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a b s t r a c t

While the flow-induced vibration (FIV) of a circular cylinder has been characterised in
considerable detail, the FIV of elliptical cylinders has not received similar attention. This
study investigates the dynamic response of elastically-mounted elliptical cylinders with
various cross-sectional aspect ratios (or elliptical ratios) in a free stream. The elliptical
ratio is defined by ϵ = b/a, where a and b are the streamwise and cross-flow dimensions,
respectively, of the cross section of a cylinder placed at zero incidence angle. The elliptical
ratios tested were in the restricted range of 0.67 ⩽ ϵ ⩽ 1.50, which was designed to
achieve some but not too large a geometric deviation from a circular cylinder. The fluid–
structure system was modelled using a low-friction air-bearing rig in conjunction with
a free-surface recirculating water channel facility. This experimental set-up yielded very
lowmass and damping ratios. The FIV response was characterised as a function of reduced
flow velocity. The results showed that the ellipses exhibited different response regimes as
ϵ varied. Surprisingly, for the lowest elliptical ratio ϵ = 0.67, there existed two separated
lock-in regimes. However, for ϵ ⩾ 0.80, lock-in occurred over only a single reduced velocity
range that was characterised by different response regimes. As ϵ was increased above
unity, lock-in tended to occur at considerably lower reduced velocities than for the circular
cylinder case. Moreover, the peak vibration amplitude increased with the elliptical ratio.
This means that the body vibration is enhanced, rather than attenuated, as the afterbody is
reduced for an ellipse.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-induced vibration (FIV) of structures is of great interest in a large variety of engineering applications, due to its
being both a potential energy harvesting source (seeWang et al., 2017; Soti et al., 2018) and as an undesirable phenomenon
that can result in structural fatigue and even lead to catastrophic failures (e.g. the collapse of the original Tacoma Narrows
Bridge in 1940). In the last half century, extensive investigations have been motivated to characterise, predict and control
flow-induced vibration, as collected in the review articles of Bearman (1984), Sarpkaya (2004), Williamson and Govardhan
(2004), Gabbai and Benaroya (2005) and the books of Blevins (1990), Naudascher and Rockwell (2005) and Païdoussis et al.
(2010).

The circular cylinder has been adopted as the canonical model in numerous studies of the FIV subject (e.g. Brooks, 1960;
Feng, 1968; Khalak and Williamson, 1996; Govardhan and Williamson, 2000; Carberry et al., 2005; Morse and Williamson,
2009; Zhao et al., 2014a, to only name a few), owing mainly to its geometric simplicity and symmetry and also practicality
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in engineering applications (such as offshore pipelines and oil risers, transmission cables, wind turbine towers, and cooling
tubes in nuclear power plants). From the fundamental point of view, the axial symmetry allows one form typical of FIV,
vortex-induced vibration (VIV), to be studied independently from other forms of FIV, e.g. galloping. VIV is linked to vortices
shed periodically from both sides of an elastic or elastically-mounted body, which in turn exert oscillating pressures on the
body to cause structural vibration. If the vortex shedding frequency is near the natural frequency of the structural system, a
nonlinear resonance phenomenon known as synchronisation (or ‘‘lock-in’’) can be encountered with large-amplitude body
oscillations. It has been shown that the synchronisation range depends on the mass and damping ratios (see Feng, 1968;
Khalak andWilliamson, 1996; Govardhan andWilliamson, 2006). Here the mass ratio (m∗) is defined as the ratio of the total
oscillating mass (m) to the displaced fluid mass (md), namely m∗

