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A numerical investigation of the multiple stable solutions found in confined swirling flows is 
presented. The flows consist of fluid in a completely filled cylinder driven by the constant corotation 
of the two end walls. When reflectional symmetry at the cylinder half-plane is imposed, the flow 
corresponds to that in a cylinder of half the height driven by the bottom end wall, with the top 
surface being flat and stress-free. Comparisons with available experiments in this case are made and 
the observed toroidal recirculation zones attached to the free surface are described in terms of 
secondary motions induced by the bending of vortex lines. Calculations are also presented where the 
reflectional symmetry is not imposed and the possibility of the tlow breaking this symmetry is 
discussed. Q 1995 American Institute of Physics. 

1. INTRODUCTION 

The swirling how driven in an enclosed cylinder by the 
constant rotation of one of its end walls gives rise to a rich 
array of dynamical behavior. including vortex breakdown 
and the existence of multiple solutions.‘-” Recently,“~s a se- 
ries of experiments with a variation on the above setup have 
been conducted. These’.’ examined the swirling flow in a 
cylinder driven by the constant rotation of its bottom end 
wall while the top was a free surface rather than a rigid wall. 
Hyun’ has studied this flow numerically; however, the study 
was restricted to the time-independent equations and covered 
only a very small part of parameter space. It did not reveal 
the rich dynamical behavior observed experimentally.4.’ 
Daube7 presented some calculations that match many aspects 
of the aforementioned experiments. However, the bifurcation 
structure of the flow was not examined and the onset of time 
dependence was assumed to be via a supercritical Hopf bi- 
furcation, which the results here show not to be the case. 

Spohn et al.’ remark that for the parameter range con- 
sidered in their experiments, the Froude number was negli- 
gibly small. The Froude number gives a relative measure of 
the extent to which the free surface is deformed by inertial 
forces such as the centrifugal force due to the swirling mo- 
tion compared to the restoring gravitational force. Given that 
the Froude number is essentially zero under the conditions 
considered, the free surface can be treated as a hat stress-free 
surface. This flow then corresponds to the situation where the 
cylinder is twice as long and the how is driven by the con- 
stant corotation of both a top and bottom rigid end wall 
rotating at the same rate in the same direction and the mid- 
plane is a plane of reflectional symmetry (Z, symmetry). In 
the corotating end walls situation, Z, symmetry is introduced 
into the flow, in contrast with the original flows considered 
by Escudier,” Spohn,4 and Spohn et a1.,5 which had no sym- 
metries in the meridional plane. Enforcing the Z2 symmetry 
allows one to follow solution branches beyond the point 
where symmetry breaking would occur. The experiments of 
Spohn et aL5 essentially do this up to the point where free 
surface deformations become important. Valentine and 
Jahnke’ have also studied this flow numerically for the coro- 
tating end walls case, but have concentrated on the steady 

solutions that retain the 2s symmetry; for the most part, they 
imposed this symmetry and hence did not explore the nature 
of any symmetry-breaking bifurcations nor the nature of the 
onset of time dependence. 

In the concluding remarks of Spohn et aL5 it is noted 
that the presence of the free surface leads to very different 
flow structures compared to when the top is a rigid end wall. 
It will be demonstrated that the formation of the recirculation 
zones, referred to as vortex breakdown bubbles, attached to 
the free surface are a result of the flow responding to axial 
gradients in the vortex lines, leading to the turning of me- 
ridional vorticity into azimuthal vorticity and inducing the 
reversed meridional circulations, just as in the case when the 
top is a rigid end wall. The vortex breakdown phenomenon 
in both the stationary top case and the case with the imposed 
Z2 symmetry is qualitatively the same, as is their bifurcation 
structure. When the Z2-symmetry condition is relaxed, the 
bifurcation structure of the corotating case may be richer due 
to the breaking of Z, symmetry. We find that the Z, symme- 
try is broken only in the time-dependent solutions, and then, 
only on “coarse” grids. All steady solutions without Z, sym- 
metry imposed were found to be Z2 symmetric. 

II. GOVERNING EQUATIONS AND THEIR NUMERICAL 
SOLUTION 

The equations governing the flow are the axisymmetric 
Navier-Stokes equations, together with the continuity equa- 
tion and appropriate boundary and initial conditions. It is 
convenient to write these using a cylindrical polar coordinate 
system (r,6,z), with the origin at the center of the bottom 
rotating end wall and the positive z axial direction being 
toward the top. Since the flow is axisymmetric, there exists a 
Stokes streamfunction $ and the velocity vector in cylindri- 
cal polars is 

l 1 u= -- r ez’z,v- r I* i r * ii) 
Subscripts denote partial differentiation with respect to the 
subscript variable. This form of the velocity automatically 
satisfies the continuity equation. It is also convenient to in- 
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traduce a new variable, the angular momentum r-w. Here 
I’ is proportional to the circulation. The vorticity field corre- 
sponding to (1 j is 

v;=c ),,-t( jr,-+ 1,. 
The velocity and vorticity fields can be decomposed into 

,azimuthal (a) and meridional (m) fields, where 

d= 0, 1 r,o ) i 1 Y 

d= o,- ; V2,@,0 , i i 
un’ = 

i -&-&r 1 1 
and 

&I = ( -+r:,o, ;I-, ! ; 
so o'=VXu"' and dn=VXu6. Further, 1‘ plays the role of 
a streamfunction for the meridional vorticity field.” In other 
words, contours of I’ in a meridional plane are cross sections 
of vortex surfaces (vortex lines), just as contours of $ are 
cross sections of streamsurfaces (streamlines). These give the 
local direction of the vorticity and velocity vectors in the 
plane, respectively, and the azimuthal components of the 
vectors give the degree to which the vectors are directed out 
of the plane. If the flow were inviscid and steady, l? would be 
a function of + alone. 

