axis. The left half of each image shows streamfunction contour lines of

numerical calculations at various intervals, and the right hand side of each image has the

experimental results. Streamfunction contours then are placed to match the numerical results as

accurately as possible.

These results show generally that there is good agreement between the experimental results and

the numerical analysis. However, there appear to be minor discrepancies in the zero streamfunction

value for both Re = 1300 (b) and Re = 1500 (c). Recall that from section 5.5 in a cylinder of

Γ = 2.02, that for the Reynolds number cases of 1 300 and 1 500, the formation of an early

breakdown state was observed and attributed to slowing of the axial velocity by the no-slip condition

at the sting surface. Also, once the Reynolds number increased to the value where the bubble

ordinarily would have formed in the base case (Re & 1 460), there was no great difference in the

position of the stagnation point. Both these features can be used to qualitatively explain the

discrepancies in the streamfunction values of figure 5.17 for the height ratio of Γ = 1.73, although

the formation of the breakdown bubble is slightly higher for the sphere and sting case than for the

numerical results (which modelled the idealised case of a sphere without the stationary sting), recall

that the addition of the sting was found to promote onset of breakdown by effectively increasing the

swirl ratio of the vortex. And as before, once the breakdown is well formed, the bubble position and

shape match closely with the numerical predictions. Furthermore, the addition of the sphere to the

end of the stationary sting appears to negate the effects of the flat sting end (as previously seen by

Lo Jacono et al. 2007), and this suggests that the sphere is effectively shielding the breakdown

bubble from this part of the sting.

5.6.2 Height ratio Γ = 2

To get a better understanding on the exact effect of the presence of the sphere, the experimental

sphere and sting case can be compared to the sting-only case. In this sting-only case, the

experiments were performed in a cylinder of height ratio Γ = 2.02 ± 0.02, with a sphere of diameter

DS = 0.195 ± 0.003 placed at XS = 0.44. As with the previous analysis, the derived streamfunctions

of the flow were first identified to make some general observations of the breakdown and the flow

features. Then attempts could be made to identify causes and reasons from the velocity components.

Figure 5.18 shows streamfunction contours of the full Reynolds number range investigated,

showing in each case a composite image of half the meridional plane in view for both the sphere and

no-sphere cases. It can be seen that the addition of the sphere does not appear to affect the general
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Streamfunction comparisons between numerical simulations on the left, and
experimental results on the right. Streamfunction plots are for Reynolds numbers of
(a) 1 100, (b) 1 300, (c) 1 500, (d) 1 700, (e) 2 000 and (f) 2 200, with Γ = 1.73.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.18: Composite images of streamfunction contours in the meridional plane of a
Γ = 2.02 cylinder. Left half of the images is the sting-only case, and right half includes the
stationary sphere, of diameter DS = 0.195 placed at XS = 0.44 away from the stationary
lid. Experiments performed for Reynolds numbers of (a) 1 100, (b) 1 300 (c) 1 500 (d) 1 700
(e) 2 000 (f) 2 200 (g) 2 500 (h) 2 750.
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flow field significantly. However it can be seen that there may be some alteration to the magnitude

of the streamfunction values.

In figure 5.19, the position of the peak streamfunction values of the vortex breakdown

recirculation zone have been plotted in both axial (a) and radial (b) directions. From these figures,

the location of the peak streamfunction value does not appear to move significantly with the

addition of a sphere. There is only a slight movement radially outward, and slightly downstream.

However, the value of the peak streamfunction (fig. 5.19a) does show variation, where the circulation

strength is greater for lower Reynolds number than for the no-sphere case, but remains less intense

for the higher Reynolds numbers. There does appear to be some fluctuation in the value of the peak

streamfunction around the onset of breakdown, with the greatest variation at Re = 1700. This is the

first case where the bubble completes formation in the sting-only case, and the fact that the addition

of a sphere increases its strength suggests that it assists the formation of a complete recirculation

zone. The peak streamfunction value at Re = 2200 also appears to divert from an expected position,

but there does not immediately appear to be a reason for this.

Figure 5.20 shows contour lines of the axial component of the measured velocity, once again as a

composite image with the no-sphere case on the left hand side of each image and the sphere case on

the right. The general features of the flow change for the lower Reynolds numbers, with

figure 5.20(b) showing the formation of stagnation points for Re = 1300, unlike the no-sphere case.

This is probably due to the additional adverse pressure gradient generated by the large bluff body in

the apparatus, as postulated by Mattner et al. (2003).

This explanation can be seen clearer in the features of the peak axial velocity components, as

shown in figure 5.21. Figures 5.21(c) and (d) show that the location of the peak axial velocity only

shows variation between the sphere and no-sphere cases for the highest two Reynolds numbers

tested. Here, the uncertainties show that a second peak in the sphere case lies within 2% of the

primary peak velocity value.

From the velocity values in figures 5.21(a) and (b), the sphere case shows a much reduced axial

velocity in both the positive and negative direction peaks. The negative peak (fig. 5.21a) is located

inside the recirculation zone, and its difference to the no-sphere case can be considered secondary to

the difference in the positive direction peak. This is because the major positive peak (fig. 5.21b) is

located upstream of the recirculation zone, and the upstream vortex properties govern the formation

of the vortex breakdown. As before in section 5.5 (page 140), the effect of reducing the axial velocity
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Figure 5.19: Location of the peak streamfunction value, ψx, in the (a) axial and
(b) radial directions for each Reynolds number with vortex breakdown. (c) Value of the
streamfunction at its peak in the vortex breakdown recirculation zone, normalised against
the absolute peak value found, ψa. Markers are for the (△) sphere and (+) sting cases.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.20: Composite images of contours of constant axial velocity components of the
flow in the meridional plane of a Γ = 2.02 cylinder. Left half of the images is the
sting-only case, and right half includes the stationary sphere, of diameter DS = 0.195
placed at XS = 0.44 away from the stationary lid. Experiments performed for Reynolds
numbers of (a) 1 100, (b) 1 300 (c) 1 500 (d) 1 700 (e) 2 000 (f) 2 200 (g) 2 500 (h) 2 750.
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Figure 5.21: Axial velocity values in the (a) positive (u+) and (b) negative (u−)
directions, normalised against the peak velocity value of the no-sphere case (positive, ux,
and negative, un). (c) Location of the peak axial velocity in the axial direction, and (d) its
location in the radial direction. Symbols for the sphere indicate the positive (△) and
negative (▽) axial directions, and for the no-sphere case (+) positive and (×) negative axial
directions. Error bars in (c) and (d) indicate range of 2% spread of peak velocity value.
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component is to locally increase the swirl ratio, and initiate breakdown at a lower Reynolds number

than expected. The fact that the sphere case has a lower velocity value than the no-sphere case

across the full range of Reynolds numbers suggests that the sphere itself is affecting the broader flow

conditions (such as a blockage effect) and does not allow the fluid to circulate at the strength of the

no-sphere case. (As seen previously also with the streamfunction values of figure 5.19c).

Looking finally at the radial velocity components (fig. 5.22), the contour lines of constant radial

velocity show that there is little variation in the shape of the flow features with the addition of the

sphere, apart from the slight changes for Reynolds numbers 1 100 and 1 300. In each figure, the

notable feature is once again the striking doublet near the stationary end-wall, where closest to the

wall is the maximum negative radial velocity component (flow is towards the central axis) and

between this region and the sphere is the area of maximum positive radial velocity (away from the

central axis). This generally occurs at the region just upstream of the recirculation of the vortex

breakdown bubble.

By looking at the location of the peak radial velocity components, the axial location does not

appear to change with the addition of the sphere (fig. 5.23a). However, the radial location

(fig. 5.23b) of the negative velocity varies significantly with the addition of the sphere and the

positive radial velocity does not. This probably once again suggests that the sphere is slowing down

the general recirculation, but positive radial flow is not affected, as it is primarily concerned with the

formation of the vortex breakdown. The velocity values in figures 5.23(c) and (d) show that the

addition of the sphere reduces markedly the radial velocity value, by almost the same extent to

which the axial component was reduced (fig. 5.21a,b). With both the radial and axial components

reduced in magnitude with the addition of the sphere, it would not be unreasonable to assume that

the vortex breakdown criterion are affected. However, measurements of the exact variation to the

swirl value upstream of breakdown would need to be performed to confirm this.

From this velocity information, some useful information about the position of the stagnation

point and the width of the bubble can be extracted and this has been presented in figure 5.24. The

stagnation point location was determined by finding where the zero axial velocity contours of

figure 5.20 meet the central sting, and the width of the bubble was determined from the maximum

radius of the zero contour streamfunction values of figure 5.18.

Figure 5.24(a) shows that the location of the stagnation point is largely unaffected by the

addition of the sphere, except for the lower Reynolds numbers (as explained earlier), and matches
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Figure 5.22: Composite images of contours of constant radial velocity components of the
flow in the meridional plane of a Γ = 2.02 cylinder. Left half of the images is the
sting-only case, and right half includes the stationary sphere, of diameter DS = 0.195
placed at XS = 0.44 away from the stationary lid. Experiments performed for Reynolds
numbers of (a) 1 100, (b) 1 300 (c) 1 500 (d) 1 700 (e) 2 000 (f) 2 200 (g) 2 500 (h) 2 750.
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Figure 5.23: Location of the peak radial velocity components in the (a) axial and
(b) radial directions, as well as the velocity value of the (c) positive (v+) and (d) negative
(v−) radial directions, as normalised against the peak velocity in the no-sphere case
(positive, vx, and negative, vn). Symbols are for the sphere positive (△) and negative (▽),
and (+) sting positive and (×) negative radial directions. DS = 0.195, Γ = 2.02. Error
bars in (a) and (b) indicate range of 2% spread of peak velocity value.
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Figure 5.24: (a) Stagnation point location for each Reynolds number tested of the
(×) sting only case, and (◦) sphere of size DS = 0.195, together with the data from
Fujimura et al. (2004) (−−) as comparison. (b) Vortex breakdown bubble width for each
Reynolds number investigated. Data also supplied from the study by Fujimura et al.

(2004)( ) and Watson & Neitzel (1996)( ). Γ = 2.02. Error bars in (a) and (b) indicate
range of 2% spread of velocity values.
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well with the investigation of Fujimura et al. (2004). However, figure 5.24(b) shows that in

measuring the width of the recirculation zone, the presence of the sphere and sting in the flow has

slightly increased the size of the bubble. The comparison data of Fujimura et al. (2004) and Watson

& Neitzel (1996) are shown also.

