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Abstract

To date, the majority of studies of vortex-induced vibration (VIV) of a cylinder constrained to oscillate transverse to

the freestream have been experimental, and at a Reynolds number, Re, where the flow is inherently three-dimensional.

At these higher Re, an upper and lower branch of response are observed. Mostly, these branches have not previously

been investigated at lower Re where the flow is two-dimensional. Therefore, two-dimensional simulations have been

performed at Re ¼ 200 to thoroughly investigate the response of a cylinder to VIV. It was found that two regimes of

response were present, similar in nature to the upper and lower branch at higher Re. While some differences were

present, it was found that the genesis of the higher-Re flow behaviour was present in the low-Re two-dimensional flow,

with evidence for this found in the amplitude, frequency and phase response of the cylinder.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

There is a large body of work pertaining to elastically mounted cylinders constrained to oscillate transverse to a free

stream. Early work in this area (Feng, 1968; Sarpkaya, 1979; Bearman, 1984) concentrated on areas of practical

engineering importance, such as magnitudes of oscillation and the forces involved therein.

More recent work in this area has been focused on classifying different regimes of synchronous response, and

attempting to explain the differences between them. This classification work began with the work of Khalak and

Williamson (1996) and has continued with the contributions of Khalak and Williamson (1999) and Govardhan and

Williamson (2002). The main conclusion from this work is that there exist two synchronous response ‘‘branches’’,

termed the upper and lower branch. The upper branch is characterized by phase angles between lift force and

displacement of close to zero, a primary oscillation frequency of close to the natural frequency of the cylinder system,

and peak amplitudes of oscillation that can exceed one cylinder diameter. The lower branch is characterized by lower

amplitudes of oscillation than the upper branch (hence the names ‘upper’ and ‘lower branch’), phase angles of close to

180�, and slightly higher oscillation frequencies. Both exhibit the 2P shedding mode (Williamson and Roshko, 1988),

but this mode is more obvious in the lower branch.

All of the aforementioned work involved experiments with Reynolds number Re41250, where Re ¼ UD=n,
with U the freestream velocity, D the cylinder diameter, and n the kinematic viscosity. The vast majority of
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studies of these branches have also been performed at Re41250 [see reviews by Sarpkaya (2004), and Williamson

and Govardhan (2004)], where the flow is inherently three-dimensional. Only one experimental study has been

performed at Reo150 to help quantify the effect of this three-dimensionality (Anagnostopoulos and Bearman,

1992).

While only a single set of low-Re experiments has been performed, the low-Re problem has been studied using two-

dimensional simulation (Blackburn and Karniadakis, 1993; Blackburn and Henderson, 1996). These studies showed a

reduced range of reduced velocities for significant amplitude response and a lower maximum amplitude [’ 0:6, similar

to the low-Re experimental maximum of Anagnostopoulos and Bearman (1992)]. This lower peak response is clearly

demonstrated in the ‘‘Griffin’’ plot of Govardhan and Williamson (2000), where peak amplitude is plotted against a

combined mass-damping parameter. All simulations or experiments at Re where the flow is two-dimensional showed

lower peaks, leading Govardhan and Williamson (2000) to conclude this was a Reynolds number effect, and also

leading them to imply that the upper branch does not occur at low Re, where the flow is two-dimensional. This

conclusion seems to be supported by the work of Blackburn et al. (2000), in which both two-dimensional and limited

three-dimensional simulations, as well as experiments, were performed at similar conditions. The three-dimensional

simulations matched the experiments well, whereas no amplitude branches were observed for the two-dimensional

simulations. This also led to the conclusion that two-dimensional simulations were inadequate for modelling higher-Re

vortex-induced vibration (VIV).

It is conjectured here that, while two-dimensional simulations cannot faithfully model the flow at Re4300, where the

flow is inherently three-dimensional, valuable information can be gained from simulations at Re where the flow is two-

dimensional that is still relevant at higher Re where the flow is three-dimensional. It is shown here that the first stages of

the upper and lower branch behaviour can be observed in two-dimensional simulations at Re ¼ 200, with supporting

evidence from the frequency, total phase, and instantaneous amplitude and phase behaviour. The timing of vortex-

shedding is also briefly investigated. It is concluded that the mechanism that causes the upper and lower branches is not

a product of three-dimensionality, although it may be amplified by three-dimensionality. It is hoped that this can

contribute not only to the increasingly important problem of low-Re VIV, but also to the understanding of the causes

underlying the higher-Re VIV behaviour.
2. Computational method

The incompressible Navier–Stokes equations were solved in an accelerated frame of reference attached to the

cylinder. An extra noninertial forcing term was introduced into the momentum equation which represented the

acceleration of the reference frame.

