Unsteady swirling flow in an enclosed cylinder with reflectional symmetry
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A numerical investigation of the muitiple stable solutions found in confined swirling flows is
presented. The flows consist of fluid in a completely filled cylinder driven by the constant corotation
of the two end walls. When reflectional symmetry at the cylinder half-plane is imposed, the flow
corresponds to that in a cylinder of half the height driven by the bottom end wall, with the top
surface being flat and stress-free. Comparisons with available experiments in this case are made and
the observed toroidal recirculation zones attached to the free surface are described in terms of
secondary motions induced by the bending of vortex lines. Calculations are also presented where the
reflectional symmetry is not imposed and the possibility of the flow breaking this symmetry is

discussed. © 1995 American Institute of Physics.

I. INTRODUCTION

The swirling flow driven in an enclosed cylinder by the
constant rotation of one of its end walls gives rise to a rich
array of dynamical behavior, including vortex breakdown
and the existence of multiple solutions.'™ Recently,** a se-
ries of experiments with a variation on the above setup have
been conducted. These®’ examined the swirling flow in a
cylinder driven by the constant rotation of its bottom end
wall while the top was a free surface rather than a rigid wall.
Hyun® has studied this flow numerically; however, the study
was restricted to the time-independent equations and covered
only a very small part of parameter space. It did not reveal
the rich dynamical behavior observed experimentally.*>
Daube’ presented some calculations that match many aspects
of the aforementioned experiments. However, the bifurcation
structure of the flow was not examined and the onset of time
dependence was assumed to be via a supercritical Hopf bi-
furcation, which the results here show not to be the case.

Spohn et al.’ remark that for the parameter range con-
sidered in their experiments, the Froude number was negli-
gibly small. The Froude number gives a relative measure of
the extent to which the free surface is deformed by inertial
forces such as the centrifugal force due to the swirling mo-
tion compared to the restoring gravitational force. Given that
the Froude number is essentially zero under the conditions
considered, the free surface can be treated as a flat stress-free
surface. This flow then corresponds to the situation where the
cylinder is twice as long and the flow is driven by the con-
stant corotation of both a top and bottom rigid end wall
rotating at the same rate in the same direction and the mid-
plane is a plane of reflectional symmetry (Z, symmetry). In
the corotating end walls situation, Z, symmetry is introduced
into the flow, in contrast with the original flows considered
by Escudier,® Spohn,4 and Spohn es al.,5 which had no sym-
metries in the meridional plane. Enforcing the Z, symmetry
allows one to follow solution branches beyond the point
where symmetry breaking would occur. The experiments of
Spohn et al.® essentially do this up to the point where free
surface deformations become important. Valentine and
Jahnke® have also studied this flow numerically for the coro-
tating end walls case, but have concentrated on the steady
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solutions that retain the Z, symmetry; for the most part, they
imposed this symmetry and hence did not explore the nature
of any symmetry-breaking bifurcations nor the nature of the
onset of time dependence.

In the concluding remarks of Spohn er al’ it is noted
that the presence of the free surface leads to very different
flow structures compared to when the top is a rigid end wall.
It will be demonstrated that the formation of the recirculation
zones, referred to as vortex breakdown bubbles, attached to
the free surface are a result of the flow responding to axial
gradients in the vortex lines, leading to the turning of me-
ridional vorticity into azimuthal vorticity and inducing the
reversed meridional circulations, just as in the case when the
top is a rigid end wall. The vortex breakdown phenomenon
in both the stationary top case and the case with the imposed
Z, symmetry is qualitatively the same, as is their bifurcation
structure. When the Z,-symmetry condition is relaxed, the
bifurcation structure of the corotating case may be richer due
to the breaking of Z, symmetry. We find that the Z, symme-
try is broken only in the time-dependent solutions, and then,
only on “coarse” grids. All steady solutions without Z, sym-
metry imposed were found to be Z, symmetric.

Il. GOVERNING EQUATIONS AND THEIR NUMERICAL
SOLUTION

The equations governing the flow are the axisymmetric
Navier—Stokes equations, together with the continuity equa-
tion and appropriate boundary and initial conditions. It is
convenient to write these using a cylindrical polar coordinate
system (r,d,z), with the origin at the center of the bottom
rotating end wall and the positive z axial direction being
toward the top. Since the flow is axisymmetric, there exists a
Stokes streamfunction ¢ and the velocity vector in cylindri-
cal polars is

1 1 )
u=( — v, S w) (1)
Subscripts denote partial differentiation with respect to the

subscript variable. This form of the velocity automatically
satisfies the continuity equation. It is also convenient to in-
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troduce a new variable, the angular momentum I'=rv. Here
I is proportional to the circulation. The vorticity field corre-
sponding to (1) is

1 1 9 H
(D:(f,?],{): __):Fz, _;V*’ﬁ, ';Fr 5

where

Vi:( )zz+( )rr“l( )r-
N r

The velocity and vorticity fields can be decomposed into
azimuthal (&) and meridional (m) fields, where

1
u”=(0, - r,o),
r
F— 1 V2 |
o= Oa_? *w’o ’

b7} - 1 0 l
ur= - ’l/z,’ H 7¢’r P
and
1 1
o'=|—-=-T,0,~-I.];
\ r r

$0 w?=Vxu™ and w"=Vxu®. Further, I" plays the role of
a streamfunction for the meridional vorticity field.'® In other
words, contours of I" in a meridional plane are cross sections
of vortex surfaces (vortex lines), just as contours of i are
cross sections of streamsurfaces (streamlines). These give the
local direction of the vorticity and velocity vectors in the
plane, respectively, and the azimuthal components of the
vectors give the degree to which the vectors are directed out
of the plane. If the flow were inviscid and steady, I" would be
a function of ¢ alone.