= m/md. On the other hand, however, a structure that
lacks axial symmetry (e.g. ice-coated transmission cables in winds Den Hartog, 1932) may be susceptible to galloping, as
opposed to, or in a combination with, VIV (see Bearman et al., 1987; Nemes et al., 2012; Zhao et al., 2014b, 2018c). Galloping
is often referred to as an aeroelastic instability that is caused by changes in the relative incidence angle induced by the body
motion resulting in aerodynamic forces in the same direction as the body motion (Naudascher and Rockwell, 2005). The
studies of Nemes et al. (2012) and Zhao et al. (2014b) investigating the influence of angle on the transverse FIV of a square
cylinder with low mass–damping ratios suggested that the afterbody (i.e. the structural part of a body downstream of the
flow separation points) and the flow separation points were the key factors resulting in different vibration responses of
VIV, galloping, and combined VIV and galloping. More recently, Zhao et al. (2018a) have shown in their study of D-section
cylinders that an afterbody plays an important role affecting the FIV response, but it is not essential for VIV at lowmass and
damping ratios. Of interest to the present study is the transverse FIV response of elliptical cylinders with cross-sectional
aspect ratios (or elliptical ratios) near unity that exhibit some but not too large a geometric deviation from the circular
cylinder and thereby the afterbody is changed to some extent. This would also be of interest from the practical point of view
as engineering applications often involve flow past elliptical or elliptical-like structures, such as wings and turbine blades.
It should be noted that in the present study the elliptical ratio is defined by ϵ = b/a, where a and b are the streamwise
and cross-flow (transverse) dimensions, respectively, of an ellipse placed at zero incidence angle; for a circular cylinder, ϵ is
equal to 1, with a and b being the cylinder diameter.

To date, while flow past stationary elliptical cylinders has received considerable attention, very little work has been
conducted on the FIV of elliptical cylinders. Many previous studies, including (Lindsey, 1938; Ota et al., 1987; Nair and
Sengupta, 1997; Johnson et al., 2004; Kim and Sengupta, 2005; Kim and Park, 2006), have shown that the pressure
distributions, fluid forces and the vortex shedding frequency are greatly influenced by the aspect ratio, flow incidence angle
and the Reynolds number. Note that the Reynolds number in this study is defined by Re = Ub/ν, where U is the free-stream
velocity and ν is the kinematic viscosity of the fluid.Moreover, thewake structure and instability have also been investigated
via low-Reynolds-number (≲ 400) numerical simulations by Johnson et al. (2004), Sheard (2007), Thompson et al. (2014),
Leontini et al. (2015) and Rao et al. (2017) showing that a rich variety of wake modes and transitions are encountered as
the geometric shape, orientation and the Reynolds number are changed. In the case of transversely oscillating elliptical
cylinders, Okajima et al. (1975) measured the aerodynamic forces and pressures exerted on an elliptical cylinder of ϵ = 0.2
undergoing driven oscillations over a wide range of Reynolds numbers from 80 to 20 000. In their numerical simulations,
D’Alessio and Kocabiyik (2001) showed that the wake patterns and fluid force coefficients of a driven elliptical cylinder
of ϵ = 2 were dependent on the inclined angle and the forcing oscillation frequency ratio. Franzini et al. (2009) found in
experiments that the peak vibration amplitude of an elliptical cylinder undergoing VIV was considerably lower than that of
a circular cylinder for 2000 ⩽ Re ⩽ 8000. Yogeswaran et al. (2014) numerically investigated the VIV of elliptical cylinders
with 0.7 ⩽ ϵ ⩽ 1.43 andm∗

= 10 in laminar flows (60 ⩽ Re ⩽ 140), and found that the peak vibration amplitude increased
with ϵ. More recently, Leontini et al. (2018) presented a parametric study, again at a low Reynolds number of Re = 100, to
characterise the FIV response and wake modes of an ellipse of ϵ = 1.5 with a low mass ratio of m∗

= 1 as a function of the
angle of attack (0◦ ⩽ α ⩽ 90◦) and flow reduced velocity (2 ⩽ U∗

= U/(fnb) ⩽ 14, with fn the natural frequency).
In summary, the previous studies, mostly of low-Re numerical simulations, have shown that the FIV response of elliptical

cylinder is strongly dependent on a number of factors, including the aspect ratio, reduced velocity, Reynolds number and
mass ratio. However, a clear gap in the literature is the lack of detailed knowledge of the FIV response of ellipses at moderate
Reynolds number. This study aims to provide a better understanding of the influence of the geometry of elliptical cylinders
on the structural response, by varying the elliptical ratio. This study therefore aims to experimentally examine the dynamic
response of low-m∗ elliptical cylinders with various aspect ratios (0.67 ⩽ ϵ ⩽ 1.50) as a function of reduced velocity at
moderate Reynolds number.

The article proceeds by describing the experimental method in Section 2. The results and discussion on the dynamic
responses are presented in Section 3. Finally, conclusions are drawn in Section 4.