The axisymmetric Navier-Stokes equations, in terms of 
qt r, and v, are 

Dr = V2,rme, (2) 

D(~)=[V*(~)+~(~)] /Re+($)z9 (3) 

where 

Vi+= -i-q, 

D=( j&4 L+;Ic;( jz> 

and Re=RR*/v. The length scale is the radius of the cylinder 
R, the time scale is l/Cl, fl is the constant angular speed of 
the rotating end wall, ZJ is the kinematic viscosity, and the 
other governing nondimensional parameter is the cylinder 
aspect ratio H/R; H being the cylinder height in the case of 
a stationary rigid end wall, or, in the corotating end walls 
case, it is the distance from an end wall to the midplane of 
the cylinder. 

Equation (3) shows that inertial change in the azimuthal 
vorticity, and hence a source of the overturning meridional 
flow, is driven by axial gradients in the angular momentum. 
The physical origin’* of the source term on the right-hand 
side of (3) is the azimuthal component of VX (u’Xmm). It 
corresponds to the turning of meridional vorticity into the 
azimuthal direction by the azimuthal velocity. Brown and 
Lopez” found the necessary condition, in the limit of steady, 
inviscid flow, such that the turning of the meridional vorticity 
produces azimuthal vorticity of the correct sign so as to lo- 
cally induce a reversal in the direction of the meridional 
flow. The condition for this how reversal to be possible is 
that the ratio of the tangents of the helix angles of the veloc- 
ity and vorticity vectors be greater than unity on streamsur- 
faces upstream of the reversal in the meridional flow. 

A. Computational technique 

Details of the computational technique, together with ac- 
curacy and resolution tests, are given in Lopez’ for the sta- 
tionary top end wall case. In summary, the governing equa- 
tions are discretized on a uniform finite-difference grid using 
second-order central differences to approximate all spatial 
derivatives except those in the advection terms, which are 
approximated using the second-order conservative scheme of 
Arakawa.‘* No artificial viscosity is used; instead, a suffi- 
ciently fine grid is used to ensure proper resolution of spatial 
scales and grid-independent solutions. For the steady solu- 
tion branch with Re up to approximately 3000 and H/R = I .5, 
this is achieved on a uniform grid consisting of n Y = 6 1 nodes 
in the radial and nz=91 nodes in the axial directions. The 
steady computations of Valentine and Jahnke’ were per- 
formed on uniform grids using second-order central differ- 
ences for Re up to 3000, and they report that there were no 
significant differences between the results using grid sizes of 
l/60 and l/120. Further grid refinement tests and the use of a 
stretched grid are detailed in the following section for higher 
Re tlows than those considered in Lopez,’ including time- 
dependent solutions, and for the corotating end walls case. 

Time integration uses the explicit alternating time-step 
scheme of Miller and Pearce.13 For lOOO<Re<4000, stabil- 
ity of the scheme is primarily governed by the Courant- 
Friedrichs-Levy condition, and this is amply satisfied by a 
time step &=0.05 on the 61X91 grid. For Re<lOOO, the 
diffusion requirement,14 

St< Sr* Re/8, 

dominates the stability of the scheme, where Sr is the spatial 
resolution (all results presented have SP-= c~z). 

A number of different types of initial conditions have 
been employed in this study. The first consists of an impul- 
sive start from rest, where initially all cylinder walls and the 
fluid are at rest. At t=O, one end wall or both end walls 
(depending on the particular case being studied) are set to 
rotate at a constant angular speed f2. A second type of initial 
condition consists of taking a steady solution at some Re as 
the initial condition for a calculation with a different value of 
Re. This second initiation was used to continue the steady 
branch to large Re, using small increments in Re so as not to 
start the calculations outside the basin of attraction of the 
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steady solution branch. A steady state is determined to have 
been reached when the relative change between @, 7, and I’ 
at time step k and at time step k + 1, at all grid points, is less 
than lO+j . Another initial condition, albeit nonphysical, con- 
sists of a fully developed flow in the bottom half (the flow 
with Z, symmetry imposed at the same or nearby parameter 
values) and setting everything to zero in the top half of the 
cylinder. This initial condition is used to determine the ro- 
bustness of the Z2 symmetry. 

The boundary conditions on the free surface are g=O, 
rz =O, and +=O; on the axis of symmetry, 7’0, l?=O, and 
#=O; on stationary rigid walls, v=-&,,Jr, .lY=O, and @=O; 
and on rotating rigid end walls, q=- t+&,lr, 17=r2, and $=O. 
The subscript n denotes differentiation normal to the 
wall. One-sided differences from a Taylor-series expansion 
to second-order centered about one grid point in from 
the boundary are used to discretize derivative boundary 
conditions. Use is also made of the fact that normal 
derivatives of @ on rigid walls are zero. The discrete version 
of the vorticity boundary conditions are T(l,jj=O; 
v(nr3) = -2$=(nr- 1 j)l#; q~(i,l)=-2@(i,2)l[r(i)&~]; 
v(i,nz) = -2#(i,nz- L)/[r(i)Sz2] (stationary rigid top); 
rl(i,nz) =0 (corotating end walls with imposed Z2 symme- 
try); and v(i,2nz-- 1)=-2$[i,2nz-2)l[r(i)&‘] .(coro- 
tating end walls without imposed Zz symtnetryj. 

B. Grid resolution study 

Of great concern to this study is the question of suffi- 
cient grid resolution. This is particularly important, as the 
discretized set of governing equations constitute a finite- 
dimensional dynamical system whose bifurcation structure 
(singular points of the dynamical system) can differ signifi- 
cantly from those of the continuous equations (the infinite- 
dimensional dynamical ~systemj. There are numerous ex- 
amples in the literature demonstrating this. Particular 
examples are that of solutal convectiont5 and flow past a 
sphere in a pipe,t6 where the existence of spurious Hopf 
bifurcations as a result of insufficient grid resolution have 
been revealed. 