5.6.3 Height ratio Γ = 1.75

Now that the effect of the sphere alone can be determined separately from the sting itself, the

measurements were repeated for the height ratio at which the primary set of experiments were to be

conducted, of Γ = 1.75. This height ratio then allowed direct comparison with the experiments of

Fujimura et al. (2004) and numerical of Watson & Neitzel (1996).

The sphere was placed at an axial location of XS = 0.44 downstream of the stationary end-wall,

at just below the inception point of breakdown measured by Fujimura et al. (2004). The rotational

Reynolds number of the rotating base plate was varied from Re = 1100 to Re = 2750, this time to

cover the onset and disappearance of the breakdown bubble as determined for the base case of this

height ratio. The height ratio was measured to be Γ = 1.73 ± 0.02.

The streamfunction contours of figure 5.25 show that generally the addition of the sphere can

affect the flow significantly compared to the base case. There appears to be already the formation of

a recirculation zone at slightly upstream of the sphere for Re = 1100 (fig. 5.25a), and as the

Reynolds number is increased, the vortex breakdown region is larger than for the base case. At

Re = 2000, the breakdown region appears to warp in shape, contouring from the broad, flat

recirculation zone of the base case, to reattaching to the sphere surface. The reattachment continues

to Re = 2500, where a second recirculation zone can be seen beginning to form, before finally what

appears to be a splitting of the streamfunction contours into two separate recirculation zones.

For the case of Re = 1500, the no-sphere case in figure 5.25 shows the bottom stagnation point to

have moved upstream to a height of around where the top of the sphere has been placed. However,

for the sphere case the bubble has elongated and reattaches the shear layer (by the zero

streamfunction contour) to the sphere surface upstream of the equator. As the downstream

stagnation point of the no-sphere case moves upstream (with increasing Reynolds number), the

sphere case shows the reattachment point of the shear layer stays intact, despite the change in shape

of the bubble region immediately behind the upstream stagnation point. This suggests that there are

competing effects between the formation of the closed recirculation bubble of the no-sphere case and

the requirement for the flow to pass around the sphere, and so reattach to the sphere surface. This
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(a) (b)
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Figure 5.25: Composite images of streamfunction values for Γ = 1.73, and a sphere size
DS = 0.195 at XS = 0.44. Reynolds numbers from top left in rows are (a) 1 100, (b) 1 300,
(c) 1 500, (d) 1 700, (e) 2 000, (f) 2 200, (g) 2 500, (h) 2 750.
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Figure 5.26: Peak streamfunction traces for Γ = 1.73, DS = 0.195 compared to the base
case. (a) Axial position, (b) radial position and (c) peak streamfunction values, ψx,
normalised against the absolute maximum streamfunction value found, ψa. (△) Sphere
and (×) base-case. Error bars in (a) and (b) indicate range of 2% spread of peak velocity
value.
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results in the non-spherical appearance to the breakdown bubble.

Finally, for Reynolds numbers in the no-sphere case where the breakdown bubble has disappeared

(Re > 2 500), the sphere case maintains the apparent double-bubble-type structure.

Plotting the same information as before, of the position and magnitude of the peak

streamfunction value, the differences in the addition of the sphere can be further explored.

Figure 5.26(a) and (b) show the position of the peak streamfunction value in the axial and radial

directions. Here the addition of the sphere has moved the recirculation bubble slightly out and

downstream from the base case, which is probably a result of the bubble shear-layer reattaching to

the sphere and distorting its shape from the base case. The streamfunction values of figure 5.26(c)

show that there is a significant increase in the strength of the recirculation zone, with a steady

decrease in strength as Reynolds number is increased beyond 1 500. A local increase in strength for

the case of Re = 2200 coincides with the disappearance of the breakdown in the base-case. The

reasons for this are not completely understood, as the form of breakdown in figure 5.25(f) does not

show any significant change from the previous Reynolds number.

5.7 Varying sphere position, XS

To understand how the flow topology upstream might influence, or be influenced, in the creation

of the vortex breakdown, the axial location of the sphere was varied for a single Reynolds number

and sphere size. The Reynolds number of Re = 1300 was chosen to be in the very middle of the

existence domain of the single bubble breakdown for a height ratio of Γ = 1.75. The sphere size was

DS = 0.195, and moved from locations close to the stationary end-wall to the limit of the sting

extension into the cylinder, at XS = 0.50. The capital symbol X is used here for axial locations to

indicate that it is non-dimensionalised with the cylinder height H, and not radius.

From the streamfunction contours of figure 5.27, the breakdown bubble appears to compensate

for the effect of the sphere by slightly changing shape and position. With the sphere at the

stationary lid, the flow passes around the sphere, and forms the vortex breakdown in approximately

the same position as without the sphere. If, as noted by Pereira & Sousa (1999), the presence of the

physical intrusion can be assumed to have effectively reduced the area in which the breakdown can

occur, and that the effective height ratio Γf of the tank is now:

Γf = 1.73 −DS = 1.55,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.27: Composite images of streamfunction contours, comparing the base case in
the left-half of each image, with various sphere positions in the right half. (a) xS = 0,
(b) xS = 0.15, (c) xS = 0.30, (d) xS = 0.40, (e) xS = 0.44 and (f) xS = 0.50. Re = 1 300
for DS = 0.294 and Γ = 1.73.
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then by approximating from the results of Fujimura et al. (2004) (from figure 5.7, page 139) the

expected position of the stagnation point for this Reynolds number and effective height ratio is

around h = 0.31H. In the current experiments of Γ = 1.73, this gives a location of h = 0.56R, which

is only slightly higher than the measured base case position of 0.62R from figure 5.27(a), and so

consistent with the findings of Pereira & Sousa (1999).

As the sphere is moved towards the breakdown bubble to a position XS = 0.15, the breakdown

bubble no longer retains its recirculation shape, and instead takes the appearance of a wake-like

structure. PIV results in this region were difficult to measure due to the low concentration of

particles in the wake, suggesting that some form of entrapment, or recirculation existed. Once the

sphere moves to XS = 0.3, the bubble that would normally form is completely covered by the

presence of the sphere, and no recirculation zones form either upstream or downstream of the sphere.

This suggests that the general flow topology is not affected by the flow inside a vortex breakdown

recirculation bubble, only that it should flow around a bluff body that accelerates its flow away from

the central axis. It appears as though the flow has to separate in the same approximate location,

and will achieve this either by forming a vortex breakdown or by accepting the presence of a bluff

body and flowing around it.

These features of the breakdown behaviour are important to note, because there appears to be

very little research into physically disturbing the stagnation point and the immediate region

upstream, and observing how the breakdown bubble reacts. It would appear from the few results

presented here that this region is critical in maintaining the existence of the breakdown, more so

than any other region upstream.

These results are summarised in the plot of figure 5.28, where the axial position of the stagnation

points (both of the sphere, and of the breakdown bubble) are plotted against the placed location of

the sphere, XS . Also shown for comparison is the location of the breakdown bubble of the base case.

Moving the sphere further downstream (XS ≥ 0.4) results in a stagnation point forming upstream

of the sphere, with no downstream recirculation zone, as the shear-layer reattaches to the sphere

surface. This suggests that there may be a minimum sphere position requirement to form a

recirculation zone upstream of the sphere and (therefore) also a maximum upstream position of any

stagnation point ahead of the sphere surface for a given Re, Γ and DS .

For the remainder of this investigation, the sphere position will be held at XS = 0.44, which, as

shown by Fujimura et al. (2004), is just below the observed onset of breakdown for the height ratio
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Figure 5.28: Position of the upstream and downstream stagnation points with varying
sphere position. Stagnation point locations of the (N) upstream and (H) downstream sides
of the breakdown bubble, with the two axial limits of the sphere (◦) also shown. Dotted
lines (� � �) depict the position of the base case breakdown bubble. DS = 0.195 and
Γ = 1.73.

of Γ = 1.75.

5.8 Rotation of sphere

It is well known that vortex breakdown in cylinders can be affected by the co- or counter-rotation

of axisymmetric features in the cavity. For example, the work of Fujimura et al. (2004) (and many

others) traced the stagnation point movement as the side and stationary walls were rotated

independently of the rotating base plate. Fujimura et al. found that co-rotation caused the

breakdown bubble to move upstream and counter-rotation moved it downstream (seen also by, for

example, Mununga et al. 2004 and Husain et al. 2003).

In the present investigation, attempts were made to undertake observations of the effect that co-

and counter-rotating the (axisymmetric) sphere had on the formation, position and shape of the

vortex breakdown bubble. Fujimura et al. (2004) defined their secondary object rotation as being

the ratio of the rotational velocities of the combined end-wall and side-wall system (Ωw), to the

rotating base (Ω). In this same way, here the rotation ratio γ is defined in terms of the rotation rate

of the spinning sphere ΩS , as previously defined by equation 5.3 (page 129). Alternatively, a ratio of

the sphere and end-wall Reynolds numbers could be taken for γ, but in this investigation the former

definition was used.
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5.8.1 Stationary base plate

Spheres spinning in otherwise stationary flow have been extensively studied, with results

identifying boundary layer effects on the sphere surface and critical rotation rates for various flow

features to appear. More closely related to the confined flow, work has also been done on annular

spherical flows inside concentric spheres. In investigating these flows, a gap ratio is often defined as a

measure of the gap between the two confining walls. This ratio is typically defined as:

β =
ro − ri
ri

, (5.4)

where ri is the inner sphere radius, and ro the outer.

These flows are typically studied at smaller gap ratios (of the order of β . 0.3) for studies into

planetary geological flows. Smaller gap ratios are also very popular in research into Taylor flows in

annular spheres. The gap ratio of the sphere and cylindrical arrangement of the current investigation

is a comparatively large value of 2.3.

To understand the effect that the rotating sphere has on the flow, the sphere was rotated at

speeds comparable to those that will be investigated with the base plate spinning. It was decided to

use the case where the sphere to disk rotation ratio would be equal to ±1, by rotating the sphere at

that speed and without spinning the disk. That is, for a disk Reynolds number of 2 750, a sphere

spinning at γ = 1 has a sphere Reynolds number of 232. For these experiments, the disk is then held

stationary, and the sphere spun at ReS = 232. These values are summarised for all disk Reynolds

numbers in table 5.3.

