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ABSTRACT 
 
The flow past a streamwise-rotating sphere is investigated numerically for Reynolds numbers (based on sphere 
diameter) in the range 10 < Re < 500, and dimensionless rotation speeds of 0 < Ω < 0.25. In particular, we focus on the 
influence of sphere rotation rates on the transition (or critical) Reynolds numbers. It is found that the transition to three-
dimensionality occurs at a Reynolds number, Re1, which is highly dependent on the rotation rate. Furthermore, the 
transition to unsteadiness, which is characterized by the presence of hairpin vortex shedding, occurs at higher Reynolds 
numbers for intermediate rotation rates. An interesting characteristic of the flow is the appearance of “frozen” vortex 
structures, which simply rotate in the wake without variation in shape or strength. These vortex structures are not 
observed for a stationary sphere. 
 
 
INTRODUCTION 
 
The flow over a rotating sphere is of great interest in many engineering applications, from particle transport and 
sedimentation processes to sports and the trajectories of spinning balls. In either case, it is extremely useful to know how 
rotation affects the motion of the object, which in turn requires knowledge of the forces acting on the body. For a non-
rotating sphere, the transitions to asymmetry (three-dimensionality) and unsteadiness are well documented. For 
example, Natarajan and Acrivos (1993) report a value of Re1 = 210 and Re2 = 277.5 from their linear stability analysis. 
However, their value of Re2 is not entirely accurate because the base flow used for the analysis was axisymmetric. 
Nonetheless, these results are in agreement with the values of Re1 = 212 and Re2 = 272 obtained by Thompson et al. 
(2001) who modeled the transitions by constructing Landau models and determining the coefficients. It should be noted 
that the majority of research concerning rotating spheres has focused on rotation about the axis transverse to the fluid 
flow. These studies have focused primarily on the drag and lift forces experienced by the sphere (see, for example, 
Barkla & Auchterlonie (1971), Tsuji et al. (1985), Oesterle & Bui Dinh (1999), Kurose & Komori (1999)). However, very 
few studies have dealt with spheres rotating about the streamwise axis. Schlichting (1979) points out that when Ω is 
increased, the line of laminar separation moves upstream, meaning that the centrifugal forces acting on the fluid particles 
rotating with the sphere in its boundary layer have the same effect as an additional pressure gradient directed towards 
the plane of the equator. Kim and Choi (2002) numerically simulated the laminar flow past a streamwise-rotating sphere 
at Reynolds numbers of Re = 100, 250 and 300 and sphere rotation rates of 0 ≤ Ω ≤ 1. Along with the usual two-tail wake 
and hairpin vortex shedding for stationary spheres, they found that with streamwise rotation a “frozen” state of the flow 
could be observed. This frozen state was detected at Ω = 0.5 and 0.6 for Re = 300, and at Ω = 0.1 and 0.3 for Re = 250. 
Furthermore, at Re = 250, the flow became unsteady for all the rotational speeds investigated. However, no attempt was 
made to investigate the effect of different rotation rates on the wake transitions, which is the main focus of this study. 
Some of the results reported here, as well as additional data concerning the effect of non-streamwise rotation rates, were 
first presented in Pregnalato et al. (2001). 
 
 
NUMERICAL METHOD 
 
The flow past a rotating sphere is investigated in the Reynolds number range 10 < Re < 500, with rotation rates varying 
in the range 0 < Ω < 0.25. This particular parameter regime was chosen because the flow phenomena of interest, namely 
the transitions to asymmetry and three-dimensionality, are well documented in this regime. Furthermore, many results 
(such as lift, drag and Strouhal number) are available for a stationary sphere (Ω = 0) that provide a basis from which to 
compare the present results. 
 

 
Figure 1. Vortex structures in the wake of a streamwise rotating sphere: Re = 260, Ω = 0.05. 
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Figure 2. Force coefficient history for Re = 240, Ω = 0.15: (a) Cd time history; (b) Cy and Cz time histories. 
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Figure 3. Re = 260, Ω = 0.10: (a) Cy-Cz phase plot; (b) history of angle of lift coefficient, β. 
 