In regions of parameter space where only a unique 
steady solution exists in the continuous system, beyond a 
certain level of resolution in the discrete system, the corre- 
sponding solution (termed the ~clow” resolution solution) 
does not change qualitatively as the level of grid resolution is 
increased, and the solution changes quantitatively in an as- 
ymptotic manner, converging to the solution of the continu- 
ous system. There are formal theoretical results for the 
Gale&in discretization of the Navier-Stokes equations, 
which suggest generalizations to other discretizations. Con- 
stantin, Foias, and Temam17 have shown that if the computed 
approximations of the time-dependent equations “seem to 
converge” to some limit as t--+a, then the same is true for 
the exact problem and the two limits are related. 

However, in regions of parameter space where multiple 
solutions exist, formal results concerning convergence of the 
discrete system appear to be lacking. This situation is far 
more complicated. In the previous situation, the phase space 
of the system had only one attractor (the unique steady so- 
lution). Now there is more than one attractor and hence one 

needs to consider not only whether the attractors are con- 
verging to those of the exact problem, but also if their basins 
of attraction are converging. Even if the level of resolution is 
such that the attractors of the discrete system are asymptoti- 
cally similar to those of the exact problem, their basins of 
attraction may not have converged at that level of resolution, 
and hence conclusions about the stability of the attractors of 
the continuous system based on the stability of the attractors 
of the discrete system may not be correct. Also, for similar 
initial conditions, evolution on systems of different resolu- 
tion may not end up on the “same” attractor, because the 
structure of the basins of attraction may be such that the 
initial condition at one level of resolution is in the basin of 
attraction of a different attractor to that at another level of 
resolution. Determining the structure of the basin of attrac- 
tion for the Navier-Stokes equations is a nontrivial exercise. 
Consider how complicated it can be for relatively simple 
equations (the Julia set and the Mandelbrot set). 

Here, we determine the level of grid resolution required, 
within a region of parameter space, for the discretized equa- 
tions to give consistent (i.e., not changing with further grid 
resolution) qualitative behavior (the solutions may continue 
to change quantitatively in an asymptotic manner). We do 
this in a number of ways. First, in a region of parameter 
space where only a single steady state exists, we determine 
the level of grid resolution required for the solution to be 
quantitatively in the asymptotic region. We monitor the 
maximum and minimum values of 9 and 17 on the grid 
points, both on a uniform grid and a stretched grid. Next, 
using a time-dependent code, we-take the steady solutions 
with different levels of resolution and use continuation to 
follow the steady branch to higher Re. By increasing the grid 
resolution and reducing the increments in the continuation 
parameter (typically Re), the level of grid resolution for con- 
sistent qualitative behavior is determined. 

The stretched grid is given by 

r=x-a sin(2nxj 

and 

z=[y-b sin(25-yj]H/R, 

where x=il(nr- l), for i=O+(nr- 1); ~=jl(nz-- I), for 
j = O+ (nz - 1 j ; and in all the results presented here, the 
stretching factors a = b = 0.1 have been used. This stretching 
places the grid points more densely near the boundaries, the 
axis, and the midplane when Z, symmetry is imposed. When 
employing the stretched grid, second-order central differ- 
ences are used to discretize the equations spatially. We begin 
by determining a suitable level of resolution at a large Re 
=2600, where the only solution is steady (see Sec. IV for 
this determinationj. Table I gives the extreme values of fi and 
r for the case Re=2600, HIR = 1.5, both on the uniform and 
the stretched grids of various sizes, together with the St used. 
The St’s are approximately the smallest on a given grid for 
which the system was stable. This information, together with 
the visual information provided by the plots of the solutions 
in Fig. 1, indicates that the 61 X91 uniform grid solution is in 
the asymptotic range of the continuous solution, Given that 
St on a uniform grid with about the same number of grid 
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TABLE I. Minimum and maximum values of $ and 17 on the grid points of the various grids, as indicated, for 
Re=2600 and H/R = 1.5 at steady state. 

Grid St mid@) mad44 mid 7) mh(?7) 

3 1 X46 uniform 1.0x10-’ -7.741 x 10-3 I 2.860X IO-” -6.522 11.08 
61X91 uniform 5.0x 10-Z -7.709x 10-s 3.777x 10 -4 -4.496 17.58 
121X181 uniform 2.5 x10-s -7.6O8X1O-3 3.747x10-4 -4.222 20.62 
241X361 uniform 7.5x 10-3 -7.5.5.5x 10-3 3.714x10-4 -4.217 21.42 
51X76 stretched 1.0x10-2 -7.539x10-3 4.234x 10-4 -4.196 20.94 
101X151 stretched 5.0x 10-3 -7.537X 10-s 3.832X 10y4 -4.213 21.49 
15 1 X226 stretched 2.5X IO-’ -7.532X 1O-3 3.756X 1O-4 -4.215 21.60 

points as on a stretched, grid is larger, the 61 X91 uniform 
grid is preferred because it is sufficiently accurate, essen- 
tially grid independent, and efficient, at least for the steady 
solution branch up to Re==4 X 103. 

Testing the grid independence of the solutions in regions 
of parameter space where multiple solutions exist is more 
complicated. For Re>2600 (and H/R=lS), we have found 
that using grids with less resolution than the uniform 61 X91 
grid, the steady solution branch loses stability at Rem2650 
(the exact value of Re depends on the grid resolution). How- 
ever, for grids with at least the resolution of the uniform 
61 X91 grid, the steady solution branch remains stable up to 
Re=3200. These results are detailed in Sec. III. We have 
confirmed this by recalculating a part of the steady branch on 
the 101 X 151 stretched grid using &=0.005 (the uniform 
61 X91 grid used &=O.OS). The steady solutions were con- 
tinued from the unique steady solution at Re-2600. Using 
6Re=50, the steady Re=2650 was reached after approxi- 

mately 1000 time units. Figure 2 gives the time series of 
$((nr=51, w-76) for th e continuation runs. The transient 
oscillations in the Re=2650 calculation, initiated with the 
Re=2600 steady solution, begin to grow, but are soon highly 
damped as the flow adjusts to the sudden increase in Re. 
Physically, this corresponds to an impulsive increase of &2% 
in the rotation rate of the disk, !J. If a larger SRe is used, the 
initial transients are not damped and the flow evolves to the 
periodic solution branch. If the same SRe is used, starting 
from the Re=2650 steady solution, the flow evolves to the 
periodic branch. However, a smaller SRe=25 results in a 
steady Re=2675 solution, and from that solution to the Re 
=2700 solution. To continue beyond Re=2700, a SRe=lO 
had to be employed1 All the transients, up to Re=2790, using 
this SRe, are damped; as illustrated in Fig. 2. Using SRe 
= 10 at Re=2790 to continue the branch to Re=2800 was 
not successful and the flow evolved to the periodic branch. A 
detail of the corresponding time series is presented in Fig. 3. 