Table 5.3: Summary of equivalent sphere rotational Reynolds numbers, ReS , for each
disk rotational Reynolds number, Re, for the case of γ = 1.

Re ReS

1 100 93
1 300 109
1 500 126
1 700 143
2 000 169
2 200 186
2 500 211
2 750 232

The sphere was rotated at a location of XS = 0.44, which is actually slightly lower than the

half-way position for a sphere of DS = 0.294, which would be at XS = 0.39. Note here also that the
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Figure 5.29: Images of streamfunction contour lines for each sphere rotation rate
investigated. Reynolds numbers are (a) 93, (b) 109, (c) 126, (d) 143, (e) 169, (f) 186,
(g) 211, (h) 232. Negative streamfunctions are indicated by dashed lines. Contour levels
are constant across Reynolds numbers. Γ = 1.73, DS = 0.294.

∆t value for the PIV imaging of each setting was adjusted using the equivalent disk Reynolds

number in the same manner as previously.

Figure 5.29 shows contours of constant streamfunction for all the Reynolds numbers investigated.

The most striking feature of this sequence is that the flow developed a two-cell recirculation of

counter-rotating regions, which appear unchanged throughout the Reynolds number range. The

regions were on opposite sides of the equatorial meridional plane corresponding to the plane of the

maximum sphere radius (XS = 0.44 + 0.5DS). In this plane, fluid is spun radially out from the

sphere, and upon being deflected near the curved wall, recirculates back to the rotation axis of the

sphere. The gap between this plane and the top of the cylindrical cavity is greater than that to the

lower floor, and so a slightly different flow pattern is observed for the region above the sphere. The
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(a) (b) (c)

Figure 5.30: Streamlines of the meridional circulation (in plane) in the gap region
between concentric spheres, spinning the inner sphere while holding the outer fixed
(Hollerbach et al. 2006). The case for (a) β = 1.5 at a Re = 377, (b) β = 2.5, Re = 416
and (c) β = 10, Re = 548, showing that even for large gap ratios, the base case still
maintains the general feature.

difference in flow patterns will also be demonstrated when various components of the flow are

presented.

To understand how this study fits in with the literature, the sphere-cylinder arrangement can be

considered as a concentric arrangement, with a given gap ratio between the sphere and the cylinder

of β = 2.3 (from eq. 5.4). The only work in the literature that has investigated gap ratios of this

magnitude is the numerical investigation of Hollerbach et al. (2006) who studied the Couette flow of

concentric spheres. In their investigation, the inner sphere was rotated at various Reynolds numbers

for a stationary outer sphere for gap ratios ranging between 0.1 and 10. As reproduced in

figure 5.30, they obtained results for large gap ratios that appear very similar to the current

sphere-cylinder experiments. In their results, a single large-scale recirculation zone was generated in

the region between the two spheres, which they called the base state. It was formed by a narrow jet

right on the equator, with the return flow in the rest of the shell. Figure 5.30 shows streamlines of

the base flow formed for three gap ratios, at Reynolds numbers just below the onset of instabilities.

From the results of figure 5.29, this base-state circulation can clearly be seen for all Reynolds

numbers, in the same way as shown by Hollerbach et al. (2006). The fact that the circulation zones

of the both these experiments are nearly identical in form suggests that the precise geometry of the

outer wall for these larger gap ratios is not very influential on the shape or form of the base state, be

it cylinder or sphere.

From the streamfunctions derived in figure 5.29, the strength of the recirculation zones can be

determined (as measured by the peak streamfunction value), and this has been plotted as a function

of Reynolds number in figure 5.31(a). From this graph, it can be seen that although the strength of
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Figure 5.31: (a) Values of local maximum (△) and local minimum (▽) streamfunction
peaks, ψx,n, normalised to the absolute maximum streamfunction value, ψa. (b) Radial
distance to the peak streamfunction value, with sphere edge located at r = 0.294R (−·).
(c) Axial location of peak streamfunction values. Γ = 1.73, DS = 0.294.

the recirculation zone is relatively constant through the entire Reynolds number range, the relative

strength of the lower recirculation region is less than that of the upstream recirculation zone. It is

not immediately obvious why this should be the case since the driving force of the recirculation is

the symmetric radial jet at the equator. However, it is probably due to the positioning of the sphere

at slightly lower than the mid-height of the cylinder, resulting in slightly different concentric flow

geometry parameters.

Figure 5.31(b) shows the the radial position of the peak streamfunction value with each spinning

Reynolds number, and figure 5.31(c) shows its axial location. These show that increasing the

Reynolds number has only a slight effect on moving the position of the recirculation zone, and even

less effect on its axial position. This would suggest, that in the position of the recirculation may be

more dependent on the experimental geometry than the Reynolds number.

Figure 5.32 shows contours of axial velocity for each Reynolds number investigated. This shows

that, as for the stream function contours, the general structure of the flow is largely unchanged with

Re and only minor variations in the flow exist at higher rotation rates. The reverse axial flow near

the outer wall above the plane of the equator (r = R, h < R) is seen to reduce in size with increasing

Reynolds number, consistent with the movement of the recirculation zone closer to the cylinder wall

that was seen in the streamfunction contours.

Spheres rotating in otherwise stationary flows have been found to form vortices on their surface

as the speed of the fluid travelling to the equator increases. Taniguchi et al. (1998) was able to

determine a criterion for the formation of these vortices, and found a critical Reynolds number for

vortices that formed at an angle of 14◦ to any latitude line. This angle was found experimentally by
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Figure 5.32: Images of axial velocity contour lines for each sphere rotation rate
investigated: Re = (a) 93, (b) 109, (c) 126, (d) 143, (e) 169, (f) 186, (g) 211, (h) 232.
Negative axial velocity contours are indicated with dashed lines. Contour levels are
constant across Reynolds numbers. Γ = 1.73, DS = 0.294.
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Figure 5.33: Results from the study by Taniguchi et al. (1998), showing the latitude, ξ,
and critical local Reynolds number, Rer,c, for the onset of 14◦ vortices on the surface of a
spinning sphere in otherwise stationary fluid, as a function of the latitude on the sphere
surface.

Kohama & Kobayashi (1983) as the angle of the first forming vortices. The predictions of Taniguchi

et al., as well as Kohama & Kobayashi’s results are shown in figure 5.33, where the critical local

Reynolds number Rec,r has been plotted against the latitude ξ. The local Reynolds number, Rer, is

determined from the arc length across the sphere surface ξR, and the tangential sphere velocity at

that point ωR sin ξ such that:

Rer =
ωR2ξ sin (ξ)

ν

= Re · ξ sin (ξ). (5.5)

Figure 5.33 shows that the earliest onset predicted for their work was at a latitude of ξ = 80◦

(close to the equator) at a sphere Reynolds number of ReS ≈ 1 000 — much higher than the

Reynolds number at which the present investigation is focused. Figures 5.34(a) and (b) show an

enlarged region of the radial PIV results near to the sphere and upstream of the equator, with (b)

identifying the PIV grid points for clarity. It can be seen from these images that there appear to be

some ripples in the contours, which on first observation may appear to be the latitudinal vortices of

the spinning sphere described by Kohama & Kobayashi (1983). However, these features can be
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Figure 5.34: Enlarged region of the near-sphere flow, showing radial velocity component
contour lines. (a) Radial velocity contours, with the piecewise-linear representation of the
sphere indicated by the black region. (b) The same image, with the resolution of the PIV
algorithm superimposed in the form of a grid. Each grid point is 16 pixels square, which is
due to the 50% overlap of the 32-pixel square interrogation windows.

explained by understanding how the PIV analysis was performed, and that they were not an actual

flow feature.

Figure 5.34(b) shows that the mesh points are fairly fine. However, the interrogation region was

twice the grid size, and moved with each grid point to overlap by 50% the previously interrogated

region, resulting in the apparent finer grid resolution. Furthermore, the outline of the sphere is a

piece-wise linear approximation to a spherical object, meaning it has corners. It can be seen in

figure 5.34(a) that the corners appear to coincide with the ripples in the contour levels, which

suggests the sphere definition may be responsible. In interrogating a region, the interrogation

window may include an area where no velocity information is supplied, as specified by a body, in this

case a sphere. To deal with this, the PIV algorithm, as a first approximation, determines first if any

of its interrogation window corner points lie within the zero velocity region. If one or more do, then

the corresponding velocity value assigned to the centre of the interrogation window is taken as zero.

As a result, contour lines of velocity interpolating between real velocity values (for which all four

interrogation window corners lie outside a body region) and the assigned zero values will display the

object corners in their form, as shown in figure 5.34.

Plotting the position of the peak axial velocity (in both the positive and negative directions),
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Figure 5.35: (a) Magnitude of the peak axial velocity, ux, in the (△) positive and
(▽) negative directions, normalised to the absolute maximum axial velocity found, ua.
(b) Radial distance to ux, with sphere edge located at r = 0.294R (−·). (c) Axial location
of ux. Γ = 1.73, DS = 0.294.

similar behaviour to the streamfunction results is found. Figure 5.35(a) shows the maximum axial

velocity in both the positive and negative directions. As with the peak streamfunction values, the

peak velocity for the recirculation zone in the smaller region is less than that of the larger region.

Furthermore, the position of the peak axial velocity components, in both radial (fig. 5.31b) and axial

(fig. 5.35c) directions remains unchanged throughout the Reynolds number range. This is not

entirely unexpected, since momentum is imparted to the flow at the surface of the sphere, and so it

would be expected that the peak velocity would remain near the sphere surface as its rotation rate is

increased.

The other velocity information that can be obtained from the PIV results is the radial velocity

component. Contours of constant radial velocity values have been plotted in figure 5.36. Here it can

be seen that as the rotational Reynolds number is increased, the large radial velocity component

from the equatorial region is unchanged except for its magnitude, and this can be seen from plotting

the peak radial velocity for each Reynolds number. This is shown in figure 5.37(a), where the

maximum radial velocity (normalised to the maximum value obtained) increases almost linearly with

increasing rotational Reynolds number. Figures 5.37(b) and (c) show that its position is unchanged

with increasing rotational Reynolds number, as was found previously for the peak axial velocity

components. The increase in radial velocity with Reynolds number is also probably why the

corresponding axial velocity magnitudes (of figure 5.31a) show a slight decrease over the same range.