A three-dimensional spectral element/spectral method is used to simulate the viscous, incompressible flow past a 
streamwise-rotating sphere. Eighth-order tensor-product Lagrange polynomials were used as the interpolating functions 
in each element. A detailed mesh-independence study was performed and is described in Pregnalato et al. (2001). 
 
The fluid forces acting on the sphere were computed according to the relation 

α α α= − +∫ ∫F e n n eττττ      
S S

p dS dS , 

where α denotes the spatial coordinate of interest, i.e. x, y or z. When normalized by 1/8ρπU2d2, the force coefficients Cx 
(or CD), Cy and Cz are obtained, known as the drag, lateral and side force coefficients respectively. Similarly, the lift 
coefficient CL is defined as the magnitude of the lateral and side force coefficients, i.e. CL

2 = Cy
2 + Cz

2. 
 
The (dimensionless) sphere rotation rate is defined as 
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where Ω* is the (streamwise) angular velocity of the sphere in rad/s. Vortex structures in the wake of the sphere are 
visualized by the method of Jeong and Hussain (1995). 
  
 
RESULTS 
 
Given the amount of studies concerning rotating spheres, it is somewhat surprising to note that there is a significant lack 
of data concerning a streamwise-rotating sphere. As outlined in the Introduction, previous research regarding spheres 
rotating about the streamwise axis concentrated on the relationship between the rotation speeds and the fluid forces 
acting on the sphere. Although Kim and Choi (2002) investigated the effect of streamwise rotation on the drag, lift and 
vortical structure characteristics for select Reynolds numbers, no attempt has been made as yet to describe the 
relationship between rotation rates and the wake transitions over a large range of Reynolds numbers, which is the focus 
of the present study. 
 
Different views of the vortex structures in the wake of the rotating sphere are shown in Figure 1 for a streamwise rotation 
rate of Ω = 0.05 and for Re = 260. At this Reynolds number, the wake has become asymmetric, and exhibits a two-tail 
structure well documented in experiments. However, in this case the wake is no longer planar-symmetric, and the two 
tails have become skewed with respect to the streamwise axis. Furthermore, the strength of one tail has become greater 
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than the other. Due to the no-slip condition on the surface of the sphere, it is evident that fluid passing over the surface of 
the sphere attains the strong azimuthal velocity of the sphere. This serves to increase the strength of the streamwise 
vorticity that acts in the same direction as the rotation of the sphere, and annihilates the streamwise vorticity that is in the 
opposite direction of rotation. This leads to two counter-rotating vortices of dissimilar strength, and causes them to 
migrate away from the flow centreline due to their mutual vortical interaction. However, for this particular case, the flow is 
unsteady, although vortex shedding is not observed. This represents an example of a “frozen” flow, a term first coined by 
Kim and Choi (2002) to characterize a flow in which the vortex structures, although maintaining the same shape and 
strength for all time, rotate about the streamwise axis at an angular velocity different to that of the sphere. This is evident 
in the time histories of the fluid force coefficients shown in Figure 2 and discussed in the next section. 
 
If the rotation rate is low enough (Ω < 0.15), as in Figure 1, then a two-tail wake structure is observed. However, for 
higher rotation rates, the intensity of the stronger vortex completely overwhelms the weaker vortex and a single tail is 
observed immediately adjacent to the wake centreline. Figure 2 depicts the time variation of the drag, lateral and side 
force coefficients for Re = 240 and Ω = 0.15. The simulation was initialized with the corresponding solution for a 
stationary sphere at the same Reynolds number. The drag coefficient remains constant in time, whereas the lateral and 
side force coefficients are sinusoidal with a frequency of StF = 0.017. Note that StF is a frequency based on the “frozen” 
state of the flow and is different to the Strouhal frequency, St, associated with vortex shedding. Since the time-averaged 
lateral and side forces are zero, the vortical structure in the wake simply rotates in a frozen state without temporal 
variation of its shape or strength. This previously unobserved flow phenomenon was first reported by Kim and Choi 
(2002) and the present results provide the first independent verification of such a flow feature for the spinning sphere. 
 