3 1x47 uniform 61x91 uniform 121x181 uniform 

241x361 uniform 51x76 stretched 101x151 stretched 

FIG. 1. Steady Z+ymmetric tlows (only the bottom half of the cylinder is shown) for Re=2600 and H/R=lS calculated on various grids: (a) 31X47, 
uniform, St=O.l; (b) 61X91, uniform, d’t=O.OS: (c) 121X181, uniform, &=0.025; (d) 241X361, uniform, &=0.0075; (e) 51X76, stretched, &=O.Ol; (0 
101 X 151, stretched, &=0.005; (g) 151 X226, stretched, &=0.0025. The contour levels for (i) $, (ii) 7, and (iii) I are nonuniformly spaced, with 20 positive 
(solid lines) and 20 negative (dashed lines), determined by the c level(i) =Max(variable) X (i/2O)3 and c level(i) =Min(variable) X (i/2O)3, respectively, with 
i=1-+20. For all plots the following have been used: Max(~,@=lO-‘, Min($)=-IO-“, Max(77)=20, Mm(T)=-& Max(T)=l, and Min(q=O. 
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-1.34 - 

-1.36 

-1.38 - 

-1.40 - 

-1.42 --- 
0 

time 

FIG. 2. Time series of 103$(nr=51, nz=76) for the continuation run on the 
101X151 stretched grid using &=O.O05, started from the steady Re=2600 
solution. The values of Re following each impulsive, incremental increase 
are noted on the plot. 

Continuing this calculation for a further 2000 time units re- 
sults in the periodic solution detailed in Fig. 4 (discussed in 
Sec. IV). A calculation such as this is suggestive of a super- 
critical Hopf bifurcation. However, if instead of using SRe 
= 10 we use 6Re=5 from the steady Re=2790 solution, the 
steady Re=2800 solution is reached, as illustrated in Fig. 2. 
There is no supercritical Hopf bifurcation here, merely the 
existence of two stable solution branches, one of them steady 
and the other time periodic, and which one is realized de- 
pends on the initial conditions. Figure 5 gives the steady 
solutions at Re=2790, 2795, and 2800. Note that the three 
solutions are virtually indistinguishable, yet the Re=2790 
solution is to “far away” (i.e., outside the basin of attraction) 
from the Re=2800 solution, yet the Re=2795 solution is 
not, illustrating how sensitive the stable solutions on the 
steady branch are. Compare the solution for Re=2800 in Fig. 
5, on the stretched 101 X 151 grid with that in Fig. 613, on the 
uniform 61 X91 grid; they are in very close agreement. The 
qualitative behavior of the steady branch is the same on both 
the 61 X91 uniform grid and the higher resolution 101 X 151 
stretched grid. 

The grid resolution study provides confidence in the ac- 
curacy of the determined stability of the steady branch, and 
also that the time-dependent branch is disjoint from the 
steady branch, or at least it does not originate via a super- 
critical Hopf bifurcation from it (see Sec. IV). 

-126 k  I 
- -T--‘-- -’ 

-1.42 t ..-. I &_“.., 3 I -. . I ._. __ 
I3500 14000 I4500 

time lZOO0 I HO0 16000 

FIG. 3. Details of the time series of lo’@  (nr=51, nz=76) for the continu- 
ation run on the 101X151 stretched grid using St4.005, started from the 
steady Re=2780 solution, using SRe=lO, leading to a periodic solution for 
Re=2800. 

III. PRODUCTION OF SECONDARY FLOW BY 
VORTEX LINE BENDING 

The flows under consideration are a part of a larger class 
of confined flows driven by angular momentum gradients. 
The primary motion is due to externally imposed rotation 
imparting a vertical (i.e., parallel to the rotation axis) com- 
ponent of vorticity to the flow. The particular details of the 
enclosing geometry imposes kinematic constraints on the 
flow resulting in the bending of vortex lines. The bending of 
vortex lines produces secondary motions, primarily associ- 
ated with the azimuthal component of vorticity. In a large 
class of these flows, the secondary motions can be compa- 
rable to the primary motion, leading to significant nonlinear 
interactions. One such interaction manifests itself as recircu- 
lation bubbles in the interior of the flow, and is often referred 
to as vortex breakdown. The particular details of the topol- 
ogy of these recirculation zones depends on the details of the 
geometry of the container and the strength of the driving 
force, yet they all result from the bending of vortex lines. A 
great deal is made of the differing details of the streamsur- 
faces of these recirculation zones, with suggestions that these 
differences may reflect different processes at work. However, 
the topology of the streamsurfaces is not a particularly useful 
diagnostic for uncovering the dynamical processes at play. 
More suited is a study of the vortex lines (or vortex surfaces) 
and how the geometry of the container bends these, produc- 
ing the rich array of secondary motions. 