In the concentric sphere studies by Hollerbach et al. (2006) looking at gap ratios in the range of

(0 ≤ β ≤ 10), they determined the radial velocity profile of the fluid in the equatorial plane. For

each gap ratio measured, Hollerbach et al. increased the rotational Reynolds number of the inner
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Figure 5.36: Images of radial velocity contour lines for each sphere rotation rate
investigated: Re = (a) 93, (b) 109, (c) 126, (d) 143, (e) 169, (f) 186, (g) 211, (h) 232.
Negative radial velocity contours are indicated with dashed lines. Contour levels are
constant across Reynolds numbers. Γ = 1.73, DS = 0.294.
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Figure 5.37: (a) Magnitude of the peak radial velocity, vx, in the (△) positive and
(▽) negative directions, normalised to the absolute maximum radial velocity found, va.
(b) Radial distance to the vx, with sphere edge located at r = 0.294R (−·). (c) Axial
location of vx. Γ = 1.73, DS = 0.294.
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sphere until the flow became unstable to perturbations of a particular mode. It was at just below

this critical Reynolds number that the radial velocity profiles in the equatorial plane were presented.

From their publication, the location of the peak radial velocity as a function of the gap ratio could

be extracted and compared to the present studies.

Figure 5.38 shows the comparison between the radial velocity peaks obtained by Hollerbach et al.,

and the present investigation. Despite the fact that there is no proven reason why the behaviour of

the peak velocity in the cylinder-sphere apparatus should follow that of concentric spheres, it is still

worthy to compare the values as a guide to where the current study fits into the literature.

Figure 5.38(d) shows how the critical Reynolds number increases with smaller gap ratios, and that

the gap ratio of the current investigation suggests that the Reynolds number range in the current

investigation is too low for the flow to become unsteady. The increase in the Reynolds number of the

current data set in figure 5.38(d) relates to the downward motion of the same data in figure 5.38(b),

where it would appear as though the instability onset may occur as the peak radial velocity

approaches the sphere surface. Once again, drawing an analogy across geometries, the maximum

Reynolds number of the current investigation is not large enough to cause flow instabilities.

A study by Bar-Yoseph et al. (1992) showed that a rotating sphere inside a spherical cavity could

produce vortex breakdown on the axis of rotation in the gap region. They were able to map out a

parameter space which identified the formation of a single breakdown bubble (figure 5.39a). From

figure 5.39(b) they defined a rotational Reynolds number

ReB =
ΩiR

2
o

ν
, (5.6)

where Ωi is the rotational rate of the inner sphere, and Ro is the outer radius of the stationary

sphere.

They also defined a non-dimensional gap ratio,

s = 1 − Ri

Ro

= 1 − η, (5.7)

where Ri is the radius of the inner, rotating sphere.
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Figure 5.38: Comparison of current investigation (◦) to that presented by Hollerbach
et al. (2006) (×) in investigating Couette flow in concentric spheres. (a) Three-dimensional
representation of the parameter space investigated by Hollerbach et al., showing the radial
position of the peak radial velocity, rv,p, for each gap ratio, β, at the critical Reynolds
number, Re. The data comparison has been projected onto each of the coordinate planes
for comparison in (b)–(d), where dotted lines are for the Hollerbach et al. data. (b) The
radial position of the peak radial velocity for each gap ratio, at the critical Reynolds
number — just before the onset of unsteadiness due to perturbations of a particular mode.
(c) Location of the peak radial velocity at the critical Reynolds number. (d) The critical
Reynolds number for each gap ratio.

178



5.8. Rotation of sphere

(a) (b)

Figure 5.39: (a) The concentric sphere arrangement by Bar-Yoseph et al. (1992) to
generate a vortex breakdown in the gap region. (b) Existence domain of a single
breakdown bubble in Reynolds number and gap ratio.

Taking the current experimental cylinder radius, R, to be Ro from equation 5.7, then for a sphere

of Ri = 0.291Ro placed at an axial location of XS = 0.44 in a cylinder of height ratio Γ = 1.73, the

dimensionless gap is calculated to be η = 0.709. From figure 5.39(b) shows that the lowest Reynolds

number at which a breakdown bubble appeared was at a gap ratio of around s = 0.45, and a

Reynolds number of around Re = 3100. Converting this value (which is defined by equation 5.6),

into our Reynolds number, the first occurrence of breakdown is at Re = 262. Since this is above the

highest Reynolds number tested here, it is not surprising that no axial breakdown was observed in

the gap. Furthermore, figure 5.39(b) suggests that the gap ratio of 0.709 may in fact require a

rotation speed anywhere up to or beyond ReB = 10 000 (Re = 860).

5.8.2 Variation through sphere rotation rate, γ

These experiments were also performed at a height ratio of Γ = 1.75 (measured to be

Γ = 1.73 ± 0.02) with the sphere located at XS = 0.44. The end-wall rotation rate was initially set

at Re = 1500, with subsequent tests at Re = 1700 and Re = 2000. All these Reynolds numbers are

inside the single bubble formation region of the existence domain.

Shown in figure 5.40 are streamfunction contours from the PIV velocity fields, showing for each

frame in the left pane the non-rotating sphere case (γ = 0), and the right hand pane is the rotating
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Figure 5.40: Streamfunction contours, ψ, for the rotation of the sphere with the end-wall
rotating at Re = 1500. Left half of image is the comparison γ = 0 case, and the right half
shows the flow field with the rotation of the sphere. Rotation rate of sphere measured as a
fraction of the disk rotation rate; From top left: (a) γ = −2.31, (b) −1.00, (c) −0.75,
(d) −0.50, (e) −0.25, (f) +0.25, (g) +0.50, (h) +0.75, (i) +1.00, (j) +2.31. Negative
streamfunction contours indicated with dashed lines (−−). Γ = 1.73, DS = 0.195.
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sphere case. These images show clearly two distinct recirculation zones forming – one above the

sphere, which for the γ = −2.31 is smaller than the no sphere case, and a second below the sphere,

which is quite large for this same case.

Looking first at the region of the downstream recirculation region, this region appears to be

largely influenced by the rotation of the sphere. This can be seen from figure 5.41(a), where the peak

radial component of the velocity has been plotted for each rotation rate considered of the three

Reynolds numbers investigated here. This shows that as the speed of the sphere rotation is

increased, in either the co-rotating or counter-rotating directions, the strength of the radial velocity

component near the sphere equator also increases. The effects of this can be seen in the

figure 5.41(b), where the strength of the lower recirculation zone has been normalised against the

peak recirculation value found. This shows too that the strength of the recirculation is dependent on

the magnitude of the spinning sphere speed, and not so much on the rotation rate of the disk.

Contrasting this is the strength of the vortex breakdown recirculation zone upstream of the sphere,

which is shown in figure 5.41(c). This shows that the strongest recirculation occurs for a slight

counter-rotation of the sphere, at around γ = −0.5.

Since the flow in the larger recirculation region is less dominated by the sphere spinning effect,

the vortex breakdown that forms under these conditions can be inspected, especially to see how the

spinning of the sphere affects it. Looking first at the stagnation point, (determined from the zero

axial velocity contour), its movement is traced through the rotation range of the sphere. This is

shown in figure 5.42(a).

This figure shows that for each Reynolds number investigated, the axial position of the vortex

breakdown is relatively stable, with only a minor movement downstream as the rotation rate of the

sphere approaches zero, although there also appears to be a similar trend for |γ| > 1. It is not

entirely clear why this should be the case, since co-rotation and counter-rotation of any previous

physical control method has always shown to significantly move the stagnation point downstream or

upstream. However this does not appear to occur here. The bubble width trend in figure 5.42(b)

shows asymmetry in its form, with the peak radial width to be for a sphere rotation rate of

approximately γ = −0.5. However, the size of the breakdown reduces for large values of |γ| in the

same way as observed by Fujimura et al. (2004).

Figure 5.42(c) shows the peak positive radial velocity component in the region immediately

upstream of the vortex breakdown region. It can be seen that for the radial component, the rotation
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Figure 5.41: (a) Peak radial velocity value, vx, measured near the equatorial region of
the sphere, normalised against the absolute maximum radial velocity found, va, for all
Reynolds numbers. (b) Peak streamfunction values, ψxb, of the large recirculation region
closest to the rotating disk, normalised against the absolute peak found in this set, ψa.
(c) Peak streamfunction values, ψxa, of the vortex breakdown recirculation zone,
normalised to ψxa of all the γ = 0 cases, ψ0. Plotted are results for (◦) Re = 1 500,
(×) Re = 1 700 and (△) Re = 2000.
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Figure 5.42: (a) Stagnation point location through the range of spinning rates of the
sphere. (b) Vortex breakdown bubble width. (c) Peak positive radial velocity value above
breakdown bubble, normalised against maximum γ = 0 value of the set. (◦) Re = 1500,
(×) Re = 1 700, and (△) Re = 2 000. The no-sphere case (of section 5.3) has been
superimposed at γ = 0 (⋆), as well as the single measurement from Fujimura et al. (2004)
(�).
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direction is important in how the breakdown is affected. As co-rotation is increased, the radial

velocity component increases, as might be expected with the increase in circulation generated by the

equatorial ejection of liquid. Conversely, counter-rotation is seen to decrease this radial component.

However, most interesting is that these effects in the radial component of the flow do not affect the

breakdown in the same way as an adjustment in the upstream swirl conditions, which move the

stagnation point in conjunction with the modification of the swirl conditions upstream of

breakdown. Since that stagnation point movement does not occur here, it is implied that the local

swirl velocity is not affected here, and the the rotation of the sphere appears to simply constrict the

domain in which the breakdown bubble can exist.

5.8.3 Variation through disk Reynolds number, Re

Another direction of investigation into the effects of the sphere geometry on the vortex

breakdown is to vary the Reynolds number of the flow and hold constant the rotation ratio, γ.

Although the local sphere Reynolds number will change with varying disk Reynolds number (and

probably will too the local flow conditions), a constant γ is maintained to investigate the effects of

only the disk Reynolds number on a rotating sphere flow. The disk Reynolds number is varied and

the sphere rotation rate adjusted accordingly for the two cases of γ = +1 and γ = −1.

