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Abstract

A Navier-Stokes solver coupled with the k-ω turbulence model
is developed to solve the unsteady flow through an oscillating
turbine cascade. Calculations are performed in parallel in a
time-accurate manner. A coupled simulation is performed for
the Isogai wing model.

Introduction

Aeroelasticity in turbomachinery has been recognised as one of
the most important problems presently facing the designers of
turbomachinery blades [18]. The structural instability is due
to the interaction between the unsteady aerodynamics and the
structural dynamics of the blades. As the demand for lighter
and more efficient machines develops, engineers seek to design
blades that are increasingly more slender and subject to greater
loading. As a consequence, turbine blades are more likely to
be subject to the effects of dynamic loading due to unsteady
aerodynamics. The coupling between the fluid and structure
can lead to blade failure if, in the design phase, attention is not
paid to the aeroelastic effects in the turbomachinery blade rows.

Although there have been a large number of 2-dimensional stud-
ies into unsteady aerodynamics in turbomachinery, these omit
important 3-dimensional viscous and other effects. There are a
number of review papers in the literature that list both compu-
tational and experimental simulations of aeroelasticity in turbo-
machinery [6, 18, 15, 19]. Whilst experimental studies play an
important role in research into this phenomenon, computational
simulations provide a number of key advantages. These include
the ability to represent the flow over the whole flow-field at sig-
nificantly lower cost. Thus results may be studied in detail, pro-
viding insights into flow behaviour and flow structures. In gen-
eral, computational studies of unsteady aerodynamics require
resources that are well beyond a single processor. However the
development of multiple processor systems has greatly reduced
simulation times through the calculation of problems in parallel.

The solution of field and fluid problems lend themselves easily
to solution in parallel, as the computational domain may be di-
vided into blocks and the field equations solved for each block
on separate processors. A 3-dimensional unsteady Navier-
Stokes code has been developed from code that calculated the
steady state solution for single blade passages in turbine cas-
cades [12, 14, 13]. The new implementation includes an un-
steady solver, moving grid, multiple processor capability and
structural model. The code has been described previously in
more detail and validated [16]. The results presented are for
both coupled and uncoupled configurations. In the first case
modal equations are solved to simulate fluid structure interac-
tion. The second case is a turbine model where the motion is
prescribed.

Ultimately the code is intended to model 3-dimensional coupled
aeroelasticity; however the present results will be used to vali-
date and evaluate the effectiveness of the unsteady and moving

grid parts of the fluid dynamics code.

Governing Equations and Numerical Method

The fluid field equations solved are the 3-dimensional, Favre-
averaged Navier-Stokes equations coupled with the energy
equation, and Wilcox’s [20] k-ω turbulence model for closure.
These are descretized on a structured hexahedral grid using
the finite-volume representation. Artificial diffusion is used to
suppress oscillatory behaviour in the flow field [8]. The up-
wind method of discretisation is employed for the convective
terms of the k-ω turbulence model [14]. Both sets of equa-
tions are solved explicitly in a strongly-coupled manner through
a 5 stage Runge-Kutta scheme. The time-accurate unsteady
solution is found through Jameson’s fully implicit dual time-
stepping scheme [9, 1, 2].

The structural equations for the coupled spring mass system are
decoupled using modal analysis. These are then reduced to or-
dinary differential equations and are solved using the same 5
stage Runge-Kutta scheme as for the flow solver. Details of the
implementation may be found in the aforementioned references
and in [16].

Moving Grid

The moving grid is implemented through transfinite interpola-
tion. This method has the ability to regenerate the new grid at
relatively low computational cost. It also has the advantage that
for internal boundaries the grid remains continuous over the in-
terfaces, whilst only the change in position of the corner points
is required for the complete specification of the grid on a face.
Thus the grid may be deformed throughout the fluid domain
with the minimum of communication between blocks.