2. Experimental method

2.1. Modelling of the fluid–structure system

A schematic of the one-degree-of-freedom (1-DOF) transverse FIV of an elliptical cylinder is shown in Fig. 1. The body
dynamics is governed by the linear second-order oscillator equation

mÿ(t) + cẏ(t) + ky(t) = Fy(t) , (1)

wherem is the total oscillating mass of the system, c is the structural damping of the system, k is the spring constant, y(t) is
the body displacement, and Fy(t) represents the transverse fluid force.
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Fig. 1. A definition sketch of the problem studied: an elliptical cross-sectional cylinder constrained to oscillate across the free stream.

Table 1
The experimental parameters of the elliptical cylinders used in the present study.
ϵ a [mm] b [mm] m [g] md [g] fna [Hz] fnw [Hz] ζ

0.67 30.00 20.00 1729.2 288.2 0.690 0.616 0.95 × 10−3

0.80 25.00 20.00 1442.4 240.4 1.039 0.940 1.03 × 10−3

1.00 25.00 25.00 1799.3 300.6 0.554 0.514 1.29 × 10−3

1.25 20.00 25.00 1442.4 240.4 1.039 0.972 1.07 × 10−3

1.50 16.67 25.00 1201.8 200.3 1.137 1.086 1.22 × 10−3

2.2. Experimental details

The fluid–structure systemwasmodelled based on a low-friction air-bearing system in conjunctionwith the free-surface
recirculating water channel of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash University. The
test section of this water channel has dimensions of 600 mm in width, 800 mm in depth and 4000 mm in length (Zhao et al.,
2014a,b).

In the present study, five elliptical cylinders with the elliptical ratio (ϵ = b/a) ranging from 0.67 to 1.5 were tested.
These rigid cylinder models were made from aluminium, using precision computer numerical control (CNC) and electrical
discharge machining (EDM) to manufacture elliptical cross-sectional profiles with a tolerance of ±0.010 mm. The cylinders
were hard anodised against water corrosion. The immersed length of the cylinder was L = 614 mm, giving an aspect ratio
(L/b) greater than 24.0. The total oscillatingmass (m) and the displacedmass of the fluid (md = ρπabL/4, with ρ the density
of water) for all the cylinder cases are given in Table 1. The mass ratio, defined by m∗

= m/md, was set equal to 6.0 for all
the cases. This was limited by the minimum achievable value of the thinnest ellipse. The test cylinder model was vertically
adapted to a low-friction air bearing rig, which was placed atop and transverse to the water channel. More details of the
air-bearing system can be found in the related studies of Wong et al. (2017, 2018), Zhao et al. (2018a,b) and Sareen et al.
(2018a,b,c). The opposite free ends of the cylinder models were set to have a small clearance (≈ 1mm) above a conditioning
platform to reduce end effects (see Khalak and Williamson, 1996; Zhao et al., 2014b, 2018a).

The natural frequencies of the system were measured by conducting free-decay tests individually in air and in quiescent
water. Table 1 shows measurements of the natural frequencies in air (fna) and in water (fnw), together with the structural
damping ratio and the cross-sectional dimensions of the ellipses tested. It should be noted that the damping ratio is
determined with consideration of the added mass (mA) by ζ = c/2

√
k(m + mA), in which mA = ((fna/fnw)2 − 1)m.

Accordingly, the spring constant and damping factor could be determined by k ≃ (2π fna)2m and c = 2
√
kmζair , respectively,

where ζair is the structural damping ratio in air.
To measure the cylinder displacement, a non-contact digital optical linear encoder (model: RGH24; Renishaw, UK)

was used, which had a resolution of 1 µm and a linear measurement range of ±200 mm. For a vibrating cylinder, while
the streamwise fluid force (Fx) was measured directly using a customised force balance, the transverse lift force (Fy) was
determined based on Eq. (1), where the body velocity and acceleration (ẏ and ÿ)were derived from the cylinder displacement
(y). Validations of this method can be found in Zhao et al. (2014b, 2018b). The signals of the body displacement and fluid
forces were acquired simultaneously at a sampling frequency of 100 Hz for 300 s (more than 100 vibration cycles). The
reduced velocity, given by U∗

= U/(fnwb), was investigated over the range of 1.6 ⩽ U∗ ⩽ 14, where U is the free-stream
velocity. The free-stream velocity was varied in the range of 43 ≲ U ≲ 322 mms−1, with the turbulence level less than 1%.
The corresponding Reynolds number range was 860 ⩽ Re ⩽ 8050.