The streamfunction contours of figure 5.43 for γ = +1 and figure 5.44 for γ = −1 both show that

two main recirculation regions exist: one region above the sphere relates to the breakdown

phenomenon, and in these cases can be seen to be completely clear of any shear-layer reattachment to

the sphere; the second recirculation region is due to the local dominance of the spinning sphere. Also

seen is that the Reynolds number range in both cases captures almost the entire existence domain of

the vortex breakdown region, although neither case extends high enough in the Reynolds number

range to see its complete disappearance. With increasing Reynolds number, the lower sphere-based

recirculation zone appears to only change in size and not position, with the greatest effect seeming to

be with the counter-rotating sphere case compared to the co-rotating case. However, the breakdown

recirculation zone appears to take different shapes with co- and counter-rotating cases:

counter-rotation can initiate an elongated breakdown bubble, almost producing a second

recirculation zone; co-rotation generates the clearly single bubble form of breakdown. Both

recirculation zones appear to be well clear of the sphere, meaning that there is a second stagnation

point upstream of the sphere surface, which has not previously been seen in bluff body flows.

Tracing the geometric properties of the vortex breakdown bubble, the stagnation point movement
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.43: Streamfunction contour plots for half the meridional plane for all disk
Reynolds numbers investigated, while holding sphere rotation rate constant at γ = +1.
(a) Re = 1100, (b) Re = 1 300, (c) Re = 1 500, (d) Re = 1 700, (e) Re = 2000,
(f) Re = 2200, (g) Re = 2 500 and (h) Re = 2750. Negative streamfunction contours are
indicated with dashed lines (−−). Γ = 1.73, DS = 0.195.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.44: Streamfunction contour plots for half the meridional plane for all disk
Reynolds numbers investigated, while holding sphere rotation rate constant at γ = −1.
(a) Re = 1100, (b) Re = 1 300, (c) Re = 1 500, (d) Re = 1 700, (e) Re = 2000,
(f) Re = 2200, (g) Re = 2 500 and (h) Re = 2750. Negative streamfunction contours are
indicated with dashed lines (−−). Γ = 1.73, DS = 0.195.
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and the width of the breakdown bubble are measured throughout the Reynolds number range

investigated and shown in figure 5.45. In each rotation case (γ = 0, ±1), the limits of the existence

of the single bubble form of breakdown have been extended above the limits of the base case, which

are indicated by the vertical dashed lines. Shown in figure 5.45(a), the stagnation point location of

the co-rotating sphere (γ = +1) appears to match well with the base case. However, for the other

two rotation cases, there appears to be a greater deviation from the base case for the lower Reynolds

numbers, with the counter-rotating case giving the greatest deviation. The most important finding

here is that, for all cases investigated, the position of the stagnation point was always higher than

the base case. This is important because it was expected that a co-rotation case would delay the

onset of breakdown, as had been seen with all wall-based rotation devices (such as Fujimura et al.

2004, Mununga et al. 2004, Pereira & Sousa 1999, Watson & Neitzel 1996 and others, as well as the

central rod study by Husain et al. 2003).

The size of the recirculation bubble is shown in figure 5.45(b). The co-rotation case once again

matches closely with the bubble width of the base case in size, apart from where the upper limit of

the bubble existence is extended. The stationary and counter-rotating cases show a significant

increase in the size of the breakdown bubble, with both cases matching each other through the

Reynolds number range, until separating for the highest Reynolds number cases.

In figure 5.46, shown are the normalised streamfunction values for the two recirculation zones.

Normalisation in this case is against the peak streamfunction value found in the base case, ψb.

Figure 5.46(a) shows that the vortex breakdown recirculation zone for both the stationary and

counter-rotating cases is much stronger than that of the base case, or even the co-rotating case. The

peak value of the stationary sphere appears at Re=1 500 and declines as Re increases. This Reynolds

number is one that shows discrepancies also in the bubble width and stagnation point for the

stationary sphere.

The sphere dominated recirculation zone streamfunction values in figure 5.46(b) confirm that the

sphere rotation dominates the production of the recirculation zone (the stationary case does not

produce a lower recirculation zone - fig 5.25, page 162). Furthermore, it can be seen that the

counter-rotating sphere produces a recirculation zone twice as strong as the co-rotating case,

showing that the sphere is competing with the base plate in the flow generation in that region.
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Figure 5.45: For the case of DS = 0.195 and XS = 0.44: (a) Axial location of the
upstream vortex breakdown stagnation point measured for each Reynolds number. Three
γ cases shown are (△) +1, (◦) 0 and (▽) −1, with smoothed splines (−·) highlighting
trends in each case. The base case of Fujimura et al. (2004) has been superimposed (−−),
along with the base case measured in section 5.3 (�). Vertical dotted lines (� � �) indicate
existence domain of base case. (b) Vortex breakdown bubble radius for each Reynolds
number. Γ = 1.73.
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Figure 5.46: Peak streamfunction values, ψx, for each Reynolds number, normalised
against the peak base case streamfunction value, ψb. (a) Vortex breakdown recirculation
region streamfunction values, for (△) γ = +1, (◦) γ = 0, and (▽) γ = −1, along with the
base case of section 5.3 (×). Smoothed splines (−·) used to highlight trends in each case.
(b) Peak streamfunction values in the sphere driven recirculation region, between the
sphere and rotating end-wall, normalised against the peak base case streamfunction value
ψb. Linear trend-lines also plotted (−·).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.47: Streamfunction contour plots for half the meridional plane, for all disk
Reynolds numbers investigated, while holding sphere stationary (γ = 0). (a) Re = 1 100,
(b) Re = 1 300, (c) Re = 1500, (d) Re = 1 700, (e) Re = 2000, (f) Re = 2200,
(g) Re = 2500, and (h) Re = 2 750. Negative streamfunction contours are indicated with
dashed lines (−−). Γ = 1.73, DS = 0.294.

5.8.4 Variation through sphere size, DS

It was found earlier that geometry effects may be more important to vortex breakdown bubble

manipulation than flow settings, so the next stage of the investigation was to change the size of the

sphere, from DS = 0.195 to a larger DS = 0.294 ± 0.004. For the same Reynolds number range

(Re = 1100–2750) and axial position (XS = 0.44), each sphere rotation rate (γ = 0, ±1) was used to

determine any geometry effect.

First investigation was to hold the sphere stationary (γ = 0), and contour lines of streamfunction

values are shown in figure 5.47. The first point to observe from these contour lines is that similar to

the smaller sphere case that was stationary, there is no downstream recirculation zone. Once again,
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Figure 5.48: For the γ = 0 case (◦) of DS = 0.195 (−�) and DS = 0.294 (� � �), (a) axial
stagnation point location and (b) Breakdown bubble width, together with the base case
values of section 5.3 (�) and the results of Fujimura et al. (2004)(−−). Vertical dotted
lines (� � �) indicate existence domain of base case. (c) Peak streamfunction value, ψx, in
the breakdown recirculation region normalised against the peak base case value, ψb.

this is expected, since firstly the height ratio should not allow a secondary bubble to form, but

secondly because the sphere rotation was identified as responsible for the downstream side of the

flow (at this sphere position and size). There also appears to be the formation of an upstream

stagnation point for the first Reynolds number case of Re = 1100 (fig. 5.47a). This is a lower

Reynolds number than the base case, but once again expected due to the presence of the sphere

providing an impetus for diverging upstream streamlines. The breakdown bubble also extends right

through the Reynolds number range, without diminishing in size, and begins to vary in shape for

Re ≥ 2 200, towards what looks like the formation of a secondary recirculation zone.

The position of the stagnation point as Reynolds number is varied for the stationary sphere is

shown in figure 5.48(a), and shows that there appears to be little variation in its position except for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.49: Streamfunction contour plots for half the meridional plane, for all disk
Reynolds numbers investigated, while co-rotating the sphere at γ = +1. (a) Re = 1 100,
(b) Re = 1 300, (c) Re = 1500, (d) Re = 1 700, (e) Re = 2000, (f) Re = 2200,
(g) Re = 2500, and (h) Re = 2 750. Negative streamfunction contours are indicated with
dashed lines (−−). Γ = 1.73, DS = 0.294.

the lower Reynolds numbers investigated. For Re = 1100, the spheres form the stagnation point

outside the base case Reynolds number range, and it moves upstream fairly rapidly to Re = 1500,

before returning to the position the base case shows, and extending beyond its upper limit. The

width of the bubble (fig 5.48b) shows that both sphere cases produce a larger vortex breakdown

bubble, with the larger sphere producing a slightly larger bubble. The streamfunction values plotted

in figure 5.48(c) show that both spheres increase the strength of the upstream recirculation, with the

strength seeming to increase with sphere size. This also also shows what appears to be a discrepancy

in the streamfunction value at Re = 1500, and as before, there does not appear to be any immediate

reason for this.
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Figure 5.50: For the γ = +1 case (△) of DS = 0.195 (−�) and DS = 0.294 (� � �),
(a) axial stagnation point location and (b) Breakdown bubble width, together with the
base case values of section 5.3 (�) and the results of Fujimura et al. (2004)(−−). Vertical
dotted lines (� � �) indicate existence domain of base case. (c) Peak streamfunction value,
ψx, in the breakdown recirculation region normalised against the peak base case value, ψb.

Figure 5.49 shows the streamfunction contours of co-rotating the larger sphere at γ = +1. For

this setting, the lower recirculation zone now exists, as expected, for a rotating sphere. However,

unlike the smaller sphere recirculation zone (seen in figure 5.43, page 185), the zero contour line of

this recirculation does not meet the central axis. Instead, after detaching from the sphere on the

downstream side of the equator, the zero contour line reattaches to the sphere surface, forming a

circular stagnation line, or ring, on the sphere surface. This ring form stays the same throughout the

entire Reynolds number range without change, suggesting that this reattachment is only dependent

on the size of the sphere. The upstream vortex breakdown is once again present in all Reynolds

numbers investigated, and just as in the smaller sphere case, there is a second stagnation point

upstream of the sphere, closing the breakdown recirculation zone independently of the sphere.
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In figure 5.50(a), other than the extension of the existence-domain, the sphere does not appear to

have a significant effect on the stagnation point position. For the lower Reynolds numbers, the

position is only slightly higher than the base case. The size of the bubble formed (fig 5.50b) for the

co-rotating case appears to be unaffected by the size of the sphere, except for Re = 1300, where the

smaller sphere case has a smaller bubble width than the base case. However, the streamfunction

values (fig 5.50c) show a significant reduction in the strength of the recirculation for Re ≥ 1 700,

with a larger reduction from the base case for the smaller sphere case than the larger.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.51: Streamfunction contour plots for half the meridional plane for all disk
Reynolds numbers investigated, while counter-rotating the sphere at γ = −1.
(a) Re = 1100, (b) Re = 1 300, (c) Re = 1 500, (d) Re = 1 700, (e) Re = 2000,
(f) Re = 2200, (g) Re = 2 500, and (h) Re = 2 750. Negative streamfunction contours are
indicated with dashed lines (−−). Γ = 1.73, DS = 0.294.