The geometry of the block structure is stored on the master pro-
cessor. To maintain global grid uniformity Batina’s spring net-
work analogy [3] is used to define the corner points of the block.
Each edge of the blocks is treated as a spring with its stiffness
inversely proportional to its length. The location of each free
internal corner of each block is determined through an iterative
algorithm that establishes the equilibrium position of the nodes.
Additional springs diagonally connect the corners within each
block for additional control of grid deformation.

The moving grid method has been successfully applied to the
modelling of aeroelasticity in wings [21, 11] and in two di-
mensional analysis of turbine aeroelasticity [17]. Details of the
method and its implementation have been previously presented
[21].

Parallel Implementation

The specific parallel implementation has been carefully consid-
ered to maximise code efficiency and flexibility. While each
block consists of a structured grid, the blocks can be connected
to each other in an unstructured manner, although the grids must



be matched at the block interfaces. Efficient load balancing
may be achieved by allocating more than one block to a sin-
gle processor, with the objective that each processor computes
approximately the same number of cells. Boundary conditions
are separately specified for each block. The ghost cells are up-
dated through the transfer of cells from neighboring blocks or
by applying the corresponding boundary condition. The Mes-
sage Passing Interface (MPI) is used to transfer variables be-
longing to boundary cells between neighboring blocks.

A number of high level MPI algorithms are exploited in the im-
plementation. The interfaces between blocks are treated in a
semi-structured manner. Each interface is represented as a sub-
face of a block face. Within each sub-face the cells are stored as
a 2-dimensional array and the transfer of cells is performed by a
direct copy from the flow array to the MPI buffer. The new im-
plementation is intended to increase code efficiency while also
decreasing code complexity.

A multi-grid method is used to accelerate convergence as the
governing fluid equations are solved in quasi-time. Each multi-
grid level is solved simultaneously, before the flow-field is in-
terpolated to the next coarsest grid, or the residual is transferred
to the next finest grid. At each level, boundary information is
transferred between blocks so that boundary conditions may be
updated.

Within the flow code, the solver module only requires informa-
tion about the present block. This primarily involves the old
solutions and boundary condition information. The implemen-
tation is therefore relatively compact and extremely flexible, the
only drawback being the detail required in the boundary condi-
tion definition. The boundary conditions are defined only for the
fine grid and the boundary condition information for the other
grids in the multi-grid sequence is calculated internally.

Coupled Airfoil Model

With the integration of the structural solver, it was necessary to
validate the implementation of the coupled model. The Isogai
wing model [7] is a simple case that exhibits unsteady fluid-
structure interaction and has proved useful in testing numerical
models. It has been used previously by other researchers where
the mesh moved in a rigid fashion [1]. The structural parameters
for the case were chosen to simulate the vibrational characteris-
tics of a swept back wing that are often used in military fighter
aircraft.

The model is shown in Figure 1. Note the springs attached to
both the plunging and pitching axes and the axis of rotation is
actually well forward of the airfoil leading edge. Initially the
airfoil is forced to oscillate for one period in pitch and then re-
leased. Once released the structural equations are applied to
ascertain the new airfoil location at every time step. The aero-
dynamics force the response of the structural system. Inner it-
erations are used whereby the structural equations are updated
within each real fluid time step. The initial oscillation was nec-
essary to perturb the model from rest, as some disturbance is
required to move the model from a stable configuration.
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Figure 1: Isogai wing model

The important parameters for this simulation are the free stream
Mach number Ma and the flutter velocity V f . The flutter veloc-
ity is defined,

V f
� U∞

bωα
�

µ �
(1)

This is used to determine the effect of freestream velocity U∞ on
the stability and involves the ratio of fluid momentum to struc-
tural inertial terms,

µ �
m

πρb2 �

the airfoil chord b, the fluid density rho and the structural natu-
ral frequency ωα.