Due to the coupling between the fluid and the structural response of the cylinder, the convection term was treated

semi-implicitly. This was done by iterating through the three substeps (diffusion, pressure, and convection) and the

harmonic motion equation governing the structural response until the velocity and pressure fields, and cylinder motion

converged. Further details of the time-splitting method can be found in Karniadakis et al. (1991) and Thompson et al.

(1996).

A spectral-element technique was employed on a 508 macro-element mesh, with the majority of elements

in the boundary layer and wake regions. The geometry was split into quadrilateral elements, and within these

elements the velocity and pressure fields were represented by eighth-order tensor-product polynomials, associated

with Gauss–Lobatto–Legendre quadrature points. Details of this approach and implementation can be

found in Thompson et al. (1996). Freestream boundary conditions were applied at the inlet and sides of the

computational domain, a no-slip boundary was applied at the cylinder surface, and the normal velocity gradient set to

zero at the outlet.
3. Results

All of the results presented herein were obtained at Re ¼ 200, and at a mass ratio of m� ¼ m=mf ¼ 10, where

m is the mass of the cylinder system and mf is the mass of displaced fluid. The damping ratio, z ¼ c=ccrit, where c

is the damping coefficient, was set to z ¼ 0:01, resulting in a combined mass-damping of m�z ¼ 0:1. The use of a

combined mass-damping parameter has been shown to be of use down to very low values (Naudascher and Rockwell,

1994).
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3.1. Ranges of response regimes

The top plot of Fig. 1 shows A�max versus U�, where A� ¼ A=D with A the amplitude of response, and U� ¼ U=f ND

and f N is the cylinder natural frequency in the fluid, assuming an inviscid added-mass term applies. Inspection of this

plot shows no evidence of branching in the high-amplitude region, but instead shows a single contiguous variation with

slowly decreasing amplitude. The same plot of experimental results, as found in Khalak and Williamson (1999), clearly

shows the upper and lower branches.

However, this does not mean that there are not two branches present in the two-dimensional flow. The second plot of

Fig. 1 shows the peak lift coefficient, CLmax versus U�, where CL ¼ F lift=0:5rU2D and F lift is the instantaneous lift force

per unit length and r is the fluid density. This figure shows that the highest lift forces are experienced when

4:2oU�o4:7 and that a sudden drop in the peak lift force is experienced at the upper limit of this range. This indicates

that while there is not a great change in the peak amplitude of oscillation, there is a change in the very character of the

flow.

More evidence of this change of character is shown in the third plot of Fig. 1 where the standard deviation, s, of the
amplitude envelope obtained using a Hilbert transform [as described by Khalak and Williamson (1999)] plotted against
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

A
M

A
X

*

 0

 0.5

 1

 1.5

 2

 2.5

C
L

M
A

X

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 

 0.6

 0.8

 1

 1.2

 1.4

f*

 0

 40

 80

 120

 160

 3.5  4  4.5  5  5.5  6  6.5  7

 

U*

σ
φ

Fig. 1. Response for the elastically mounted cylinder for m� ¼ 10. From the top plot down: A�max; CLmax; s, the standard deviation of

the amplitude envelope obtained using a Hilbert transform; f �, normalized by f Nfluid
ð&Þ and f Nvac

ð’Þ; f, the average phase between
lift force and cylinder displacement. All are plotted versus U�. All parameters except for A�max show a distinct branch of response for

4:2oU�o4:7 shown by the shaded strip.
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U�. This shows that for U�44:7 in the high-amplitude regime the amplitude is very constant (indicated by the fact that

sI0). However, in the range 4:2oU�o4:7, s is significantly higher, indicating the amplitude varies over the history of

the flow. These extra pieces of information related to the amplitude of response show that while the peak amplitude

does not vary discontinuously over the high-amplitude regime, there are indeed two regions where the flow dynamics

are considerably different.