For the counter-rotating case, γ = −1, the streamfunction contours have been plotted in

figure 5.51. This shows firstly the large downstream recirculation zone, which in this case has a

shear-layer that attaches to the central axis and not back to the sphere as for the co-rotating case.
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The upstream vortex breakdown recirculation is also detached from the sphere, with once again a

second upstream stagnation point clear of the sphere surface. Of interest is the case of Re = 1100,

where there appears to be a secondary recirculation zone in the upstream region, from

0 ≤ h/R ≤ 0.8. Inspecting the individual time series of this data point, which were taken after the

expected steady state time, it appears that the averaged image presented in figure 5.51(a) may not

be entirely representative of the flow here.

5 10 15 20 30 AVG

h
R

Figure 5.52: Samples of the 30 images that form the averaged data point of
figure 5.51(a), enlarging the region upstream of the sphere near the central axis — axis
bounds are 0 ≤ r/R ≤ 0.25, 0 ≤ h/R ≤ 0.8. Images are increasing in time left to right,
with acquisition frame numbers indicated. Negative streamfunction contours are indicated
with dotted lines. Case is Γ = 1.73, DS = 0.294.

Figure 5.52 shows the region closest to the central axis in the region upstream of the sphere

surface. This series of frames shows that the upstream recirculation zone exists for the most part,

but reduces in size through the 30 acquisition images. This suggests that either the steady-state

time used for this measurement was not adequate, with the flow still reaching its final state, or that

there may be some temporal unsteadiness in the flow causing this recirculation zone to significantly

vary in size. In either case, this indicates that as far as the present investigation is concerned the

steady stagnation point cannot be determined to exist for the case of Re = 1100.

Figure 5.53(a) shows the axial stagnation point position for the counter-rotating case (γ = −1).

The larger sphere shows fairly steady axial stagnation point position, until Re > 2200, where it

moves upstream together with the smaller sphere and the base case. There appears to be a slight

variation in the general trend for the case of Re = 2000, where the large sphere case is significantly
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Figure 5.53: For the γ = −1 case (▽) of DS = 0.195 (−�) and DS = 0.294 (� � �):
(a) axial stagnation point location and (b) Breakdown bubble width, together with the
base case values of section 5.3 (�) and the results of Fujimura et al. (2004)(−−). Vertical
dotted lines (� � �) indicate existence domain of base case. (c) Peak streamfunction value,
ψx, in the breakdown recirculation region normalised against the peak base case value, ψb.
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further downstream than for the smaller sphere and base cases. This effect can also be seen in the

width of the bubble (fig. 5.53b), where generally the width of the bubble for the larger sphere is less

than that of the smaller sphere. The streamfunction peaks of the vortex breakdown region in

figure 5.53(c) show a significant difference in the strength of the recirculation zone, indicating that

the larger sphere produces a smaller, and less intense vortex breakdown recirculation zone. It is

important to note here that the existence domain of the larger sphere appears to be significantly

increased for this counter-rotating case, compared to the previous co-rotating case.
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5.9 Summary

A mechanical means of affecting a vortex breakdown bubble has been investigated, by using a

spherical bluff body in the closed flow of a torsionally driven cylinder. In a cylinder of height ratio Γ,

a sphere DS in diameter was suspended a distance XS away from the stationary end-wall. The

rotating base plate of the cylinder was used to generate the vortex breakdown conditions of the flow,

and comparisons were made between the base case of no physical intrusions to various flow regimes

based on varying the size of the sphere, its position and rotation rate for different end-wall rotation

rates. The key findings of these investigations can be summarised as follows:

1. The addition of the sting to the flow (without an attached sphere) caused a reduction in the

axial velocity component near the sting, clearly consistent with the no-slip condition at its

surface. The reduction in core axial velocity in turn leads to the formation of incipient

breakdown features at a slightly lower Reynolds number than for the no-sting, or base, case.

The recirculation zone strength was significantly reduced for Re ≥ 2000. However, once the

complete breakdown bubble had formed at higher Reynolds numbers, the position of the

stagnation point, the width of the breakdown bubble and the strength of the recirculation zone

(as measured by the relative magnitude of the peak streamfunction) all approached the values

of the base case.

2. The addition of a stationary sphere to the end of the sting also produced a reduction in the

peak axial velocity component near the central core region. However, the width of the vortex

breakdown bubble was found to increase slightly above the sting-only case. The circulation

strength of the vortex breakdown bubble for the sphere case was also generally greater than

the sting-only case for Re ≤ 2200.

3. Variation in the axial position of the sphere was found to have an effect on the behaviour of

the breakdown bubble. Greatest effect was found when the downstream side of the sphere was

placed at the location of the base-case vortex breakdown position for that Reynolds number.

This was found to suppress the breakdown recirculation, and cause what appeared to be a

wake-like structure, although imaging of this region was inconclusive. Moving the sphere

further downstream created a recirculation zone upstream of the sphere that was larger than

that of the base case, although its position was only slightly further upstream, and this height

difference reduced as the sphere was moved further downstream. It was also found that the
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breakdown could be entirely replaced by the presence of the sphere at XS = 0.30, where no

upstream recirculation or downstream wake were visible.

4. Rotating the sphere in the cylindrical container with a stationary end-wall resulted in flows

reminiscent of previous studies on concentric spheres. The flow was dominated by two

recirculation zones, identified as the base flow of concentric sphere flows, with one recirculation

region on either side of the equatorial plane of the rotating sphere. These recirculation zones

were generated by a strong radial component of flow on the equatorial plane of the sphere, the

magnitudes of which were found to be consistent in trend with similar gap ratio concentric

sphere work. It was also determined that the Reynolds numbers at which the present

experiments were conducted were not sufficiently large to produce any flows different to the

base flow case, such as Taylor vortices, or sphere-surface vortices. Similarly, the gap ratio

between the sphere and the base plate used here was found to be too great to form vortex

breakdown in the polar region.

5. Rotation of the sphere for a constant disk rotation Reynolds number showed that in the region

between the sphere and the rotating disk, the sphere driven recirculation zone was the

dominant flow in that region. The upstream region showed little variation in the location of

the upstream stagnation point, but showed the formation of a second stagnation point

upstream of the sphere as the co-rotation rate was increased to γ ≥ 0.5 or counter-rotated at

γ ≤ −0.75. The breakdown bubble showed signs of being reduced in size as the magnitude of

rotation was increased. However, the maximum γ value that could be used was limited by the

dynamic range of the PIV system used, and so the entire existence domain could not be

determined. The peak strength of the breakdown recirculation zone was found for a slightly

counter-rotating sphere (γ ≈ −0.25), and this appeared to not alter significantly with disk

Reynolds number, over the limited range used here.

6. The effect of disk rotation was investigated while maintaining a constant rotation ratio γ to

one of three constant values: 0, ±1. While the stationary sphere (γ = 0) was able to increase

the size of the recirculation bubble, the co-rotation case (γ = +1) showed no increase in size

compared to the base case, although it vastly reduced the recirculation strength. Downstream,

the recirculation region was attached to the sphere surface, and formed a stagnation point on

the central axis, which remained in existence throughout the range investigated. The

counter-rotating case (γ = −1) produced similar results, although the size of the upstream
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bubble was significantly increased for Re ≥ 2 200 compared to the base case, which became

smaller. This implied that the existence domain was extended far beyond that previously

observed, of Re = 2500 for Γ = 1.75.

7. By using a larger sphere, the stationary case showed little difference in flow features to the

smaller sphere, except for the strength of the recirculation zone, which was increased.

Co-rotation only slightly varied the upstream recirculation strength compared to the smaller

sphere, and its existence domain appeared to be almost entirely captured by the Reynolds

number range used. The downstream recirculation was found to reattach to the surface of the

sphere, with no axial stagnation point. This suggested that there may be a critical sphere that

marks the transition of the axial stagnation point to a stagnation ring on the sphere surface

(0.195 < DS < 0.294 for γ = −1). Counter-rotation once again restored the downstream axial

stagnation point, with the existence domain of the upstream recirculation zone extended.
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Chapter 6

Conclusions

A systematic parameter space investigation using a bluff body to control a vortex breakdown has not

been previously reported. The interaction of a sphere with a vortex breakdown was first identified by

the swirling pipe flow investigation of Mattner et al. (2003), although this was limited in the

variation of the parameters involved. The desire to understand and control vortex breakdown is

primarily motivated by delta wing research, and for this reason, an open flow tank was used to

investigate in greater depth the bluff-body/swirling jet interaction. Like the swirling pipe flow, the

open tank setup produced a swirling jet with independently variable axial and azimuthal velocity

components. The open tank flow did not have the confinement effects of the pipe flow, but instead,

the low flow rate of the open tank vortex breakdown meant that convective effects in the bulk tank

fluid were non-negligible and had to be accounted for in experiments. The behaviour of the vortex

breakdown with a sphere is also relevant to the bio-medical field. Bio-reactors are used to cultivate

cells and tissue, and recent work has identified the potential of vortex breakdown in a confined

cylindrical bio-reactor to assist in cell cultivation by enhancing flow mixing. The placement of a

scaffold in the mixing flow is not uncommon in bio-reactor flows, and the thorough investigation of

the interaction of the vortex breakdown with a simplified scaffold model would be of great use to the

design of bio-reactors. In both setups of this investigation, flow visualisation techniques were used to

measure the vortex breakdown position, shape, and its existence domain. PIV was also used inside

the swirling cylinder flow to give flow velocity information.
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Open flow swirling jet

In the open tank flow, a jet issued from a nozzle of diameter DN into a tank at an axial Reynolds

number Rex. Swirl was imparted on the jet, measured as an azimuthal Reynolds number Reω. A

sphere of diameter DS was placed a distance xS in the axial direction downstream of the nozzle

outlet.