3. Results and discussion

While the focus of the present study aims to examine the FIV response of elliptical cylinders with low elliptical ratios
(0.67 ⩽ ϵ ⩽ 1.50), this section presents analytical results of the dynamic responses, including the structural vibration
amplitude and frequency responses, and the fluid forcing components, as the elliptical ratio varies.
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Fig. 2. The normalised amplitude and the logarithmic-scale normalised frequency PSD contours as a function of the reduced velocity for various elliptical
ratios. The vertical dashed lines represent boundaries of response regimes in (b–f), while the horizontal dashed line represents fnw . IB: the initial branch,
UB: the upper branch and LB: the lower branch.

Fig. 2 shows the normalised vibration amplitude (A∗

10) response together with the normalised power spectral density
(PSD) contours of the body vibration frequency responses (f ∗

y ) as a function of the reduced velocity for the five elliptical
cylinders tested, while Fig. 3 shows the corresponding PSD contours of the transverse lift force frequency (f ∗

Cy ). It should be
noted that in this study the normalised amplitude is denoted by A∗

10, which represents the mean of the top 10% amplitude
peaks normalised by b (see Nemes et al., 2012; Zhao et al., 2014b). The frequency PSD contour plots are constructed by
stacking horizontally the PSD (normalised by the local maximum value) of the time series at each tested U∗, noting that
f ∗ denotes the cylinder oscillation frequency normalised by fnw. The coefficients of the streamwise and transverse fluid
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Fig. 3. The normalised amplitude and the logarithmic-scale normalised frequency PSD contours of the transverse lift as a function of the reduced velocity
for various elliptical ratios. For more details, see the caption of Fig. 2.

forces used in this study are defined by Cx = Fx/( 12ρU
2bL) and Cy = Fy/( 12ρU

2bL), respectively; the vortex force coefficient is
defined by Cv = Fv/( 12ρU

2bL), where the vortex force is decomposed from the transverse lift by Fv = Fy−Fp, with Fp = −mAÿ
the potential force (see Lighthill, 1986; Govardhan and Williamson, 2000; Morse and Williamson, 2009; Zhao et al., 2014a).

As can be seen in Fig. 2(a), the ellipses exhibit distinctly different amplitude responses as the elliptical ratio varies. Firstly,
as a reference, the circular cylinder case (ϵ = 1) sees a typical three-branch VIV response. The initial branch (IB) is observed
for low reduced velocities U∗ < 5.0, which is followed by an abrupt jump the upper branch (UB) over 5.0 ⩽ U∗ < 6.6. The
lower branch (LB) covers the reduced velocity range 6.6 < U∗ < 11.4. Both the upper and lower branches are associatedwith
lock-in phenomena. For reduced velocities beyond the lower branch, the vortex shedding frequency and the body vibration
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Fig. 4. Sample time traces of the body displacement (y/D), fluid force coefficients (Cy , Cv and Cx) and phases (φt and φv) for ϵ = 0.67 at (a) U∗
= 4.2 and

(b) U∗
= 10.0. Note that the phases are presented in degrees.

frequency become desynchronised. These results are consistent with previous studies with similar low mass and damping
ratios (e.g. Zhao et al., 2018b). For the lowest elliptical ratio tested, ϵ = 0.67, the most striking feature is the appearance of
two significant vibration regimes. These two regimes are found to be lock-in regimes, as evidenced by the responses of f ∗

y and
f ∗

Cy shown in Figs. 2(b) and 3(b), where the body vibration frequencymatches the transverse lift frequency (i.e., f ∗
y

∼= f ∗

Cy ≃ 1).
The appearance of the two separated lock-in regimes is significantly different from the numerical results at a low Reynolds
number (Re = 200) by Leontini et al. (2018), where one lock-in regime occurs over the range of 2.5 ≲ U∗ ≲ 3.5. In the
present study, the first lock-in regime (regime I) occurs over a very narrow range of 4.0 ≲ U∗ ≲ 4.4, when the vortex
shedding frequency coincides with fnw. Compared to the circular cylinder case, the onset of lock-in occurs at a much lower
reduced velocity, with the body oscillation amplitude (A∗