Results for the flutter boundary are shown in Figure 2 and com-
pare well with those of Alonso [1]. The flutter boundary is de-
fined as where the amplitude of oscillation neither increases nor
decreases with time. Simulations where carried out at fixed far
field Mach number while the flutter velocity was varied. Each
point required about five simulations to locate the flutter bound-
ary. The line of best fit indicates the flutter boundary for the
model.
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Figure 2: Flutter boundary for Isogai wing model

2-d Turbine Simulation

The geometric complexities and difficulties associated with the
flow regime have led researchers in the field of experimental
research to simplify and model aeroelastic and unsteady flows
for turbomachinery, rather than take measurements on full scale
machines. This results in experimental conditions that are bet-
ter controlled and thus provides data that may be more easily
analysed. Initially ten standard test case configurations [4] were
compiled to accommodate a need for the research community to
validate numerical models and to better understand the physics
of the phenomenon.

In the study of turbomachinery, symmetry allows each blade
row to be considered as a cascade in two or three-dimensions.
Lane [10] was one of the first to identify and simplify the vibra-
tional characteristics of turbine rotors. He reduced the number
of possible system modes to one by considering a single equiva-
lent blade. In this assumption the blade vibrational mode shape
for each blade in the rotor is identical, with a phase shift be-
tween adjacent blades. The shape of the mode may be quite
complex in that it involves a combination of bending and twist.



One result of this analysis is that the phase shift between blades,
known as the inter-blade phase angle (IBPA) must be a multiple
of the circumferential angle between blades. For a finite rotor,
there are a finite number of possible IBPA’s. This is due to the
fact that a single blade must be in phase with itself in sustained
vibration. The analysis was applied to compressor blade rows,
but may be equally be applied to turbine blade rows.

In the computational model, assuming a particular IBPA allows
a reduced number of blade passages to be considered. For ex-
ample, for an IBPA of 90 degrees, four passages would be mod-
elled with periodic conditions applied at the boundaries of the
upper-most and lowest passages.

An example of two passages is shown in Figure 3. The grid was
generated by assuming a spring network analogy and enforcing
orthogonality at the blade surfaces. Geometric stretching was
applied in the blade to blade direction and hyperbolic tangent
stretching in the stream-wise direction between the blades. This
produced an orthogonal H-grid.

Figure 3: Geometry and computational grid for simulation of
Standard Test Case 4

The Standard Test Case 4 is described as a cambered turbine
cascade in transonic flow [4]. The experimental apparatus is an
annular cascade and unsteady measurements were taken at mid-
span at a variety of inlet and outlet conditions and IBPA’s. Other
authors have performed 2-dimensional simulations of this case
[5] and made comparisons between Navier-Stokes calculations
with the Baldwin-Lomax turbulence model and inviscid Euler
simulations.

The same 2-dimensional simulation for the sub-case Test 552-
B was performed with the present method both for the Navier-
Stokes with k-ω turbulence model and inviscid Euler solvers.
The case involves a simulated bending mode that is modelled
by a periodic translation of the blades at an angle of 63 degrees
from the axis, at a reduced frequency of kc

� 0
�
1187 and an

amplitude of bc
� 3

�
8 � 10 � 3 non-dimensionalised with chord.

Results are presented in Figure 4 for magnitude and Figure 5
for phase for the pressure coefficient for an IBPA of 180 de-
grees. These compare well with those presented by previous
authors. The case is 2-dimensional and this was performed in
the 3-dimensional code by using a small number of cells in the
span-wise direction and applying inviscid boundary conditions
at the hub and casing surfaces.

The unsteady surface pressure coefficient is defined as,

c̃p
� p̃

�
x � t �

bc
�
p0 � p � (2)

where p̃
�
x � t � is the unsteady pressure, p0 is the total pressure

defined at the inlet and p is the static pressure defined at the
cascade inlet.
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Figure 4: Magnitude of unsteady pressure coefficient for Test
552-B
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Figure 5: Phase of unsteady pressure coefficient for Test 552-B

Conclusions

A Navier-Stokes code has been developed to model aeroelas-
ticity in turbomachinery. Two cases have been presented to
demonstrate the ability of the code to model coupled structural
fluid interaction and unsteady fluid dynamics. It is planned in
the future to develop the code further to model 3-dimensional
aeroelasticity. The 3-dimensional simulations require minimal
changes to the code as the 3-dimensional geometry and govern-
ing equations are already implemented.
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