1. For the base case experiment (no sphere), the position of the stagnation point upon formation

migrates upstream rapidly with increasing rotational Reynolds number Reω, before reaching a

near-nozzle region where the movement upstream is at a much lower rate. The position of the

stagnation point as a function of both the swirl number and rotational Reynolds number also

scales with axial Reynolds number Rex to the power of −0.5. Hysteresis in the stagnation

point position with increasing or decreasing Reω exists for 600 ≤ Rex ≤ 750, which is

consistent with the Rex range determined by Billant et al. (1998) to demonstrate hysteresis.

The cone angle of the vortex breakdown shear layer is roughly linearly related to the axial

stagnation point position P , for P & 0.5. Closer to the nozzle the cone angle also decreases,

though at a much greater rate. This general observation is possible even with the very

conservative error bars used in this investigation, and is consistent with the observations of

Liang & Maxworthy (2005), even though their study compared the cone angle to the swirl

number, and not the axial position.

2. Placing a sphere on the central axis of the swirling jet initiates the formation of a stagnation

point upstream of the surface of the sphere, the position of which is higher for an equivalent

Reω compared to the base case. This occurrence is independent of the axial Reynolds number

used. The upstream movement of the stagnation point with increasing Reω follows an

S-shaped curve, with the stagnation point moving upstream in a roughly linear fashion in the

near-sphere and near-nozzle regions. This suggests that these are regions of relative stability

for the vortex breakdown. In the transition from one region to the other, the stagnation point

moves rapidly with Reω variation. This is in contrast to the base case, where the stagnation

point moves rapidly upstream immediately after inception.

3. For an axial sphere location xS = DN , the form of the breakdown in the near-sphere region

depends on the sphere size used: a sphere of DS = 0.622 produces an open form of breakdown,

whereas a sphere of DS = 0.970 and larger produces a closed form. This infers that for
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Rex = 600 and xS = DN , a critical sphere size D∗

S exists in the range 0.622 < D∗

S < 0.970 that

determines whether the vortex breakdown will be in one form or the other.

4. The gradient of movement of the stagnation point in the near-nozzle region varies with sphere

position. For spheres placed at distances of DS ≥ 1.5, the upstream movement of the

stagnation point occurs at a lesser rate than the base case, and for DS ≤ 1.0 occurs at a

greater rate. This suggests that the gradient of the base-case near-nozzle region is roughly

equivalent to a sphere (of DS = DN ) placed at a distance of 1.0 < xS < 1.5.

The interaction of bluff bodies in swirling jets has been recently studied in the applications of this

interaction in the bio-medical field. Scaffolds are often used in bio-reactors as a means of promoting

biological cell growth, and vortex breakdown in these bio-reactors has been investigated as a possible

improvement to the mixing efficiency of the flow. A fundamental understanding of the interaction

between a bluff-body and a vortex breakdown structure is required, as little work has specifically

focused on this interaction.

Torsionally driven cylinder flow

In a closed cylinder flow, where the cylinder height H and radius R defined the height ratio

Γ = H/R, the disk Reynolds number Re was varied between 1 100 ≤ Re ≤ 2750 for sphere sizes of

DS = 0.195 and 0.294 placed at an axial location of XS = 0.44 away from the stationary end-wall.

1. For a cylinder of height ratio Γ = 2.03, a sting of length 0.44H protruding into the vortex

breakdown region reduces the strength of the recirculation zone, as measured by the peak

streamfunction value. The upstream stagnation point location is moved only slightly

downstream by the presence of the sting. The addition of a sphere to the end of the sting does

little to further affect the stagnation point location. However, the shape of the breakdown

region elongates to reattach to the surface of the sphere.

2. For a height ratio of Γ = 1.73, the presence of the sphere extends the Reynolds number

existence domain of the bubble breakdown to beyond Re = 2750.

3. For Re = 1300, the axial location of the sphere does not appear to affect the formation of the

vortex breakdown bubble, except for the case where the downstream side of the sphere is

located at the upstream stagnation point of the breakdown bubble. In this case, the

recirculating bubble structure takes the form of a spherical wake structure, smaller in axial

length than the original breakdown bubble.
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4. For a constant disk Reynolds number (in the range Re = 1300–1 700), increasing sphere

rotation rate (measured in terms of the ratio of sphere to disk rotation rates, γ) in co- or

counter-rotating directions reduces the size of the vortex breakdown bubble. For γ < −0.75

and γ > +0.5, a second upstream stagnation point is formed between the sphere surface and

the first stagnation point, with little effect on the axial location of the first upstream

stagnation point. This appears to be independent of disk Reynolds number. The peak

breakdown recirculation zone strength occurs for a slight counter-rotation of the sphere

(γ = −0.5). The downstream recirculation zone attaches to the central axis forming a

downstream stagnation point. The strength of the downstream recirculation zone increases

with the magnitude of γ, but the recirculation zone is entirely absent for γ = −0.25.

5. For a constant sphere rotation ratio γ, the Reynolds number existence domain is extended from

that of the base case with counter-rotating the sphere (γ = −1) producing the largest increase

for the range of γ considered. The peak strength of the vortex breakdown recirculation zone

for the co-rotating case is slightly less than the base case, but 3 times larger for the

counter-rotating case. The downstream recirculation zone is present for the entire Reynolds

number range for co- or counter- rotating sphere, as is the stagnation point on the central axis.

6. A larger sphere (DS = 0.294) also produces a second upstream stagnation point for a constant

rotation (γ = ±1). However, the sphere size does not appear to significantly affect the

existence domain or recirculation zone strength. The downstream recirculation zone is also

present for co- or counter-rotating sphere, but the downstream stagnation point becomes a

stagnation ring for the co-rotating case, when the recirculation zone reattaches to the sphere

surface. This suggests a critical sphere size D∗

S exists that determines the point or ring form of

the downstream stagnation — This critical sphere size is in the range 0.195 < D∗

S < 0.294 for

Γ = 1.73 and XS = 0.44.

6.1 Recommendations for further work

The introduction of a physical body into a complex, three-dimensional flow considerably expands

the number of parameters that control the system. Following on from the investigation presented

here, there is considerable scope to continue studies into bluff body effects on swirling jet vortex

breakdown, to understand how controls can affect the overall flow state and perhaps improve the

ability to affect real-world applications.
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1. This work has looked at passive controls, where the steady state solution is obtained. It would

be useful to extend into the field of active controls. First would be to spin the sphere in the

open tank in the same way as the closed tank flow, especially to determine if a second

stagnation point can be obtained in the open flow. Secondly, time-dependent variations to the

sphere position (such as axial oscillations) might be investigated, as well as variations in

spinning rates, such as sinusoidal spinning, as delta wing research has shown promising results

of time-dependent mechanical control methods.

2. The sphere was chosen as a simple bluff body, but other forms might be investigated, such as

using a torus, blunt-faced bluff bodies (such as hemispheres), sharp faced bodies (such as

cones), or even asymmetric variations to possibly target swirling jet mode shapes. This would

serve to expand the knowledge of physical body interactions to geometries that may be more

useful in real-life applications.

3. Attempt to use pneumatic control methods in conjunction with the mechanical devices used

here could be used as the next level of complicating the parameter space. Suction and blowing

have been seen in delta wing research as being effective control methods, and doing so on a

bluff-body surface, it may be possible to identify, for example, the shear layer response. In

light of the work of Dusting et al. (2006) on closed cylinder vortex breakdown in bio-reactor

flows, the use of porous media might be considered for the bluff body. A net mass flow into or

out of the body may have important implications with regards to mixing closed flows, where

scaffolds are used for growing cells in closed cylinder flows. Furthermore, a net mass flux

into/out of a sphere inside a breakdown bubble may determine how significant the bursting

observed by Sotiropoulos et al. 2001 is to maintaining the bubble structure. Controlling

temperature gradients may also be considered, and when combined with vortex breakdown

mixing, may produce more favourable cell cultivation conditions.

4. Modifications to the experimental setups in each experiment may illuminate other aspects of

the flow. The open flow tank is fairly limited as to the method of supporting the bluff body.

However, as identified by Lo Jacono et al. (2007), in the closed cylinder flow, the base of the

sting can provide a source term in the upstream region of the swirling jet. A technically

difficult, but obvious modification to the closed cylinder would be to move the stationary sting

to the rotating end wall to give an unimpeded view of the upstream stagnation point. This

would then also be more comparable to the setup of Mattner et al. (2003).
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5. While the Swirl number was found to collapse the data of different Reynolds numbers, and a

simple argument based on Bernoulli’s equation predicts it will control the onset of vortex

breakdown (Billant et al. 1998), it is not clear why it appears to be the key controlling

parameter for the movement of the stagnation point as well. This is a potential area of further

study.

6. Of interest to the open tank problem is the hysteretic nature of the stagnation point

movement. Unfortunately, the current version of the swirling tank setup is very sensitive to the

laboratory environment, and especially the difficulty of controlling temperature differences

adequately to allow good experimental repeatability. Perhaps a useful extension of this work

would be to conduct a numerical investigation into this physical phenomenon, to predict the

ideal hysteresis loops and provide some further insight into the governing mechanisms.
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Appendix A

Equipment list

Detailed here are the technical specifications of all equipment used throughout the investigation of

both the open and closed flow setups.

Closed cylinder flow apparatus

1. Illumination Laser – Continuum Minilite PIV. Exposure range of 5–15ns, at operating

wavelength λ = 532µm.

2. Beam-path mirrors – CVI Technical Optics, silvered, 95% reflective.

3. Beam focussing lenses – 2 spherical lenses (f = 300mm, f = 100mm), one single concave

cylindrical lense (f = 5mm)

4. Constant temperature water bath – Huber ministat compatible controller. Described as a

compact, microprocessor control unit for circulator bath product.

5. Water bath filtration – Eheim Professional 2228 External canister filter. Can filter 600lt at

1050lt/h. Capacity of 11lt. 25W.

6. Cylinder rotation motors – 2×Step Syn stepper motors, controlled using NI-MAX software

with corresponding motor controller and DAQ board. Board contolled by PXI-1036 board,

with PXI-7344 and PXI-8360 boards.

7. Imaging camera – 11MPx (4080×2760) PCO.4000 monochrome double-shutter digital camera

with FireWire link. Controlled using PCO CamWare software (v1.17).
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8. Camera lens – Nikon ED 200mm, AF Micro Nikkor 1:4D, attached to PCO camera using

4×Nikon PK-11A Auto extension rings.