The axisymmetric Navier—Stokes equations, in terms of
Y, I', and 7, are

DI'=V2T/Re, 2)
M o2l 27 r
o2 (2) el o
where
Vig=—rny,
1 1
D=( )=~ )+~ (), @

2y 1,
v ( )zz+( )"+I‘( )r5

and Re=QR%/v. The length scale is the radius of the cylinder
R, the time scale is 1/0), €} is the constant angular speed of
the rotating end wall, » is the kinematic viscosity, and the
other governing nondimensional parameter is the cylinder
aspect ratio H/R; H being the cylinder height in the case of
a stationary rigid end wall, or, in the corotating end walls
case, it is the distance from an end wall to the midplane of
the cylinder.
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Equation (3) shows that inertial change in the azimuthal
vorticity, and hence a source of the overturning meridional
flow, is driven by axial gradients in the angular momentum.
The physical origin'! of the source term on the right-hand
side of (3) is the azimuthal component of VX (u®x ™). It
corresponds to the turning of meridional vorticity into the
azimuthal direction by the azimuthal velocity. Brown and
Lopez” found the necessary condition, in the limit of steady,
inviscid flow, such that the turning of the meridional vorticity
produces azimuthal vorticity of the correct sign so as to lo-
cally induce a reversal in the direction of the meridional
flow. The condition for this How reversal to be possible is
that the ratio of the tangents of the helix angles of the veloc-
ity and vorticity vectors be greater than unity on streamsur-
faces upstream of the reversal in the meridional flow.

A. Computational technique

Details of the computational technique, together with ac-
curacy and resolution tests, are given in Lopez! for the sta-
tionary top end wall case. In summary, the governing equa-
tions are discretized on a uniform finite-difference grid using
second-order central differences to approximate all spatial
derivatives except those in the advection terms, which are
approximated using the second-order conservative scheme of
Arakawa.12 No artificial viscosity is used; instead, a suffi-
ciently fine grid is used to ensure proper resolution of spatial
scales and grid-independent solutions. For the steady solu-
tion branch with Re up to approximately 3000 and H/R=1.5,
this is achieved on a uniform grid consisting of nr=61 nodes
in the radial and nz=91 nodes in the axial directions. The
steady computations of Valentine and Jahnke® were per-
formed on uniform grids using second-order central differ-
ences for Re up to 3000, and they report that there were no
significant differences between the results using grid sizes of
1/60 and 1/120. Further grid refinement tests and the use of a
stretched grid are detailed in the following section for higher
Re flows than those considered in Lopez,' including time-
dependent solutions, and for the corotating end walls case.

Time integration uses the explicit alternating time-step
scheme of Miller and Pearce.® For 1000<Re<4000, stabil-
ity of the scheme is primarily governed by the Courant-
Friedrichs—Levy condition, and this is amply satisfied by a
time step 6¢=0.05 on the 61X91 grid. For Re<1000, the
diffusion requirement,14 '

S5t< 6r® Re/8,

dominates the stability of the scheme, where r is the spatial
resolution (all results presented have 8r= &z).

A number of different types of initial conditions have
been employed in this study. The first consists of an impul-
sive start from rest, where initially all cylinder walls and the
fluid are at rest. At £==0, one end wall or both end walls
(depending on the particular case being studied) are set to
rotate at a constant angular speed ). A second type of initial
condition consists of taking a steady solution at some Re as
the initial condition for a calculation with a different value of
Re. This second initiation was used to continue the steady
branch to large Re, using small increments in Re so as not to
start the calculations outside the basin of attraction of the
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steady solution branch. A steady state is determined to have
been reached when the relative change between ¢, 7, and I'
at time step k and at time step k+1, at all grid points, is less
than 1076, Another initial condition, albeit nonphysical, con-
sists of a fully developed flow in the bottom half (the flow
with Z, symmetry imposed at the same or nearby parameter
values) and setting everything to zero in the top half of the
cylinder. This initial condition is used to determine the ro-
bustness of the Z, symmetry.

The boundary conditions on the free surface are 7=0,
I,=0, and =0; on the axis of symmetry, =0, I'=0, and
§=0; on stationary rigid walls, »=—4¢,,/r, I'=0, and ¢=0;
and on rotating rigid end walls, 7=~ ,,/r, I'=r?, and ¢=0.
The subscript n denotes differentiation normal to the
wall. One-sided differences from a Taylor-series expansion
to. second-order centered about one grid point in from
the boundary are used to discretize derivative boundary
conditions. Use 'is also made of the fact that normal
derivatives of ¢ on rigid walls are zero. The discrete version
of the vorticity boundary conditions are #(1,j)=0;
inrf)=—20nr—1)/6% (i, 1)=—24(,2)/1r(i) &"];
(i,nz) =—2¢(i,nz—1)/[r(i)6z*] (stationary rigid top);
m(i,nz) =0 (corotating end walls with imposed Z, symme-
try); and 7(i,2nz—1)=—2¢(i,2nz—2)/[r(i) 6z%] (coro-
tating end walls without imposed Z, symmetry).

B. Grid resolution study

Of great concern to this study is the question of suffi-
cient grid resolution. This is particularly important, as the
discretized set of governing equations constitute a finite-
dimensional dynamical system whose bifurcation structure
(singular points of the dynamical system) can differ signifi-
cantly from those of the continuous equations (the infinite-
dimensional dynamical system). There are numerous ex-
amples in the literature demonstrating this. Particular
examples are that of solutal convection'® and flow past a
sphere in a pipe,'® where the existence of spurious Hopf
bifurcations as a result of insufficient grid resolution have
been revealed.