10 ≈ 0.38)much lower than that of the circular cylinder at the onset
of lock-in (the beginning of the upper branch). The second lock-in regime (regime II) covers the range of 7.0 ⩽ U∗ ⩽ 11.6,
which is similar to the rangewhere the lower branch of the circular cylinder occurs. In this regime, the vibration amplitude is
observed to be A∗

10 ≈ 0.55, comparable to that seen in the lower branch of the circular cylinder. Moreover, in the two lock-in
regimes, the dynamics are highly periodic. To demonstrate this, Fig. 4 shows sample time traces of the body displacement,
the fluid force coefficients, and the total and vortex phases at U∗

= 4.2 (regime I) and U∗
= 10.0 (regime II). It should be

noted that in this study the total phase (φt ) refers to the phase angle between the transverse lift and the body displacement,
and the vortex phase (φv) refers to the phase angle between the vortex force and the body displacement. As shown in this
figure, the dynamics are highly periodic in the two U∗ cases; however, the total phase (φt ≈ 0◦) and the vortex phase
(φv ≈ 180◦) remain similar in both cases, which is different to the circular cylinder case where there are distinct changes
in the phases for different vibration response regimes (i.e. φv: 0◦

→ 180◦ for the initial branch → the upper branch, and
φt : 0◦

→ 180◦ for the upper branch → the lower branch). The variations of the phases as a function of the reduced velocity
are given in Fig. 5. Outside the two lock-in regimes, the fluid–structure interaction appears to be desynchronised, where
frequency responses are split into two broadbands, with one following the trend of the Strouhal vortex shedding frequency
and the other close to the natural frequency.

As ϵ is increased to 0.80, lock-in occurs over the reduced velocity range of 4.6 ≲ U∗ ≲ 12.0, within which two
response regimes (I and II) are identified based on the frequency responses and the phases. Regime I covers the range of
4.6 ≲ U∗ < 6.2, where the body vibration frequency matches fnw (i.e. f ∗

y ≃ 1). Noticeably, the onset of this regime occurs
at a reduced velocity higher than that of the ϵ = 0.67 case, when the body vibration frequency, which tends to follow the
Strouhal vortex frequency at low U∗ values, passes through the natural frequency to f ∗

y ≃ 1.1. Compared to the circular
cylinder, on the other hand, although the occurrence U∗ range of this regime seems to be similar to that of the upper branch,
the A∗

10 response appears to be much lower, with the local peak observed to be A∗

10 ≃ 0.56 at U∗
= 5.1. With U∗ increased

to regime II (6.2 < U∗ ≲ 12.0), while the vibration frequency becomes consistent at f ∗
y ≃ 1.1, the vibration amplitude

appears to be fairly stable at A∗

10 ≈ 0.6. Furthermore, from the dynamic responses shown in Fig. 5, it can be seen that the
variations of φt and φv in the lock-in regimes appear to be similar to those of the ϵ = 0.67 case, while the variations of the
root-mean-square (RMS) coefficients of the transverse lift and vortex forces (CRMS

y and CRMS
v ) exhibit trends similar to the

circular cylinder case.
For the higher elliptical ratio of ϵ = 1.25, the FIV response exhibits three lock-in regimes (I, II and III) and a

desynchronisation region. In general, the amplitude response of this case appears to be similar to the three-branch response
of the circular cylinder. Surprisingly, however, the onset of regime I occurs at a very low reduced velocity of U∗

= 2.4,
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Fig. 5. Variations of the root-mean-square coefficients of the transverse lift and vortex forces (CRMS
y and CRMS

v ), together with the total and vortex phases
(φt and φv), as a function of U∗ for the ϵ cases tested. Note that the phases are presented in degrees.

when the vibration frequency becomes locked onto fnw. As a result, the vibration amplitude undergoes a small jump and
then increases gradually with U∗. Meanwhile, as shown in Fig. 5, both φt and φv remain consistently at 0◦ for U∗ up to 4.7.
While φt still remains consistently at 0◦ as U∗ is further increased, φv undergoes a rapid jump to approximately 180◦, which
is indicative of the onset of regime II. This transition is very similar to that of the initial branch to the upper branch, in terms
of the onset U∗ and the jump in φv . On the other hand, φt experiences a transition to approximately 180◦ at U∗