A. Vortex line structure of the flows 

For the confined flow driven by the bottom rotating end 
wall with a flat stress-free top surface, the primary tlow is 
due to the rotating end wall. The vortex lines all emanate 
from this end wall, as the fluid in contact must move with it. 
The sidewall of the cylinder, being stationary, is a vortex 
surface corresponding to I?=0 and the axis of symmetry, 
r=O, is also a vortex line corresponding to l?=O. The vortex 
lines emanating from the rotating end wall correspond to a 
r(r,O) =r2 distribution. Hence, the corner where the rotat- 
ing end wall and the stationary sidewall meet is singular, 
with I? varying from 1 on the end wall to 0 on the sidewall. 
Vortex lines may terminate at this corner. For the case where 
the top is rigid and stationary, all the vortex lines emanating 
from the rotating end wall must terminate at this corner. 
However, when the top is a flat stress-free surface, or equiva- 
lently, at the midplane when ZZ symmetry is imposed in the 
corotating end walls case, the vortex lines have the option of 
meeting the surface (midplane) orthogonally. This option is 
responsible for the secondary motions being different to 
those of the stationary rigid top case. Also, the vortex lines 
meeting the midplane divide the flow into an inner and an 
outer region. The inner region is ran, where q(z) is 
the location of the vortex line emanating from the rotating 
end walls (but not from the corners) with largest radius, 
which meets the midplane. The two regions are particularly 
distinct at larger Re and their interface supports waves (see 
Sec. IV). 

As in the case of a rigid top, the bending of the vortex 
lines in the limit of creeping flow is due solely to the kine- 
matic constraints of the container. The vortex line bending 
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r t &IT t + 0.2T 

t t U.4T 

FIG. 4. Eleven equally spaced phases over one period (T==28.2) of the periodic Zs-symmetric solution for Re=2800 and H/R = 1.5, and its time average, 
calculated on the 101 X 15 1 stretched grid with &=0.005. The contours are as determined in Fig. 1. 

leads to axial gradients in r and via the term ( r2/r4), in Eq. 
(3), azimuthal vorticity is produced, inducing the secondary 
meridional flow. This secondary meridional flow is respon- 
sible for the establishment of the Ekman layer on the rotating 
end wall and at larger Re, advects high I? fluid from the 
Ekman layer into the interior. Ln so doing, the secondary 
meridional flow sweeps the vortex lines near the Ekman 
layer radially outward. This nonlinear interaction between 
the primary flow (vertical vorticity) and the secondary flow 

haves near the top does depend on whether it is a rigid or a 
flat stress-free surface, as conditions there on I? are different. 
The conditions on 17 are also different, but $=O on the top 
regardless of whether it is stress-free or rigid. The condition 
$=O at the midplane does not necessarily appiy in the coro- 
tating end wall case if 2, symmetry is not imposed. 

B. Flow development for increasing Re _ 
(azimuthal vorticity) causes further bending of the vortex 
lines and an enhancement of the meridional flow transporting 
further fluid with high r into the interior. This process near 
the rotating end wall is essentially independent of the form 
of the top, at least qualitatively, for small Re. Hyun’ also 
made this observation. However, how the high r fluid be- 

At low Re (<I), the flow is essentially at the limit of 
Stokes (creeping) tlow. At this limit, the flow has all the 
symmetries of the container, i.e., azimuthal symmetry, and in 
the corotating end walls case, both the flow and the container 
have Z, symmetry. The results of Serrint8 ensure that in the 
limit of low Re, the flow is unique and steady. The primary 

(a) Rs=2790 (b) Re=2795 (c) Re=2800 

FIG. 5. Steady Za-symmetric solutions for H/R=1.5 and (a) Re=2790, (b) Re=2795, and (c) Re=2800; calculated on the 101X151 stretched grid with 
&=0.005. The contours are as determined in Fig. 1. 
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t tf O.IT t+ 0.2T 

t+ OAT ti- 0.7T t+ 0.8T 

FIG. 9. Eleven equally spaced phases over one period (T~28.5) of the periodic Z,-symmetric solution for Re=2640 and H/R = 1.5, and its time average 
calculated on the 61X91 uniform grid with &=0.05. The contours are as determined in Fig. 1. 

toward the symmetry plane along the stationary sidewall, 
radial inflow at the symmetry plane, and a return to the ro- 
tating end walls along the axis. In the Stokes flow limit, the 
magnitude of these secondary circulations scales with Re. 
Figure 6(a) shows the flow at Re=lO in the bottom half of 
the cylinder. Here, l? remains essentially unchanged and $ 
and ~7 have been scaled by Re, in comparison with the Re= 1 
case. By Re= 100, the secondary circulation is strong enough 
to advect the r vortex lines with it. This is quite evident in 
Fig. 6(c) just above the Ekman layer on the rotating end wall. 
This local advection of the I? vortex lines by the secondary 
circulation is strong enough by Re=500 to locally produce 
positive (negative) axial gradients in l?, turning meridional 
vorticity into the positive (negative) azimuthal direction [Fig. 
6(d)]. At Re=500, this locally produced positive (negative) 
17 via the nonlinear interaction between the primary (r) and 
secondary ($) flow is quite weak. However, by Re=700 
[Fig. 6(e)], the positive (negative) v is large enough to in- 
duce a local undulation in the streamlines. In accord with the 
experimental observations of Spohn et aL5 by Re=800, the 
positive (negative) ~7 is large enough that the meridional flow 
on the axis stagnates and a recirculation zone results [Fig. 
w91. 

The faster meridional flow bends the l? vortex lines in 
the Ekman layer region as more angular momentum is car- 
ried with the flow. This enhances the negative (positive) axial 

Phys. Fluids, Vol. 7, No. 11, November 1995 

gradients in r, resulting in more negative (positive) 7, and 
reenforces the secondary meridional circulation, 

The faster meridional flow also carries angular momen- 
tum acquired in the Ekman layer farther up (down) the side- 
wall with increasing Re, and results in vortex lines corre- 
sponding to increasingly larger values of r, meeting the 

29.0, . . , . . I . . I . . . I . 1 I . 
L 

28.5- == 

T28.0 - 

27.5 - 

.6 1x9 1 uniform grid 
0101x151 stretched grid 

. 

0 m 
. . 