In regions of parameter space where only a unique
steady solution exists in the continuous system, beyond a
certain level of resolution in the discrete system, the corre-
sponding solution (termed the “low” resolution solution)
does not change qualitatively as the level of grid resolution is
increased, and the solution changes quantitatively in an as-
ymptotic manner, converging to the solution of the continu-
ous system. There are formal theoretical results for the
Galerkin discretization of the Navier—Stokes equations,
which suggest generalizations to other discretizations. Con-
stantin, Foias, and Temam!” have shown that if the computed
approximations of the time-dependent equations ‘“‘seem to
converge” to some limit as r—oo, then the same is true for
the exact problem and the two limits are related.

However, in regions of parameter space where multiple
solutions exist, formal results concerning convergence of the
discrete system appear to be lacking. This situation is far
more complicated. In the previous situation, the phase space
of the system had only one attractor (the unique steady so-
lution). Now there is more than one attractor and hence one
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needs to consider not only whether the attractors are con-
verging to those of the exact problem, but also if their basins
of attraction are converging. Even if the level of resolution is
such that the attractors of the discrete system are asymptoti-
cally similar to those of the exact problem, their basins of
attraction may not have converged at that level of resolution,
and hence conclusions about the stability of the attractors of
the continuous system based on the stability of the attractors
of the discrete system may not be correct. Also, for similar
initial conditions, evolution on systems of different resolu-
tion may not end up on the “same” attractor, because the
structure of the basins of attraction may be such that the
initial condition at one level of resolution is in the basin of
attraction of a different attractor to that at another level of
resolution. Determining the structure of the basin of attrac-
tion for the Navier—Stokes equations is a nontrivial exercise.
Consider how complicated it can be for relatively simple
equations (the Julia set and the Mandelbrot set).

Here, we determine the level of grid resolution required,
within a region of parameter space, for the discretized equa-
tions to give consistent (i.e., not changing with further grid
resolution) qualitative behavior (the solutions may continue
to change quantitatively in an asymptotic manner). We do
this in a number of ways. First, in a region of parameter
space where only a single steady state exists, we determine
the level of grid resolution required for the solution to be
quantitatively in the asymptotic region. We monitor the
maximum and minimum values of ¢ and 7 on the grid
points, both on a uniform grid and a stretched grid. Next,
using a time-dependent code, we take the steady solutions
with different levels of resolution and use continuation to
follow the steady branch to higher Re. By increasing the grid
resolution and reducing the increments in the continuation
parameter (typically Re), the level of grid resolution for con-
sistent qualitative behavior is determined.

The stretched grid is given by

r=x—a sin(217:x)
and
z=[y—>b sin(2wy)]H/R,

where x=i/(nr—1), for i=0—(nr—1); y=j/(nz—1), for
j=0—(nz—1); and in all the results presented here, the
stretching factors a=5=10.1 have been used. This stretching
places the grid points more densely near the boundaries, the
axis, and the midplane when Z, symmetry is imposed. When
employing the stretched grid, second-order central differ-
ences are used to discretize the equations spatially. We begin
by determining a suitable level of resolution at a large Re
=2600, where the only solution is steady (see Sec. IV for
this determination). Table I gives the extreme values of ¢ and
7 for the case Re=2600, H/R=1.5, both on the uniform and
the stretched grids of various sizes, together with the J7 used.
The dt’s are approximately the smallest on a given grid for
which the system was stable. This information, together with
the visual information provided by the plots of the solutions
in Fig. 1, indicates that the 61X91 uniform grid solution is in
the asymptotic range of the continuous solution. Given that
&t on a uniform grid with about the same number of grid
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TABLE I. Minimum and maximum values of ¢ and # on the grid points of the various grids, as indicated, for

Re=2600 and H/R=1.5 at steady state.

Grid St min(y) max () min(7) max(7)
31X46 uniform - 1.0X107! —7.741x1073 ; 2.860x107* ~6.522 11.08
61X91 uniform - 5.0%x1072 -7.709% 1073 3.777X1074 —4.496 17.58
121X 181 uniform 2.5%1072 —7.608x1073 3.747X1074 —4.222 20.62
241%361 uniform 7.5%x1073 ~7.555%107° 3.714X107* —4.217 21.42
51X76 stretched 1.0X1072 —7.539x1073 4.234x107* —4.196 20.94
101X 151 stretched 5.0x1073 ~7.537x1073 3.832x107¢ —4.213 21.49
151X226 stretched 2.5x1073 ~7.532%10™ 3.756x10™* —-4.215 21.60

points as on a stretched: grid is larger, the 61X91 uniform
grid is preferred because it is sufficiently accurate, essen-
tially grid independent, and efficient, at least for the steady
solution branch up to Re~3X10°.

Testing the grid independence of the solutions in regions
of parameter space where multiple solutions exist is more
complicated. For Re>2600 (and H/R=1.5), we have found
that using grids with less resolution than the uniform 61X91
grid, the steady solution branch loses stability at Re~2650
(the exact value of Re depends on the grid resolution). How-
ever, for grids with at least the resolution of the uniform
6191 grid, the steady solution branch remains stable up to
Re=3200. These results are detailed in Sec. III. We have
confirmed this by recalculating a part of the steady branch on
the 101X151 stretched grid using &t=0.005 (the uniform
61X91 grid used §t=0.05). The steady solutions were con-
tinued from the unique steady solution at Re=2600. Using
SRe=50, the steady Re=2650 was reached after approxi-

31x47 uniform - * 61x91 unifor;
= T : AR (7= SR

mately 1000 time units. Figure 2 gives the time series of
lnr=>51, nz=176) for the continuation runs. The transient
oscillations in the Re=2650 calculation, initiated with the
Re=2600 steady solution, begin to grow, but are soon highly
damped as the flow adjusts to the sudden increase in Re.
Physically, this corresponds to an impulsive increase of ~2%
in the rotation rate of the disk, {). If a larger 6 Re is used, the
initial transients are not damped and the tlow evolves to the
periodic solution branch. If the same &Re is used, starting
from the Re=2650 steady solution, the flow evolves to the
periodic branch. However, a smaller §Re=25 results in a
steady Re=2675 solution, and from that solution to the Re
=2700 solution. To continue beyond Re=2700, a §Re=10
had to be employed. All the transients, up to Re=2790, using
this SRe, are damped; as illustrated in Fig. 2. Using §Re
=10 at Re=2790 to continue the branch to Re=2800 was

_ not successful and the flow evolved to the periodic branch. A

detail of the corresponding time series is presented in Fig. 3.