Further information regarding the net lift may be obtained from the Cy – Cz phase plot. An example is shown in Figure 3a 
for a typical frozen flow, in this case at a Reynolds number of Re = 260 for a rotation rate of Ω = 0.10. Note that the net 
lift CL is the distance from the origin to the curve. Because the curve is a perfect circle, it is evident that the net lift is 
constant, even though the time-averaged lateral and side force coefficients are zero. Also, in general, the rotation rate of 
the vortical structures is different to that of the sphere. This may be observed by recording the time history of the lift 
angle β, which is plotted in Figure 3b. The angular velocity of the frozen vortical structures in the wake is determined by 
the slope of β, i.e. ΩL ≡ angular velocity of frozen vortical structures = dβ/dt in rad/s. In this example, the frozen vortex 
structures are rotating at a dimensionless angular velocity of ΩF = 0.034, whereas the sphere is rotating at Ω = 0.10. 
Continuing with this Reynolds number of Re = 260, we find that increasing the rotation rate serves to increase the 
rotation rate of the frozen vortical structures, in an almost one: one correspondence. In other words, doubling the rotation 
rate of the sphere will double the rotation rate of the frozen vortical structures as well, assuming that the flow is still 
frozen at these higher angular velocities. 
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Figure 4. Time histories of β for Re = 400: (a) Ω = 0.05; (b) Ω = 0.10; (c) Ω = 0.20; (d) Ω = 0.25. 
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Figure 5. Critical Reynolds numbers as a function of sphere rotation rate: (a) transition to asymmetry; (b) transition to 
unsteadiness. 
 
At a Reynolds number of Re = 400, for all rotation rates investigated (including zero rotation), the flow field is unsteady, 
asymmetric and well within the vortex shedding regime. Figure 4 shows typical time histories of the angle of lift β for 
different rotation rates. At low rotation rates, it is clear that vortices are being shed azimuthally in an aperiodic fashion, 
and hence ΩL is not constant. However, as the rotation rate increases, the flow becomes more organized, and the vortex 
structures are shed with a relatively constant angular velocity. It appears that increasing the rotation rate further will lead 
to the appearance of frozen vortical structures at these higher Reynolds numbers, which is a topic of further study. Note 
that for all rotation rates investigated, there is no preferred angle of vortex orientation. 
 
The transition to asymmetry, which occurs at a critical Reynolds number Re1, is shown in Figure 5a. Also illustrated is the 
second transition to unsteadiness (Figure 5b), which occurs at a critical Reynolds number Re2. Note that Re2 in this 
sense denotes the Reynolds number at which vortex shedding first occurs and not necessarily the onset of time-
dependence (since the frozen fields observed in Figure 2 are time-dependent although vortex shedding is not observed). 
This makes it somewhat easier to compare the present results concerning the wake transitions to that of a stationary 
sphere. It is apparent that for rotation rates less than Ω = 0.2, the flow becomes asymmetric at a critical Reynolds 
number in the range 220 < Re1 < 240. For Ω ≥ 0.2, the transition occurs in the Reynolds number range 200 < Re1 < 220. 
For a stationary sphere, this transition occurs at a Reynolds number of Re1 ≈ 212. Furthermore, vortex shedding first 
occurs in the range 260 < Re2 < 280 for rotation rates of Ω = 0.05, 0.20 and 0.25, which is close to the value of Re2 ≈ 272 
for a stationary sphere. However, for rotation rates of Ω = 0.10 and 0.15, the transition occurs in the Reynolds number 
range 280 < Re2 < 300. 
 
CONCLUSION 
 
The flow past a streamwise-rotating sphere was investigated numerically using a three-dimensional spectral 
element/Fourier method developed for axisymmetric geometries. Dimensionless sphere rotation rates of 0.05 < Ω < 0.25 
were investigated for the first time in the Reynolds number range 10 < Re < 500. It was discovered that in general, 
depending on the magnitude of streamwise rotation, the transition to asymmetry was delayed and the transition to 
unsteadiness occurred in the range of Reynolds numbers in which unsteadiness for a stationary sphere also occurs. 
Furthermore, the vortex structures in the wake are greatly affected by the rate of rotation. 
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