. . 

0 
0 

27.01 ‘. I.. . I. . . * ” .* ‘. .‘. 
2500 2700 2900 Re 3100 3300 3500 

FIG. 10. Variation of the period of oscillation, T, with Re on the T-28 
periodic solution branch. 
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t + OJT t+ 0.2T 

FIG. 11. Eleven equally spaced phases over one period (T-27.5) of the periodic Z2-symmetric solution for Re=3.500 and H/R = 1.5, and its time average, 
calculated on the 101 X 151 stretched grid with &=0.005. The contours are as determined in Fig. 1. 

symmetry plane orthogonally. This in effect produces a radial 
jet of high r fluid being injected into the interior at the 
symmetry plane. 

Spohn et al.,5 based on inviscid arguments, suggest that 
the radial jet of high I? fluid injects angular momentum in 
toward small radii only up to the point where the angular 
velocity of the fluid, V/P-, increases to match the angular 
velocity of the rotating disk, 61, which is equal to I in non- 
dimensional units. At about this point (it will vary slightly 
due to viscous effects) the meridional flow no longer contin- 
ues to flow radially inward, but instead stagnates on the free 
surface and turns into the axial direction, thereby forming the 
observed toroidal recirculation zone attached to the free sur- 
face. For low Re flow, the viscous effects near the free sur- 
face (even though there is no rigid wall, there are still axial 
gradients in the velocity contributing to viscous stresses near 
the free surface) are sufficient for the flow to dissipate 
enough angular momentum as it flows radially inward so that 
v/r on the free surface remains sufficiently less than 1 and 
no separation is required. This experimentally observed be- 
havior is also observed in our calculations of the corotating 
case with Z? symmetry imposed, where the symmetry plane 
corresponds to the free surface in the experiments. 

Figure 7 shows the development of v/r on the symmetry 
plane for increasing Re along the steady solution branch. At 
low Re, u/r is negligibly small on the symmetry plane. With 
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increasing Re, v/r increases monotonically from zero with 
decreasing P. At Re=680, v/r has a local maximum of 
-0.82 at r=O. It is at about this Re that 77 near the symmetry 
plane changes sign [cf. Figs. 6(d) and 6(e)]. At this Re, the 
meridional flow has not stagnated on the symmetry plane, 
but as Re increases, the radius at which v/r attains its maxi- 
mum value of -0.8 moves farther out from the axis and the 
region of positive (negative) 17 intensifies. By Re=800 [Fig. 
6(f)], the locally increased 171 is large enough to induce a 
reversed meridional flow halting the inward meridional flow 
provided by the Ekman pumping on the rotating end walls. 
This results in stagnation on the symmetry plane and the 
formation of a recirculation zone, termed a vortex break- 
down by Spohn et al.” Certainly, the reversed meridional 
flow here is induced by the azimuthal vorticity 17 resulting 
from the bending of the vortex lines, just as are the recircu- 
lation zones on the axis in both the corotating end walls case 
and the stationary rigid top case. The radius at which v/r is 
a maximum corresponds more closely with the radius at 
which 77 changes sign near the symmetry plane than with the 
radius at which the meridional flow stagnates. For Re>700, 
v/r decreases toward r=O, and there is a local minimum in 
v/r at r=O for Re=1450. From Fig. 6(g), corresponding to 
Re=l500, 17 changes sign again very near r =O. For Re 
>1500, v/r has a maximum at r-0.25 and a local minimum 
at t-0.15. The maximum corresponds to the change in sign 
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EIG. 12. Evolution for Re=3500. H/R=lS, calculated on the 101X301 stretched grid, with &=O.OOS, and Z2 symmetry not imposed. The evolution was 
started at t=O from the asymmetric initial condition described in Sec. II A; times as indicated. The contours are as determined in Fig. 1; except that here 
Max($)=lO-‘and Min(v)=-20. 

of 77 as r decreases and the minimum corresponds to a sec- 
ond change in the sign of 17 as r decreases further. For in- 
creasing Re, the inner region of negative (positive) 117 induces 
radial inflow. By Re=2000 pig. 6(h)], this induced radial 
inflow is large enough to reattach the separated flow onto the 
symmetry plane, forming the toroidal recirculation zone. Fig- 
ure 6(h) is in very close agreement with the flow visualiza- 
tion of Spohn et aZ.’ in their Fig. 5(a), corresponding to Re 
=2095, H/R = 1.5. 

Figure 8 is a state (bifurcation) diagram for the corotat- 
ing end walls flow. The bifurcation parameter is Re (a fixed 
H= 1.5 is employed) and the quantitative measure of the 
flow state is vmaxr the maximum positive value of 77 in the 
interior of the bottom half of the cylinder. For periodic flows 
(Sec. IV), vmax is the maximum positive value of 17 of the 
time-averaged flow in the interior of the bottom half of the 
cylinder. The interior is defined as being the region in from 
the boundaries delineated by the first zero contour of 7 (note 
that ~30 on and near the rigid boundaries in the bottom half 
and ~0 in the top half of the cylinder; see Fig. 6). Any 
quantitative measure of the flow state can be used, and vmax, 
a local measure, is not necessarily optimal. However, the 
qualitative picture of the state diagram is unaffected by the 
choice and vmax is convenient and illustrates some of the 
flow physics. 