)

=

E |

—

FIG. 1. Steady Z,-symmetric flows {only the bottom half of the cylinder is shown) for Re=2600 and H/R=1.5 calculated on various grids: (a) 31X47,
uniform, &t=0.1; (b) 61X91, uniform. 8:=0.05; (c) 121X 181, uniform, 8t=0.025; (d) 241X361, uniform, 5:=0.0075; (e) 51X76, stretched, 5=0.01; (f)
101X 151, stretched, 5t=0.005; (g) 151226, stretched, &t=0.0025. The contour levels for (i) ¢, (ii) #, and (iii) I are nonuniformly spaced, with 20 positive
(solid lines) and 20 negative (dashed lines), determined by the ¢ level(i) =Max(variable) X (i/20)* and ¢ level(i) =Min(variable) X (i/20)%, respectively, with
i=1—20. For all plots the following have been used: Max(¢)=10"%, Min(y)=—10"% Max(#)=20, Miq(ﬂ)=~6, Max(T')=1, and Min(I")=0.
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FIG. 2. Time series of 10° (nr=>51, nz=76) for the continuation run on the
101X 151 stretched grid using 8=0.005, started from the steady Re=2600
solution. The values of Re following each impulsive, incremental increase
are noted on the plot.

Continuing this calculation for a further 2000 time units re-
sults in the periodic solution detailed in Fig. 4 (discussed in
Sec. 1V). A calculation such as this is suggestive of a super-
critical Hopf bifurcation. However, if instead of using 5Re
={0 we use §Re=35 from the steady Re=2790 solution, the
steady Re=2800 solution is reached, as illustrated in Fig. 2.
There is no supercritical Hopf bifurcation here, merely the
existence of two stable solution branches, one of them steady
and the other time periodic, and which one is realized de-
pends on the initial conditions. Figure 5 gives the steady
solutions at Re=2790, 2795, and 2800. Note that the three
solutions are virtually indistinguishable, yet the Re=2790
solution is to “far away” (i.e., outside the basin of attraction)
from the Re=2800 solution, yet the Re=2795 solution is
not, illustrating how sensitive the stable solutions on the
steady branch are. Compare the solution for Re=2800 in Fig.
5, on the stretched 101X 151 grid with that in Fig. 6(j), on the
uniform 61X91 grid; they are in very close agreement. The
qualitative behavior of the steady branch is the same on both
the 61X91 uniform grid and the higher resolution 101X 151
stretched grid.

The grid resolution study provides confidence in the ac-
curacy of the determined stability of the steady branch, and
also that the time-dependent branch is disjoint from the
steady branch, or at least it does not originate via a super-
critical Hopf bifurcation from it (see Sec. IV).

1.26 T
-1.30 b
T A
me 2750 N'
-1.38 ¢
_'1'42 1 i A, — - 1
13500 14000 14500 time 15000 15500 16000

FIG. 3. Details of the time series of 10* (nr=51, nz=76) for the continu-
ation run on the 101X 151 stretched grid using 8r=0.005, started from the
steady Re=2780 solution, using § Re=10, leading to a periodic solution for
Re=2800.
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Ill. PRODUCTION OF SECONDARY FLOW BY
VORTEX LINE BENDING

The flows under consideration are a part of a larger class
of confined flows driven by angular momentum gradients.
The primary motion is due to externally imposed rotation
imparting a vertical (i.e., parallel to the rotation axis) com-
ponent of vorticity to the flow. The particular details of the
enclosing geometry imposes kinematic constraints on the
flow resulting in the bending of vortex lines. The bending of
vortex lines produces secondary motions, primarily associ-
ated with the azimuthal component of vorticity. In a large
class of these flows, the secondary motions can be compa-
rable to the primary motion, leading to significant nonlinear
interactions. One such interaction manifests itself as recircu-
lation bubbles in the interior of the flow, and is often referred
to as vortex breakdown. The particular details of the topol-
ogy of these recirculation zones depends on the details of the
geometry of the container and the strength of the driving
force, yet they all result from the bending of vortex lines. A
great deal is made of the differing details of the streamsur-
faces of these recirculation zones, with suggestions that these
differences may reflect different processes at work. However,
the topology of the streamsurfaces is not a particularly useful
diagnostic for uncovering the dynamical processes at play.
More suited is a study of the vortex lines (or vortex surfaces)
and how the geometry of the container bends these, produc-
ing the rich array of secondary motions.

A. Vortex line structure of the flows

For the confined flow driven by the bottom rotating end
wall with a flat stress-free top surface, the primary flow is
due to the rotating end wall. The vortex lines all emanate
from this end wall, as the fluid in contact must move with it.
The sidewall of the cylinder, being stationary, is a vortex
surface corresponding to I'=0 and the axis of symmetry,
r=0, is also a vortex line corresponding to I'=0. The vortex
lines emanating from the rotating end wall correspond to a
['(r,0)=r? distribution. Hence, the corner where the rotat-
ing end wall and the stationary sidewall meet is singular,
with I’ varying from 1 on the end wall to 0 on the sidewail.
Vortex lines may terminate at this corner. For the case where
the top is rigid and stationary, ail the vortex lines emanating
from the rotating end wall must terminate at this corner.
However, when the top is a flat stress-free surface, or equiva-
lently, at the midplane when Z, symmetry is imposed in the
corotating end walls case, the vortex lines have the option of
meeting the surface (midplane) orthogonally. This option is
responsible for the secondary motions being different to
those of the stationary rigid top case. Also, the vortex lines
meeting the midplane divide the flow into an inner and an
outer region. The inner region is r<rp(z), where rp(z) is
the location of the vortex line emanating from the rotating
end walls (but not from the corners) with largest radius,
which meets the midplane. The two regions are particularly
distinct at larger Re and their interface supports waves (see
Sec. IV).