Other parameters, besides amplitude, show the same dual-regime behaviour. The fourth plot of Fig. 1 shows f �

plotted against U�, where f � ¼ f =f N and f is the primary frequency of response. The primary frequency of response was

defined as the frequency with the highest energy content from a spectrum of the response. Although only one frequency

is plotted for each value of U�, this should not be interpreted as if only this frequency is present in the response. In fact,

over the range 4:2oU�o4:7, multiple frequencies are present, and the spectra of response become more noisy with

increasing U� in this range. Similar behaviour was observed by Blackburn and Henderson (1996) in their chaotic

regime. This plot shows that in the range 4:2oU�o4:7 the primary frequency of response is consistently lower than

when U�44:7. A similar step in frequency is seen in the transition from the upper to lower branch at higher Re in the

experiments of Khalak and Williamson (1999). With this step in primary frequency, the spectrum of frequencies present

in the results also dramatically decreases, with effectively only a pure-tone response observed in the lower-type branch.

Also plotted on the same axes is f �, but normalized by the natural frequency in vacuo. It is shown that in the high-

amplitude regime, the frequency of response approaches the natural frequency in a vacuum.

A change in average phase behaviour is also observed as U� is increased beyond U� ¼ 4:7, as shown in the fifth plot

of Fig. 1. In the upper-type branch, where 4:2oU�o4:7, the average phase, fave is approximately 0�, whereas an almost

linear increase is observed in fave with increasing U� in the lower-type branch. It is conjectured that this increase is due

to a gradual change in the vortex-shedding timing. This conjecture is further investigated in Section 3.3. Higher-Re

experiments also uncover a change in average phase behaviour with the transition from the upper to lower branch.

However, experiments reveal a sudden jump in average phase of around 180�, rather than the gradual climb observed

here. Still, it is of note that both the higher-Re experiments and low-Re simulations show a distinct change in phase

behaviour over the high-amplitude region.

All of the parameters plotted in Fig. 1 show a high-amplitude regime, where the amplitude of response is significant,

and the shedding frequency moves away from f St, the shedding frequency of a fixed cylinder, towards f N . Except for the

peak amplitude of response, all these parameters show that this high-amplitude regime can be divided into two regions

with distinct behaviour, with the transition between the two ‘‘branches’’ occurring around U� ’ 4:7. Similar results

were obtained by Blackburn and Henderson (1996). They too observed two regions over the high-amplitude regime,

that they dubbed the chaotic regime and the synchronized regime, coinciding with the upper-type and lower-type

branches here. Similar trends in the mean amplitude, lift coefficient and frequency were observed during that study to

those presented here.

The plot in Fig. 1 of s against U� here further reinforces the fact that the response in the upper-type branch is far

from settled, and varies considerably over time. This variation is not even quasi-periodic, as the results in the following

section further demonstrate. Also, inspection of this plot along with the plot of A�max shows that it is in the region where

the amplitude is varying that the highest peak amplitudes are obtained.

Another unique result of this study is the plot in Fig. 1 of the average phase f against U� for two-dimensional flow at

low Re. This plot shows that although the flow throughout the upper-type branch can be described as chaotic, its

average phase is very close to zero. While this information can be valuable, it can be misleading to represent parameters

such as phase and frequency of oscillation by a single number, when such variation occurs. Therefore, examples of the

temporal variation of f are presented in the following section for cases in both the upper-type and lower-type branch.
3.2. Instantaneous behaviour

As well as changes in the time-averaged behaviour, the behaviour of the flow over time is distinctly different in the

upper-type branch compared to the lower-type branch. The upper-type branch is far from purely periodic, with large

variations in the oscillation characteristics over time. This branch also realizes the largest amplitudes of oscillations and

lift forces.

The amplitude history for U� ¼ 4:6, in the middle of the upper-type branch, is presented in the first plot of Fig. 2.

Inspection of this figure shows that while the peak amplitude reached is near the maximum peak amplitude for any

value of U�, the peak amplitude is only experienced intermittently. An almost-repetitive growth and decay cycle is

experienced that results in the higher values of s plotted in Fig. 1.