9. Camera stand – Melles Griot optical stand.

10. All equipment exept filter are fixed to a Melles-Griot optical table.

Open flow tank apparatus

1. Illumination – 2 300W Spotlight mini Profile zoom stage lamps, apertured to give a 3mm beam

width at a distance of the nozzle centre.

2. Axial flow pump – WEG KTE23 3-phase motor, driving DISCFLOW viscous slip disk pump.

3. Azimuthal flow motor - Bonfiglioli motor with a Bonfiglioli 240:1 reduction gearbox.

4. Motor controller inverters – Danfoss VLT5000 and VLT6000, with Magneflow MAG-6000

magnetic flowmeter component.

5. In-line flowmeter – Danfoss Magflo MAG-1100 inline magnetic flowmeter. Provides information

to VLT5000 via MAG-6000.

6. Tank water filtration – 1×standard 10µm particulate filter, to remove dirt, soil and rust, in

series with 1×25µm charcoal filter to remove stains and odours.

7. Controlling software – NI LabVIEW 8.0 code governing program, written by K. Atvars.

8. Computer hardware – NI PCI-1014 controller card for PC, connected to BNC-2110 co-axial

data-acquisition board, to send and recieve a 5Vpp signal to each inverter via co-axial cables.

9. Imageing camera – 1MPx (1024×1360) PCO.Imaging Pixelfly camera, controlled using linux

drivers of PCO CamWare software. Triggered by controlling LabVIEW code.

10. Camera lens – Nikon 28mm Nikkor, F2.8, attached to PCO camera using standard Nikon F-C

Mount.

11. Camera and illumination stands – Construction around tank and frame using 80-20 Industrial

scaffolding.
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Stereoscopic particle image
velocimetry (SPIV) on open tank
flows.

This section will briefly outline the method used to apply a two-camera SPIV technique on the open

flow swirling jet apparatus, and outline some of the results from this setup. Due to the difficulties in

accurately determining the flow conditions with the injection of particles, this work was not used for

quantitative analysis. These experiments were conducted in conjunction with Mr. Sammy Khalil

during a 6 month period of refining an experimental technique of Stereo PIV on this large tank

apparatus.

Methodology

The technique of particle image velocimetry (PIV) gives an image of two-dimensional flow in a

two dimensional plane (as also discussed in section 3.2.3, page 3.2.3.1). Stereoscopic PIV, (SPIV)

extends this to use information from two cameras imaging the same area of flow from different

perspectives to reconstruct three-dimensional velocity vectors in a two-dimension plane. To achieve

this, the two cameras are located at an angle θ either side of the normal to the visualised plane.

Simple geometry is then used to construct a 3D vector from the velocity vectors determined by each

camera. The sequence in performing SPIV was as follows:

1. Reference image — Intended to be like a grid pattern, such that every point on the image

from a face-on position can be mapped to where it is in the angled position. This means that

an image from each camera can be interpreted as if the image were taken head-on, but still
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retain the out-of-plane movements not possible with the head-on shot. After initially

attempting to use sand-blasted glass as the reference image, it was determined that its

three-dimensionality caused problems (because the actual image was dependent on angle). So

an image of sand-blasting sand, printed as a flat image, and sandwiched between glass sheets

was used. Placed directly under the centre of the nozzle outlet and in line with the intended

light sheet, this was photographed first from a head-on position as the reference, and then from

the location of both cameras at their 30-degree locations.

2. Imaging — Laser light from a Quantronix laser was focussed with lenses to produce a light

sheet of around 10mm thick. Flow was visualised using polymer particles of size ≈ 20µm, and

flooded into the pipes at a point upstream of the head-unit. Images were taken with 2×Pixelfly

cameras positioned in the 2-camera stereo positions.

3. Reconstructing Vectors — Using the reference images, the sequence of frames from each

camera were first rescaled to show the imaged region as rectangular (and not the distorted

polygon that appears at an offset angle), then reconstruct the velocity vectors to obtain the

out-of-plane vector. Complete details of the mathematical equations used can be found in

Raffel et al. (1998).

Qualitative Comparisons

The results of a basic attempt at Stereo PIV on the open tank did manage to yield some results

that qualitatively compared well to previous studies on open tank flows. Figure B.1 shows a

comparison between the velocity profiles obtained on the open tank flow, and the results of Billant

et al. (1998). The first row shows a comparison of axial velocity profiles in the illuminated plane at a

small axial distance downstream of the nozzle outlet. Figure B.1(a) shows the velocity profiles of

four swirl settings, showing the almost top-hat profile of the Reω = 0 case (red). This profile is

similar to the S = 0 curve in measured by Billant et al. (1998) in figure B.1(b). Also, as the rotation

rate is increased (increasing Reω), the profile develops a distinctive velocity reduction at the edges of

the jet profile, while increasing the peak velocity on the central axis. Shown also in (a) is the

velocity profile of the breakdown case, with the reduction in the central axis velocity as the flow

approaches the stagnation point.

The plots of the second row of figure B.1 show the azimuthal velocity profiles at the same

position. In (c) the increase in rotation rate can be seen as well as how the profile peak velocity
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Figure B.1: Velocity profiles of swirling jet flow in the plane of illumination, comparing
experimental SPIV results (column 1) with those of Billant et al. (1998)(column 2), for
axial velocity (row 1) and azimuthal velocity (row 2).
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increases, generally similar to the increase in velocity of the Billant et al. (1998) data in (d).

Although the SPIV results here seem able to at least qualitatively replicate the results of Billant

et al. (1998), the steady-state conditions of these results were affected by the visualisation particle

addition (as mentioned in section 3.1.5) rendering the data unreliable.
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Automation of Flow Visualisation

As discussed in chapter 3 (page 3.1.5), all data were initially analysed by hand. Due to the sheer

volume of data that was to be analysed, an attempt was made to automate the image processing

through software algorithms that could find the stagnation point location automatically, and as an

offshoot, give some indication of the uncertainty or standard deviation of the possible location. The

method of this algorithm, and how it was developed before being abandoned is detailed here.

The principle feature of all images was the change in image brightness across the shear-layer

region, in particular across the stagnation point location. The idea behind a software algorithm was

to identify within a central region of the image where the change from the relatively dark region of

the image (the fast moving jet) to the slow moving regions was, and hence, locate the stagnation

point. However, it was found that there was much required to optimize such a code. First, in

acquiring images, experimental considerations were:

• seeding density, for clarity of vortex breakdown region (although this was limited by settling

times; see section 3.1.5, page 3.1.5),

• Image contrast and brightness, adjusted by the acquisition software,

• Camera exposure time, adjusted with particle seeding, and illumination,

• number of total images to capture in a sequence, and how many to layer together before

averaging. Averaging more images tended to decrease overall image contrast (and temporal

resolution), but improve accuracy in stagnation point determination.

Secondly, the code dealt with:
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• Indentification of features in a plot of pixel brightness versus pixel location that would identify

the stagnation point region,

• Size of an interrogation window, that would pass over the image and identify the brightest and

darkest pixels in a region. Observing the variation in these values over the image would

improve stagnation point identification.

• Method of determining an uncertainty measurement.

Furthermore, the process was complicated by noise in the image, such as when larger

coagulations of particles would be released from the head unit and distort the identification of peak

brightness regions by the algorithm.

The final setup settled on for analysing images by software was to layer together 10 images, to

give an equivalent longer exposure, but without the risks of actually overexposing. These were then

adjust the contrast and brightness to bring out the streak-lines better, and averaged over the whole

image sequence. For each swirl setting of each Reynolds number, a range on the image was specified

to interrogate, so as to avoid mistaking the nozzle region as the point of highest contrast. The

method can be summarised as:

• For a given window interrogation size, along a given horizontal location in the image,

• Scroll in a region down the image (axial direction),

• Plot a measure of the difference between the highest intensity pixel in the window and the

lowest intensity pixel value,

• Where this difference is *significant* is the assumed location of the stagnation point.

• Repeat on either side of this horizontal location, to build up a series of possible location in a

wide area, and interpolate these values to determine the stagnation point.

This was repeated for the entire data set of around 250 images with each of the window sizes

chosen, with each determined stagnation point location plotted as a time history. The mean of all

windows sizes was determined for each data point of the sequence, and the mean of all these mean

values was taken as the stagnation point location for the entire data set. The standard deviation in

these mean values was taken as the error bars.
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The most time-consuming part of this exercise was to manually specify an interrogation range for

each image, as this could only be determined by looking at the images once layered and adjusted for

brightness and contrast. With the volume of data collected (around 250 images per setting at 1.4MB

each, and roughly 12 swirl settings in each direction, and 5 Reynolds numbers giving

250 × 1.4 × 12 × 4 × 5 is ≈ 84GB, and up to 1500 or so averaged images to trawl through for range

specifying), together with the amount of work required to optimize the image processing, the

automated analysis was found (unsurprisingly) to not yield any advantage in processing time.
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Closed Cylinder Bias
Calculations

Determination of BIAS errors as a result of particle movement in a finit-thickness light-sheet.

R∆l

r∆
Figure D.1: Worst case scenario of bias, where laser light-sheet is positioned to just
touch central axis, and flow is in solid-body rotation.

At the edge, a particle in solid body rotation will have a bias in its radial velocity component of:

∆r = R−
√

R2 − ∆l2. (D.1)

For a perfectly positioned laser sheet, angle subtended (2θ) by a fluid at r = R in solid body rotation

is

2θ = atan





∆l

2
√

R2 − ∆l2

4



. (D.2)

For the case of ∆l = 2.1mm, R = 32.5mm Defining
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(∆t(ms),Re) 2θ
(44.643, 2750) 0.12

(80, 1100) 0.08

Table D.1: Angle subtended by fluid in solid body rotation at maximum radius.

∆l
2

y

ψθ

R α β

a

Figure D.2: Motion out of the light sheet for a given ∆t value.

cosψ =
∆l

2R
, (D.3)

and

β = cos−1

(

∆l

2R

)

− α, (D.4)

where

α = ω∆t− 2θ. (D.5)

Also,

cosβ =

(

y + ∆l
2

R

)

, (D.6)

where y is the distance out of plane, and can now be given by:

y = R cos cos−1

(

∆l

2R

)

− α− ∆l

2
. (D.7)

For the worst-case of Re = 2750, this results in an out of plane motion of y = 1.7421mm.

It can also be shown that the radius along which a particle in solid body motion remains
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illuminated (a), is given by

a =
∆l

2
tan

(

cos−1

(

∆l

2R

)

− α

)

. (D.8)
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