= 6.5, which
denotes the upper boundary of this regime. Similarly to the upper branch of the circular cylinder case, regime II sees the
largest body oscillations for this ϵ case. The peak amplitude is observed to be A∗

10 ≃ 1.05 at U∗
= 5.6, an increase of 36%

against the circular cylinder case. As the FIV response reaches regime III, the vibration amplitude response drops to a plateau
of A∗

10 ≃ 0.48 over 6.5 < U∗ ≲ 8.2. Moreover, associatedwith the transition to regime III, φt undergoes a rapid jump from 0◦

to 180◦, similar to the transition of the upper branch to the lower branch for the circular cylinder case. For higher U∗ values,
the body oscillations become desynchronised. For the case of ϵ = 1.50, the FIV response regimes are in general similar to the
ϵ = 1.25 case, but they tend to occur at slightly lower U∗ values. The A∗

10 peak value is observed to be 1.52 at U∗
= 6.3, an

increase of almost 100% against the circular cylinder case. Correspondingly, substantial increases are also seen in the CRMS
y

peaks of these two ϵ cases, while the variations of CRMS
v exhibit similar trends for ϵ ⩾ 0.80 in Fig. 5. Furthermore, compared

to the low-Re numerical simulations of Leontini et al. (2018), the present case exhibits large-amplitude oscillations over a
similar U∗ range, but, again, withmuch larger amplitudes (∼ 50%). This difference is likely due, at least in part, to differences
between the two- and three-dimensional flows.

It can be seen from the presented results that the aspect ratio is an important parameter affecting the FIV response of an
elliptical cylinder, as it alters the afterbody. Surprisingly, much larger body oscillations are encountered as the afterbody is
reducedwith increases in the elliptical ratio. Nevertheless, the results suggest that the FIV responses of the elliptical cylinders
tested are dominated by VIV rather than transverse galloping, as evidenced by fluid forcing being out of phase with the body
movement velocity by approximately 90◦ (i.e. φt is observed to be close to 0◦ or 180◦) in the regimes where large body
oscillations occur.

4. Conclusions

The flow-induced vibration response of elliptical cylinders with a low mass ratio of 6.0 has been examined for various
elliptical ratios ranging from 0.67 to 1.50, over a reduced velocity range of 1.6 ⩽ U∗ ⩽ 14 atmoderate Reynolds number. The
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results show that the FIV response is strongly related to the elliptical ratio. For ϵ = 0.67, there exist two separated lock-in
regimes. The first lock-in regime occurred over 4.0 ≲ U∗ ≲ 4.4, when the vortex shedding frequency coincided with fnw,
while the second regime occurred over 7.0 ⩽ U∗ ⩽ 11.6, where the vibration amplitude was found to be comparable to
that seen in the lower branch of the circular cylinder case. For ϵ = 0.8, lock-in occurred over the reduced velocity range
4.6 ≲ U∗ ≲ 12.0, within which two response regimes were identified. For this case, the amplitude response is found
to be similar to that of the circular cylinder, but without an upper branch. For the cases of ϵ = 1.25 and 1.50, the FIV
response exhibits three regimes associated with lock-in phenomenon, which are to some extent similar to the three-branch
VIV response of a circular cylinder. However, in these two elliptical cases, the oscillation amplitude grew rapidly once the
lock-in occurs at much lower reduced velocities. The A∗

10 peak values were observed to be 1.05 (an increase of 36% against
the circular cylinder case) for ϵ = 1.25 and 1.56 (an increase of almost 100% against the circular cylinder case) for ϵ = 1.50.
Significantly, it is found that the peak vibration amplitude tends to increase as the afterbody is reduced with increases in the
elliptical ratio above unity. The results indicate that for the present low-aspect-ratio elliptical cylinders, the FIV response is
dominated by vortex-induced vibration, rather than transverse galloping.

Further investigation on the wake structure would be of great interest to gain a deeper understanding of the fluid–
structure mechanism and physics behind the present findings.
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