Phys. Fluids, Vol. 7, No. 11, November 1995 

IV. ONSET OF UNSTEADY &-SYMMETRIC FLOW 

The steady solution branch (Fig. 8) described in the pre- 
ceding section remains stable to time-dependent and 
&-symmetry breaking disturbances (at least for ReC3200). 
As in the case of the rigid stationary top, a disjoint periodic 
branch has been found. For H/R = 1.5, it originates as a turn- 
ing point bifurcation at Re=2640 (at Re=2630, only a 
steady solution is found to exist; whereas, at Re=2640, both 
a periodic and a steady solution exist). ln order for the time- 
periodic branch to originate as a subcritical Hopf bifurcation 
from the steady branch, the steady branch would have to be 
unstable beyond the Re corresponding to the subcritical Hopf 
bifurcation, but we find the steady solution to be stable at 
least for Res3200. The basin of attraction of the steady 
branch becomes increasingly small for increasing Re and a 
continuation in Re for Re-3200 requires increments, SRe, 
of the order of 0.01% in order to guarantee that the initial 
conditions remain within the basin of attraction of the steady 
solution. For Re=2650, increments of the order of 2% are 
small enough. Some further discussion of the dependence of 
the basin of attraction on the grid resolution is provided in 
Sec. II B. Such a small basin of attraction gives the impres- 
sion that the onset of time dependence is via a supercritical 
Hopf bifurcation (Daube7 assumes this to be the case, but 
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does not explore other possibilities). This impression is 
caused if the initial conditions are placed outside the basin of 
attraction of the steady branch, or if an imposed disturbance 
(physically, this could be due to a slight wobble in the rotat- 
ing end walls, a nonconstant rotation rate Sz, or temperature 
fluctuations) perturbs the flow out of the basin. The resulting 
evolution to a time-periodic state only shows that the steady 
solution is unstable to$nite-amplitude disturbances, but does 
not ahow conclusions concerning its linear stabihty. Valen- 
tine and JahYnke’ conclude that their steady solution at Re 
= 3000, HIR =‘1.5, is unstable to jnite-amplitude distur- 
bances, the disturbances being the differences between the 
central difference used to discretize the steady equations to 
get their steady solution and the upwind differencing used in 
their time-dependent code. They did not attempt to do time- 
dependent calculations with more carefully selected initial 
conditions. Calculations with carefully selected initial condi- 
tions placed within ,the basin of attraction of the steady so- 
lution branch, such as those reported here, clearly show the 
steady solutions to be stable and to coexist with the periodic 
solutions. Hence, a supercritical Hopf bifurcation from the 
steady branch cannot be the origin of the periodic solution 
branch. Otherwise, the steady branch would have to be lin- 
early unstable beyond the supercritical Hopf bifurcation 
point, and.a time-dependent calculation using the steady so- 
lution as an initial condition, together with a perturbation of 

t=2025 + 0.3T 

any size (even as small as numerical roundofr), would evolve 
away from the steady solution. As detailed in Sec. II B, on a 
sufficiently refined grid, this does not happen. 

The attractiveness (i.e., larger, in some sense, basin of 
attraction) of the periodic solution over the steady solution 
can be understood as follows. For axisymmetric steady flows 
in the limit as Re-+m, the streamlines (#) and the vortex 
lines (I’) must coincide. However, at the symmetry plane (or 
flat stress-free surface) they must be orthogonal. At low Re, 
viscosity acts to adjust the flow, but as Re increases, the flow 
must either lose its axial symmetry or become unsteady in 
order that the streamlines and vortex lines need not coincide. 
The experiments of Spohn et al5 suggest that the flow first 
becomes unsteady rather than nonaxisymmetric as Re is in- 
creased. 

In the periodic flow, the radial jet of high I? flow at the 
midplane overshoots the mark at which u/t-=1, and recoils, 
overcorrecting, then overshoots again and so on. At Re 
=2640 (see Fig. 9), this results in a weak periodic wobbling, 
in the radial direction, of the toroidal recirculation bubble. 
The oscillation is highly damped in the axial direction. As Re 
is increased, this behavior is further enhanced. By Re=2800, 
each wobble sends a pulse in the axial direction along the 
interface between the inner flow (i.e., the region near the axis 
where the vortex lines originating on the end walls meet the 
symmetry plane orthogonally) and the outer flow. This pulse 

t=2025 f OST t=2025 + O.2T 

t=2025 f 0.4T k2025 + OST 

FIG. 13. Eleven equally spaced phases over one period (T-27.5) of the flow depicted in Fii. 12, times as indicated, and its time average. The contours me 
as detemlined in Fig. 12. 
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1=2025+0.6T t=2025+ 0.7T t=2025+ 0.87 

t=2025i 0.9T t=2025+ T time average 

FIG. 13. (Continued.) 

just reaches the rotating end wall and is reflected back along 
the axis. At this Re, the reflected pulse is highly damped by 
viscous effects, and is just discernible in Fig. 4. 

Unlike the rigid top end wall case, where the frequency 
of oscillation for a particular aspect ratio is independent of 
Re over a large range,“V7 the frequency of the flat stress-free 
surface case does show a slight variation with Re. This was 
also noted by Daube7 in his calculations. Figure 10 shows the 
variation of the period of oscillation, T (nondimensionalized 
by a), with Re for the Za-symmetric flow with H/R= 1.5 
impulsively started from rest. The periodic flow is first ob- 

served at Re=2640 with a period T-28.5, and, at Re=2800, 
the period has decreased to T-28.2. Figure 10 is constructed 
using both the 61x91 uniform grid and the 101X151 
stretched grid. The period at Re=2800 was determined on 
both grids and agreed to three figures. At Re=3030, there is 
period doubling to a flow with T-56.0, when calculated on 
the 61X91 uniform grid. At Re=3050, also on the 61X91 
uniform grid, the f-low evolves from rest to the period T-28 
How and eventually changes to one with T-18.75. As Re is 
further increased, using the same grid, the period increases in 
contrast to the trend at lower Re, and at Re=3350 a further 

FIG. 14. Tiie series of lO’tjr(nr=51, nz=I50) for Re=3200, H/R=lS calculated on the 101X301 stretched grid using &=0.005, started at t-3750 from 
the asymmetric initial condition described in Sec. II A. 
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period doubling is observed. However, if these higher Re 
cases are computed on the 101 X 15 1 stretched grid, the 
aforementioned higher-frequency modes and the period dou- 
blings are not observed. Calculations started from rest on the 
stretched grid at Re=2800, 3200, and 3500 all evolved to the 
single-frequency periodic flow on the T-28 branch, the only 
time-dependent branch found with the 101X 151 stretched 
grid (see Figs. 8 and 10) when Z, symmetry is imposed and 
the calculations are impulsively started from rest. This 
strongly suggests that the higher-frequency modes and the 
period doublings are numerical artifacts, due to insufficient 
resolution. Figure 11 shows the Re-3500 flow over one pe- 
riod (T-27.5). The overshooting of the high r radial jet at 
the symmetry plane causing a pulse to travel along the inter- 
face between the inner and outer regions to the rotating end 
walls, and then its reflection along the axis, as described 
earlier for Re=2800 (Fig. 4) is more enhanced at this higher 
Re. 