As in the case of a rigid top, the bending of the vortex
lines in the limit of creeping flow is due solely to the kine-
matic constraints of the container. The vortex line bending
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FIG. 4. Eleven equally spaced phases over one period (7~28.2) of the periodic Z,-symmetric solution for Re=2800 and H/R=1.5, and its time average,
calculated on the 101X151 stretched grid with 8¢=0.005. The contours are as determined in Fig. 1.

leads to axial gradients in I" and via the term (I’ Y ;'4)z in Eq.
(3), azimuthal vorticity is produced, inducing the secondary
meridional flow. This secondary meridional flow is respon-
sible for the establishment of the Ekman layer on the rotating
end wall and at larger Re, advects high I' fluid from the
Ekman layer into the interior. In so doing, the secondary
meridional flow sweeps the vortex lines near the Ekman
layer radially outward. This nonlinear interaction between
the primary flow (vertical vorticity) and the secondary flow
(azimuthal vorticity) causes further bending of the vortex
lines and an enhancement of the meridional flow transporting
further fluid with high [" into the interior. This process near
the rotating end wall is essentially independent of the form
of the top, at least qualitatively, for small Re. Hyun® also
made this observation. However, how the high I' fluid be-

haves near the top does depend on whether it is a rigid or a
flat stress-free surface, as conditions there on I are different.
The conditions on # are also different, but =0 on the top
regardless of whether it is stress-free or rigid. The condition
=0 at the midplane does not necessarily apply in the coro-
tating end wall case if Z, symmetry is not imposed.

B. Flow development for increasing Re

At low Re (=1), the flow is essentially at the limit of
Stokes (creeping) flow. At this limit, the flow has all the
symmetries of the container, i.e., azimuthal symmetry, and in
the corotating end walls case, both the flow and the container
have Z, symmetry. The results of Serrin'® ensure that in the
limit of low Re, the tlow is unique and steady. The primary

) |

FIG. 5. Steady Z,-symmetric solutions for H/R=1.5 and (a) Re=2790, {b) Re=2795, and (¢} Re=2800; calculated on the 101X151 stretched grid with

8t=0.005. The contouss are as determined in Fig. 1.
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(a) Re=1

(b) Re=10

(c) Re=100

=

FIG. 6. Steady Z,-symumetric solutions for Re as indicated and H/R=1.5, calculated on the 61X91 uniform grid with 82=0.05. The contours are as

determined in Fig. 1.

flow consists of meridional vortex lines, which in the ab-
sence of rigid stationary end walls and sidewall, would re-
main parallel to the rotation axis. However, as discussed in
Sec. IIT A, the kinematic constraints of the container lead to
the bending of the vortex lines and the establishment of a
secondary meridional circulation. Figure 6(a) is a plot of the
steady flow for Re=1 and H/R=1.5 on the bottom half of
the cylinder, the top boundary is the Z, symmetry plane. The
discussion of the flow development as Re varies is restricted
to the case of H/R=1.5 for the sake of brevity.

0 1000

FIG. 7. Contours of v/r (determined from the steady Z,-symmetric solu-
tions calculated on a 61 X91 uniform grid with §¢=0.05) at the Z,-symmetry
plane versus Re. The contours are uniformly spaced and the increment be-
tween them is 1/40. At r=1, v/r=0; v/r is a maximum at r=0 and Re
=~650. From that maximum, there extends a maximum ridge line toward
larger Re with r~0.25. There is also a local minimum in v/r at r=0 and
Re~1450.
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The majority of the vortex lines emanating from the ro-
tating end walls, in the Stokes flow limit, are bent and ter-
minate at the corner (r=1, z=0). Only the vortex lines cor-
responding to I'€1 meet the symmetry plane. This bending
results in a negative (positive) axial gradient in I', turning the
meridional vorticity into the negative (positive) azimuthal
direction in the bottom (top) half of the cylinder, and hence
induces meridional circulations. These secondary circula-
tions consist of radial outflow at the rotating end walls, flow
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FIG. 8. State diagram using 7, as the state variable, for H/R=1.5, This
diagram was primarily determined from the 61X91 uniform grid solutions
and “spot-checked” using the 101X151 stretched grid solutions.
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FIG. 9. Eleven equally spaced phases over one period (7~28.5) of the periodic Z;~symmetric solution for Re=2640 and H/R=1.5, and its time average
calculated on the 61X91 uniform grid with &z=0.05. The contours are as determined in Fig. 1.

toward the symmetry plane along the stationary sidewall,
radial inflow at the symmetry plane, and a return to the ro-
tating end walls along the axis. In the Stokes flow limit, the
magnitude of these secondary circulations scales with Re.
Figure 6(a) shows the flow at Re=10 in the bottom half of
the cylinder. Here, I" remains essentially unchanged and ¢
and 7 have been scaled by Re, in comparison with the Re=1
case. By Re=100, the secondary circulation is strong enough
to advect the I" vortex lines with it. This is quite evident in
Fig. 6(c) just above the Ekman layer on the rotating end wall.
This local advection of the I" vortex lines by the secondary
circulation is strong enough by Re=500 to locally produce
positive (negative) axial gradients in I', turning meridional
vorticity into the positive (negative) azimuthal direction [Fig.
6(d)]. At Re=500, this locally produced positive (negative)
7 via the nonlinear interaction between the primary (I') and
secondary () flow is quite weak. However, by Re=700
[Fig. 6(e)], the positive (negative) 7 is large enough to in-
duce a local undulation in the streamlines. In accord with the
experimental observations of Spohn et al.’> by Re=800, the
positive (negative) 7 is large enough that the meridional flow
on the axis stagnates and a recirculation zone results [Fig.
6(H)].