The second plot of Fig. 2 shows the instantaneous phase, f, over time, obtained through the use of a Hilbert

transform, for U� ¼ 4:6. It shows that while the average phase is close to zero, the phase is highly mobile, varying in line
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Fig. 3. Displacement history (top) and phase history (bottom) obtained using a Hilbert transform when U� ¼ 5:2, m� ¼ 10.
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Fig. 2. Displacement history (top) and phase history (bottom) obtained using a Hilbert transform when U� ¼ 4:6, m� ¼ 10.
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with the growth and decay of amplitude. It is unclear whether the amplitude controls the phase or the phase controls the

amplitude, with the two seeming to be coupled and each taking precedence at different times in the growth–decay cycle.

This variation disappears with transition to the lower-type branch. Fig. 3 shows the amplitude and phase history

when U� ¼ 5:0. The amplitude of oscillation is constant, and follows a sinusoidal history. Inspection of the phase

history clearly shows that all the variation present in the upper-type branch has been eliminated, with no growth–decay

cycle and a very constant phase.

While the growth and decay cycle present at U� ¼ 4:6 seems almost regular, it seems to be more than just a

superposition of frequencies causing beating. It is due to the interaction and coupling of the phase of shedding and the

amplitude of oscillation. This process is explained with reference to Fig. 4. Fig. 4(a) shows the wake when the amplitude

of oscillation is small, at t ¼ 300, where t ¼ tU=D is nondimensionalized time. The wake formed is narrow and the shed

vortices almost take on a single-row configuration.

Due to resonance, the oscillation grows over time, altering the timing of vortex-shedding and the wake configuration.

Fig. 4(b) shows the wake at t ¼ 350. The shed vortices take on a double-row configuration very close to the rear of the

cylinder.

The lateral spacing of the vortices in the double-row configuration continues to grow with increasing amplitude of

oscillation. This trend continues until a critical amplitude is reached. The critical amplitude in this situation is defined as

the amplitude at which the phase can no longer vary smoothly with increasing amplitude, and a sudden shift in phase of

vortex-shedding of around 180� occurs. This is realized as a sudden shift of the side of the cylinder from which vortices

are shed at a given point in the oscillation cycle. This sudden shift causes the wake to quickly become disordered, as is

observed in Fig. 4(c), at t ¼ 416.

The process of intermittent stages of order, with the wake approaching synchronization, and then disorder was

mentioned by Blackburn and Henderson (1996). The disordering of the wake causes a drop in lift force which causes a
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Fig. 4. The evolution of the wake over time when U� ¼ 4:6, m� ¼ 10. (a) With the amplitude of oscillation near its minimum at

t ¼ 300, the wake takes on a single-row configuration. (b) The amplitude of oscillation grows and the wake takes on a double-row

configuration such as this image taken at t ¼ 350. (c) At t ¼ 416 the wake quickly becomes disordered. (d) With the amplitude now

greatly reduced, the wake reverts to an organized single-row configuration, as it has in this image at t ¼ 450.
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drop in oscillation amplitude. With the amplitude of oscillation reduced, the wake regains its order, again in the single-

row configuration, as can be seen in Fig. 4(d). From this single-row configuration, the growth–decay cycle is free to

commence again.

3.3. Phase of shedding and vortex timing

As previously mentioned, the growth–decay cycle scenario does not occur in the lower-type branch. Instead, for a

given U�, the amplitude of oscillation and f, the phase between lift force and displacement, are constant over time.

While these quantities are fixed for a given U�, a smooth variation in both the A� and f is seen with increasing U�, as

re-examination of Figs. 1(a) and 1(e) will reveal.

As the mass ratio, m� ¼ 10, used throughout this study is relatively high, the added mass force will play a lesser role

than the vortex force, as defined by Govardhan and Williamson (2000) and Carberry et al. (2003). Therefore, the overall

phase will be primarily governed by the phase of vortex-shedding, or the timing of vortex-shedding with respect to the

oscillation cycle.

From the phase results shown in Fig. 1(e), it would therefore be expected that a gradual change in vortex-shedding

timing would be observed with increasing U�. This is, in fact, what is observed, as is illustrated in Fig. 5.