V. Z,-SYMMETRY BREAKING 

So far, only the Z,,-symmetric flow has been considered. 
The experimental flop@ with a free surface is the physical 
analog of this tlow, up to the point where free surface defor- 
mations are no longer negligible. In this section, we consider 
the possible breaking of the Z, symmetry (note that this is 

not related to free surface deformations). Azimuthal symme- 
try continues to be imposed, and the breaking of this sym- 
metry remains an open question. 

Impulsively started calculations from an initial state of 
rest without imposed Z, symmetry reach the same steady 
state as when the symmetry is imposed for ReG2600 on both 
the 61X91 uniform and the 101X151 stretched grids (when 
Z, symmetry is not imposed, the grid has nrX [2(nz- 1) 
tl.] grid points, i.e., 61X181 and 101X301 on the uniform 
and stretched grids, respectively). For 2640GRe<2800, the 
same Z,-symmetric periodic flow was achieved as when 
symmetry was imposed, using either grid. These 
Zz-symmetric solutions are reached even when very nonsym- 
metric initial conditions are used (the third initial condition 
described in Sec. II A). For Res2600, these initial condi- 
tions evolve to the steady Z,-symmetric solution branch. For 
2640GRes2800, these initial conditions evolve to the 
Zz-symmetric periodic branch. However, on the 61X91 uni- 
form grid, for 2850GReG3000, a Z;?-symmetric periodic 
flow was reached, but its period (T-18.6) was different to 
that of the flow when Z, symmetry was explicitly imposed 
(T-28.2). The initial condition consisted of the T-28.2 flow 
in the lower half and zero flow in the top half. It is curious 
that 18.6X1.5=28.2, remembering that here H/R= 1.5. 

Here Z,-symmetry breaking on the 61 X91 uniform grid 

t=10.026.89 t=10,028.78 

t=10,030.67 t=10,032.56 

FIG. 15. Eleven equally spaced solutions, at times as indicated, and their average over that time period, of the modulated periodic flow with Z, symmetry not 
imposed for Re=3200, H/R=l.S calculated on the 101X301 stretched grid using &=0.005, started at t=3750 from the asymmetric initial condition 
described in Sec. II k The contours are as determined in Fig. 12. 
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t=10,036.34 t=10,040.12 

f=10,043.90 t ime average 

RG. 15. (Confinued.~ 

has only been observed from the periodic branch and for 
Rea3020. This is consistent with the conclusion of Valentine 
and Jahnkeg that for ReG3000, the Z, symmetry is robust. 
However, the Z2 symmetry breaking observed on the 61 X9 1 
uniform grid for Rea3020 appears to be due to insufficient 
grid resolution. Lf the same asymmetric initial conditions are 
used in a calculation on the 101 X 15 1 stretched grid, the flow 
eventually, after about 1000 units, evolves to the same 
Z2-symmetric periodic flow as that found when Z, symmetry 
was imposed. This resymmetrization of the flow is illustrated 
in Fig. 12 for Re=3500. For the first 100 or so time units of 
the evolution, the flow is very non-Z2 symmetric. However, 
by t=500, it has settled down to an almost Z, symmetric 
flow; the small perturbations away from Z2 symmetry are 
gradually damped, but are still discernible at t = 1250, par- 
ticularly in the 9 contours about the midplane. By t=202.5, 
as illustrated in Fig. 13, the flow has settled onto the 
Z2-symmetric, T-28 periodic branch found when Z2 sym- 
metry was imposed. Figure 13 shows the flow over one pe- 
riod of this oscillation, together with its t ime average. The 
figure should be compared with Fig. 11, showing the T-28 
periodic flow for the same Re and HI R when Z, symmetry is 
imposed; the two flows are the same. This would suggest that 
the Z2 symmetry is very robust. However, the situation is not 
entirely resolved. A similar calculation at Re=3200 does not 
resymmetrize on the 101X 151 stretched grid, but instead 
evolves to a modulated, T- 18.9, non-Z,-symmetry flow (the 

time series for this flow is shown in Fig. 14 along with con- 
tours of the flow over approximately 18.9 time units in Fig. 
15, showing the “flip-flopping” of the high I? radial jet 
across the midplane), similar to that found on the 61 X91 
grid. Whereas a calculation started impulsively from rest at 
the same parameter values without the Z? symmetry imposed 
evolves to the T-28 periodic Zz-symmetric fow found 
when the symmetry is imposed. This all suggests that the 
Z,-symmetry flows arc stable for ReG3500, but that there 
also exist non-&-symmetric flows in that parameter range. 
However, it is not clear whether the observed 
non-Z,-symmetric flows are present due to insufficient grid 
resolution, or if the non-Z,-symmetric flow branch is actu- 
ally disjoint from the Z?-symmetric branches and we are able 
to reach it via “nonstandard” initial conditions. In order to 
determine this, one would need to double the grid points to 
201 X601 and then probably to 401 X 1201, with a corre- 
sponding halving of St to 0.0001 and 0.000 05, until consis- 
tent dynamical behavior is achieved on two consecutive dou- 
blings of the resolution, and compute several cases at various 
Re with a variety of initial conditions. Such a study, given 
the long evolution times required (about 10 000 time units) is 
simply beyond the computational resources presently avail- 
able to the author. 
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