The faster meridional flow bends the I' vortex lines in
the Ekman layer region as more angular momentum is car-
ried with the flow. This enhances the negative (positive) axial
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gradients in I, resulting in more negative (positive) #, and
reenforces the secondary meridional circulation.

The faster meridional flow also carries angular momen-
tum acquired in the Ekman layer farther up (down) the side-
wall with increasing Re, and results in vortex lines corre-
sponding to increasingly larger values of I, meeting the

29.0 - T T T —r Y
[

= 61x91 uniform grid

0101x151 stretched grid
28.5 n o= J

n
@ =
" -
T28.0 o L) -
o]
275 F (oI
27.0 L L, 1 1 L 1
2500 2700 2900 Re 3100 3300 3500

FIG. 10. Variation of the period of oscillation, T, with Re on the T~28
periodic solution branch.
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FIG. 11. Eleven equally spaced phases over one period (T=27.5) of the periodic Z,-symmetric solution for Re=3500 and H/R=1.5, and its time average,
calculated on the 101X 151 stretched grid with 8r=0.005. The contours are as determined in Fig. 1.

symmetry plane orthogonally. This in effect produces a radial
jet of high I' fluid being injected into the interior at the
symmetry plane.

Spohn et al.,’ based on inviscid arguments, suggest that
the radial jet of high I' fluid injects angular momentum in
toward small radii only up to the point where the angular
velocity of the fluid, v/r, increases to match the angular
velocity of the rotating disk, {2, which is equal to 1 in non-
dimensional units. At about this point (it will vary slightly
due to viscous effects) the meridional flow no longer contin-
ues to flow radially inward, but instead stagnates on the free
surface and turns into the axial direction, thereby forming the
observed toroidal recirculation zone attached to the free sur-
face. For low Re flow, the viscous effects near the free sur-
face (even though there is no rigid wall, there are still axial
gradients in the velocity contributing to viscous stresses near
the free surface) are sufficient for the flow to dissipate
enough angular momentum as it flows radially inward so that
v/r on the free surface remains sufficiently less than | and
no separation is required. This experimentally observed be-
havior is also observed in our calculations of the corotating
case with Z, symmetry imposed, where the symmetry plane
corresponds to the free surface in the experiments.

Figure 7 shows the development of v/r on the symmetry
plane for increasing Re along the steady solution branch. At
low Re, v/r is negligibly small on the symmetry plane. With
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increasing Re, v/r increases monotonically from zero with
decreasing 7. At Re~680, v/r has a local maximum of
==().82 at r=0. It is at about this Re that 7 near the symmetry
plane changes sign [cf. Figs. 6(d) and 6(e)]. At this Re, the
meridional flow has not stagnated on the symmetry plane,
but as Re increases, the radius at which v/r attains its maxi-
mum value of ~0.8 moves farther out from the axis and the
region of positive (negative) 7 intensifies. By Re=800 [Fig.
6(f)], the locally increased |7| is large enough to induce a
reversed meridional flow halting the inward meridional flow
provided by the Ekman pumping on the rotating end walls.
This results in stagnation on the symmetry plane and the
formation of a recirculation zone, termed a vortex break-
down by Spohn ez al’® Certainly, the reversed meridional
flow here is induced by the azimuthal vorticity 7 resuiting
from the bending of the vortex lines, just as are the recircu-
lation zones on the axis in both the corotating end walls case
and the stationary rigid top case. The radius at which v/7 is
a maximum corresponds more closely with the radius at
which % changes sign near the symmetry plane than with the
radius at which the meridional flow stagnates. For Re>700,
v/r decreases toward r=0, and there is a local minimum in
v/r at r=0 for Re~1450. From Fig. 6(g), corresponding to
Re=1500, 7 changes sign again very near r=0. For Re
>1500, v/r has a maximum at 7=~0.25 and a local minimum
at r~0.15. The maximum corresponds to the change in sign
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FIG. 12. Evolution for Re=3500, H/R=1.5, calculated on the 101X301 stretched grid, with 5¢=0.005, and Z, symmetry not imposed. The evolution was
started at £=0 from the asymmetric inifial condition described in Sec. IT A; times as indicated. The contours are as determined in Fig. 1; except that here

Max{¢)=10"? and Min(z)=—20.

of 77 as r decreases and the minimum corresponds to a sec-
ond change in the sign of 7 as r decreases further. For in-
creasing Re, the inner region of negative (positive) # induces
radial inflow. By Re=2000 [Fig. 6(h)], this induced radial
inflow is large enough to reattach the separated flow onto the
symmetry plane, forming the toroidal recirculation zone. Fig-
are 6(h) is in very close agreement with the flow visualiza-
tion of Spohn et al.’ in their Fig. 5(a), corresponding to Re
=2095, H/R=1.5.