Fig. 5 shows instantaneous wake images for U� ¼ 5:0, 5:2, 5:4 and 5:6. At U� ¼ 5:0, with the phase near 0�, the shed

vortices take on a stable double-row configuration close to the rear of the cylinder. Increasing U� to U� ¼ 5:2 sees the

phase f increase, and the wake narrows, with the vortices forming into the double-row configuration approximately

three shedding cycles downstream. A further increase to U� ¼ 5:4 sees a further increase in phase, which further delays

the formation of the double-row configuration. With an increase to U� ¼ 5:6, a single-row vortex formation is seen to

persist for the entire length of the computational domain.

Interestingly, these stable intermittent phases of shedding are not observed in higher-Re experiments, as the phase

jumps relatively suddenly from ’ 0� to ’ 180� on transition from the upper to the lower branch (Khalak and

Williamson, 1999). The cause of this difference remains open to investigation.

3.4. Comparisons with branching at higher Reynolds number

From the results of the previous sections, it is clear that there are two regimes of high-amplitude response with respect

to U� when the flow is two-dimensional. Traditionally, the designations of upper and lower branches has been given to
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Fig. 5. Wake evolution as a function of U� in the lower-type branch: (a) U� ¼ 5:0 sees the shed vortices quickly arrange themselves

into a double-row configuration, (b) U� ¼ 5:2 sees the formation of the double-row configuration to be delayed, (c) U� ¼ 5:4 sees the

double-row configuration further delayed as the phase of shedding increases, (d) U� ¼ 5:6 results in the single-row configuration

persisting much further downstream.
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results from higher-Re experiments, where the peak amplitude response differs between the two branches. However,

many similarities exist between the two-dimensional and three-dimensional flow that suggests the double-branched

behaviour persists in both situations.

Firstly, it is reported that the upper branch in experiments is quite sensitive and unstable, often with it being observed

in intermittent bursts intermingled with periods of lower branch oscillation (Khalak and Williamson, 1999). The results

from Blackburn and Henderson (1996) and the extended results of the current study indicate that the upper-type branch

in two-dimensional flow is chaotic, with the amplitude of oscillation varying over time. Therefore, this intermittency of

the amplitude of response in the upper branches is shared between the two-dimensional and three-dimensional flow.

Leading on from this, Khalak and Williamson (1999) also noted that the lower branch is much more stable, and

‘‘remarkably’’ periodic. The results of this study show that the lower-type branch is also periodic, with literally no

deviation from a pure sinusoid seen in the amplitude response of the cylinder.

Secondly, the upper branch typically occurs over a narrow band of U�, at values of U� lower than those where the

lower branch occurs. The same behaviour, with respect to the ordering of the branches in terms of U�, is observed in the

current results for the two-dimensional flow.

Thirdly, the lower branch during experiments results in a 2P wake mode that is periodic. The two-dimensional flow

lower-type branch results in a 2S wake mode. A priori, this seems to be a major point of difference. However, the 2P

wake mode (if a spanwise mean is taken) and the 2S mode of the two-dimensional flow share the same symmetry group,

Z2, consisting of a half-period evolution and a spatial reflection about the wake centreline. Also, the 2S wake of the

two-dimensional flow can be very wide, meaning the only difference is that the vortical structures of the 2S wake do not

split in the near wake, as they do for the 2P wake (Govardhan and Williamson, 2000).

All of these similarities taken together seem to suggest that the beginning of the branching behaviour present in the

three-dimensional flow may have its roots in the two-dimensional flow.
4. Conclusions

It has been shown that even for low-Reynolds number two-dimensional flow, two regimes of synchronized response

exist during VIV. These regimes bear some resemblance to the upper and lower branch found in higher Re experiments

where the flow is inherently three-dimensional. Evidence for these regimes at low Re is not apparent in the peak
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amplitude of response, but is evident in the observed variation in amplitude over time. It is also found by examining the

magnitude of the lift force, the variation in primary oscillation frequency, and the variation in the phase between the lift

force and displacement with increasing U�. The similarities between the two-dimensional and three-dimensional flow

behaviour suggests that the three-dimensional flow branching behaviour has its genesis in the two-dimensional flow.

These observations shed light on the problem of low-Re VIV. They also suggest that the branching behaviour that is

so obvious at higher Re is not caused by the presence of three-dimensionality, but is enhanced by it.
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