Figure 8 is a state (bifurcation) diagram for the corotat-
ing end walls flow. The bifurcation parameter is Re (a fixed
H=1.5 is employed) and the quantitative measure of the
flow state is 7.y, the maximum positive value of 7 in the
interior of the bottom haif of the cylinder. For periodic flows
(Sec. 1IV), s« 1S the maximum positive value of 7 of the
time-averaged flow in the interior of the bottom half of the
cylinder. The interior is defined as being the region in from
the boundaries delineated by the first zero contour of 7 (note
that =0 on and near the rigid boundaries in the bottom half
and =0 in the top half of the cylinder; see Fig. 6). Any
quantitative measure of the flow state can be used, and 7, ,
a local measure, is not necessarily optimal. However, the
qualitative picture of the state diagram is unaffected by the
choice and 7, is convenient and illustrates some of the
flow physics.
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IV. ONSET OF UNSTEADY Z,-SYMMETRIC FLOW

The steady solution branch (Fig. 8) described in the pre-
ceding section remains stable to time-dependent and
Z,-symmetry breaking disturbances (at least for Re<3200).
As in the case of the rigid stationary top, a disjoint periodic
branch has been found. For H/R=1.5, it originates as a turn-
ing point bifurcation at Re=~2640 (at Re=2630, only a
steady solution is found to exist; whereas, at Re=2640, both
a periodic and a steady solution exist). In order for the time-
periodic branch to originate as a subcritical Hopf bifurcation
from the steady branch, the steady branch would have to be
unstable beyond the Re corresponding to the subcritical Hopf
bifurcation, but we find the steady solution to be stable at
least for Re=3200. The basin of attraction of the steady
branch becomes increasingly small for increasing Re and a
continuation in Re for Re~3200 requires increments, & Re,
of the order of 0.01% in order to guarantee that the initial
conditions remain within the basin of attraction of the steady
solution. For Re=2650, increments of the order of 2% are
small enough. Some further discussion of the dependence of
the basin of attraction on the grid resolution is provided in
Sec. I B. Such a small basin of attraction gives the impres-
sion that the onset of time dependence is via a supercritical
Hopf bifurcation (Daube’ assumes this to be the case, but
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does not explore other possibilities). This impression is
caused if the initial conditions are placed outside the basin of
attraction of the steady branch, or if an imposed disturbance
(physically, this could be due to a slight wobble in the rotat-
ing end walls, a nonconstant rotation rate £}, or temperature
fluctuations) perturbs the flow out of the basin. The resulting
evolution to a time-periodic state only shows that the steady
solution is unstable to finite-amplitude disturbances, but does
not allow conclusions concerning its /inear stability. Valen-
tine and Jahnke® conclude that their steady solution at Re
=3000, H/R=1.5, is unstable to finite-amplitude distur-
bances, the disturbances being the differences between the
central difference used to discretize the steady equations to
get their steady solution and the upwind differencing used in
their time-dependent code. They did not attempt to do time-
dependent calculations with more carefully selected initial
conditions. Calculations with carefully selected initial condi-
tions placed within the basin of attraction of the steady so-
lution branch, such as those reported here, cleatly show the
steady solutions to be stable and to coexist with the periodic
solutions. Hence, a supercritical Hopf bifurcation from the
steady branch cannot be the origin of the periodic solution
branch. Otherwise, the steady branch would have to be lin-
early unstable beyond the supercritical Hopf bifurcation
point, and a time-dependent calculation using the steady so-
lution as an initial condition, together with a perturbation of

any size (even as small as numerical roundoft), would evolve
away from the steady solution. As detailed in Sec. I B, on a
sufficiently refined grid, this does not happen.

The attractiveness (i.e., larger, in some sense, basin of
atfraction) of the periodic solution over the steady solution
can be understood as follows. For axisymmetric steady flows
in the limit as Re—oo, the streamlines () and the vortex
lines (I') must coincide. However, at the symmetry plane (or
flat stress-free surface) they must be orthogonal. At low Re,
viscosity acts to adjust the flow, but as Re increases, the flow
must either lose its axial symmetry or become unsteady in
order that the streamlines and vortex lines need not coincide.
The experiments of Spohn ef al.’ suggest that the flow first
becomes unsteady rather than nonaxisymmetric as Re is in-
creased.

In the periodic flow, the radial jet of high I flow at the
midplane overshoots the mark at which v/r=1, and recoils,
overcorrecting, then overshoots again and so on. At Re
=2640 (see Fig. 9), this results in a weak periodic wobbling,
in the radial direction, of the toroidal recirculation bubble.
The oscillation is highly damped in the axial direction. As Re
is increased, this behavior is further enhanced. By Re=2800,
each wobble sends a pulse in the axial direction along the
interface between the inner flow (i.e., the region near the axis
where the vortex lines originating on the end walls meet the
symmetry plane orthogonally) and the outer flow. This pulse

t=2025 + 0.2T

FIG. 13. Eleven equally spaced phases over one period (T=27.5) of the flow depicted in Fig. 12, times as indicated, and its time average. The contours are

as determined in Fig. 12.
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t—2025 + 0.6T

just reaches the rotating end wall and is reflected back along
the axis. At this Re, the reflected pulse is highly damped by
viscous effects, and is just discernible in Fig. 4.

Unlike the rigid top end wall case, where the frequency

of oscillation for a particular aspect ratio is independent of

Re over a large range,>’ the frequency of the flat stress-free
surface case does show a slight variation with Re. This was
also noted by Daube’ in his calculations. Figure 10 shows the

variation of the period of oscillation, 7' (nondimensionalized:

by ), with Re for the Z,-symmetric flow with H/R=1.5
impulsively started from rest. The periodic flow is first ob-

t=2025 + 0.7T

. 1=2025 + 0.8T

. (Continued.)

served at Re=2640 with a period T~28.5, and, at Re=2800,
the period has decreased to T~28.2. Figure 10 is constructed
using both the 61X91 uniform grid and the 101151
stretched grid. The period at Re=2800 was determined on
both grids and agreed to three figures. At Re=3030, there is
period doubling to a flow with T=56.0, when calculated on
the 61X91 uniform grid. At Re=3050, also on the 61X91
uniform grid, the flow evolves from rest to the period T~28
flow and eventually changes to one with T=~18.75. As Re is
further increased, using the same grid, the period increases in
contrast to the trend at lower Re, and at Re=3350 a further
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FIG. 14. Time series of 10° (nr=51, nz=150) for Re=3200, H/R=1.5 calculated on the 101X301 streiched grid using &r=0.005, started at £=3750 from

the asymmetric initial condition described in Sec. IT A.
1
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period doubling is observed. However, if these higher Re
cases are computed on the 101X151 stretched grid, the
aforementioned higher-frequency modes and the period dou-
blings are not observed. Calculations started from rest on the
stretched grid at Re=2800, 3200, and 3500 all evolved to the
single-frequency periodic flow on the T'=28 branch, the only
time-dependent branch found with the 101X151 stretched
grid (see Figs. 8 and 10) when Z, symmetry is imposed and
the calculations are impulsively started from rest. This
strongly suggests that the higher-frequency modes and the
period doublings are numerical artifacts, due to insufficient
resolution. Figure 11 shows the Re=3500 flow over one pe-
riod (T~27.5). The overshooting of the high I' radial jet at
the symmetry plane causing a pulse to travel along the inter-
face between the inner and outer regions to the rotating end
walls, and then its reflection along the axis, as described
earlier for Re=2800 (Fig. 4) is more enhanced at this higher
Re.

V. Z,-SYMMETRY BREAKING

So far, only the Z,-symmetric flow has been considered.
The experimental flow™ with a free surface is the physical
analog of this flow, up to the point where free surface defor-
mations are no longer negligible. In this section, we consider
the possible breaking of the Z, symmetry (note that this is

t=10,025.00

1=10,030.67

t=10,026.89

not related to free surface deformations). Azimuthal symme-
try continues to be imposed, and the breaking of this sym-
metry remains an open question.

Impulsively started calculations from an initial state of
rest without imposed Z, symmetry reach the same steady
state as when the symmetry is imposed for Re=<2600 on both
the 61X91 uniform and the 101X 151 stretched grids (when
Z, symmetry is not imposed, the grid has nrX[2(nz—1)
+1] grid points, i.e., 61X 181 and 101301 on the uniform
and stretched grids, respectively). For 2640<Re=2800, the
same Z,-symmetric periodic flow was achieved as when
symmetry was imposed, using either grid. These
Z,-symmetric solutions are reached even when very nonsym-
metric initial conditions are used (the third initial condition
described in Sec. IT A). For Re=<2600, these initial condi-
tions evolve to the steady Z,-symmetric solution branch. For
2640=Re=2800, these initial conditions evolve to the
Z,-symmetric periodic branch. However, on the 61X91 uni-
form grid, for 2850=<Re=3000, a Z,-symmetric periodic
flow was reached, but its period (T=18.6) was different to
that of the flow when Z, symmetry was explicitly imposed
(I'=~28.2). The initial condition consisted of the T~28.2 flow
in the lower half and zero flow in the top half. It is curious
that 18.6X1.5=28.2, remembering that here H/R=1.5.

Here Z,-symmetry breaking on the 61X91 uniform grid

t=]0,028.78

FIG. 15. Eleven equally spaced solutions, at times as indicated, and their average over that time period, of the modulated periodic flow with Z, symmetry not
imposed for Re=3200, H/R=1.5 calculated on the 101X301 stretched grid using &#=0.005, started at +=3750 from the asymmetric initial condition

described in Sec. 1I A. The contours are as determined in Fig. 12.
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FIG. 15. (Continued.)

has only been observed from the periodic branch and for
Re=3020. This is consistent with the conclusion of Valentine
and Jahnke® that for Re<3000, the Z, symmetry is robust.
However, the Z, symmetry breaking observed on the 61X91
uniform grid for Re=3020 appears to be due to insufficient
grid resolution. If the same asymmetric initial conditions are
used in a calculation on the 101X 151 stretched grid, the flow
eventually, after about 1000 units, evolves to the same
Z,-symmetric periodic flow as that found when Z, symmetry
was imposed. This resymmetrization of the flow is illustrated
in Fig. 12 for Re=3500. For the first 100 or so time units of
the evolution, the flow is very non-Z, symmetric. However,
by t=500, it has settled down to an almost Z, symmetric
flow; the small perturbations away from Z, symmetry are
gradually damped, but are still discernible at t=1250, par-
ticularly in the # contours about the midplane. By #=2025,
as illustrated in Fig. 13, the flow has settled onto the
Z,-symmetric, T=28 periodic branch found when Z, sym-
metry was imposed. Figure 13 shows the flow over one pe-
riod of this oscillation, together with its time average. The
figure should be compared with Fig. 11, showing the 7=28
periodic flow for the same Re and H/R when Z, symmetry is
imposed; the two flows are the same. This would suggest that
the Z, symmetry is very robust. However, the situation is not
entirely resolved. A similar calculation at Re=3200 does not
resymmetrize on the 101X151 stretched grid, but instead
evolves to a modulated, 7==18.9, non-Z,-symmetry flow (the
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time series for this flow is shown in Fig. 14 along with con-
tours of the flow over approximately 18.9 time units in Fig.
15, showing the “flip—flopping” of the high I' radial jet
across the midplane), similar to that found on the 61X91
grid. Whereas a calculation started impulsively from rest at
the same parameter values without the Z, symmetry imposed
evolves to the T=28 periodic Z,-symmetric flow found
when the symmetry is imposed. This all suggests that the
Z,-symmetry flows are stable for Re<3500, but that there
also exist non-Z,-symmetric flows in that parameter range.
However, it is not clear whether the observed
non-Z,-symmetric flows are present due to insufficient grid
resolution, or if the non-Z,-symmetric flow branch is actu-
ally disjoint from the Z,-symmetric branches and we are able
to reach it via “nonstandard” initial conditions. In order to
determine this, one would need to double the grid points to
201X601 and then probably to 401X 1201, with a corre-
sponding halving of ¢ to 0.0001 and 0.000 05, until consis-
tent dynamical behavior is achieved on two consecutive dou-
blings of the resolution, and compute several cases at various
Re with a variety of initial conditions. Such a study, given
the long evolution times required (about 10 000 time units) is
simply beyond the computational resources presently avail-
able to the author.
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