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Summary Results are presented that show for a small range of flow spéieel vortex-induced vibration response of an elastieally
mounted cylinder is chaotic. This is in spite of the flow beregtricted to being two-dimensional. Aside from obseomtdf high
amplitudes of response and disordered vortex configumiiothe wake, the leading Lyapunov exponent is estimated fhee numer-
ical experiment data. The fact that this exponent is pasiives quantitative evidence for the fact that the resp@nskaotic.

INTRODUCTION AND BACKGROUND

Vortex-induced vibration of an elastically-mounted cglar constrained to oscillate across the flow is governed teeth
parameters: the Reynolds numhBe, = U D/v; the reduced velocity/* = U/ fx D; and the mass ration* = m/m.
Here,U is the freestream velocity) is the cylinder diametey; is the kinematic viscosityfx is the natural frequency of
the cylinder;n is the mass of the cylinder, and; is the mass of fluid displaced by the cylinder.

Experiments such as those by Khalak & Williamson (1999)daté there are two periodic regimes of response over a
range ofU*. However, experiments by Hovet al. (1998) suggest that the higher-amplitude response regirnighly
disordered.

Blackburn & Henderson (1996) and Leontgti al. (2006) conducted two-dimensional simulations that regdrresults
qualitatively indicating that this higher-amplitude resge regime is possibly chaotic.

The current results, where the largest Lyapunov exponenbban estimated from the data, quantitatively confirm that
this response is genuinely chaotic.

METHODOLOGY

The simulations were conducted using a well-validated tsakelement method. Details of the implementation can be
found in Thompsoret al. (1996).
Lyapunov exponents measure the divergence of trajectoripbase space. The phase space is constructed of all the
state variables of a system. Considering just the cylinthere are three state variables; the transverse displateme
the cylinder velocityV .,;, and the lift force coefficient';. It can be considered that the fluid effects can be “lumped”
in the forcing term, resulting in a three-dimensional phgsace. As the Lyapunov exponents measure divergence, they
essentially measure the rate that points that start closadh other in phase space move away from each other. To
first-order, this can be written as

d(t) = exp Atdy Q)

whered is the distance between two points close together in thegszace) is the Lyapunov exponent, anghould go
to infinity. However, as data obtained from non-linear systevill eventually saturate (meaning higher-order terntisep
than the first-order terms shown in the above equation withithate),t must be limited. A good choice is something
close to a primary period of the system. However, if it is digahis can be difficult to choosepriori. For this study, the
time period chosen was the timestep. The results obtainesl ttven smoothed, obtaining essentially an average. Rurthe
details of the implementation can be found in Rosensteal. (1996).
Equation 1 can be re-arranged to read

log(d(t)) — log(d) = At @

Therefore,\ can be devised by plotting the differences between the ibgas of successive distances between two
initially close points in the phase space, and measuringthdient (or at least the gradient of an initially lineartsat,
before higher-order terms have significant effect). A pesivalue of) indicates that the response is chaotic.

RESULTS

The results presented here are from data obtained for vafules control paramete®e = 200, m* = 10, andU* = 4.6.
These values result in almost the highest peak amplitugebtained when the flow is two-dimensional, exceedirigd

in one direction. The time history of the flow is far from patio, as indicated from the images in figure 1. These images
are a series of images of contours of vorticity at differémigls during the simulation. It is seen that the wake progess
from an ordered single-row configuration of vortices, to allble-row configuration of vortices, then into disorder. §hi
disorder reduces the oscillation amplitude, and the pbegins anew.
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Figure 1. Snapshots of the wake fér* = 4.6, when (a)r = 300, (b) 7 = 350, (¢) 7 = 416, and (d)r = 450, demonstrating the
evolution of the wake over time.
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Figure 2. (a) A projection of the response in phase space, plotiiagagainsty. This plot clearly demonstrates that the response is
not quasiperiodic. (b) An example of the type of plot useddtednine the leading Lyupanov exponent. The solid lineésrtmning
average ofog(d(t)) — log(do). The dotted line is the instantaneous value of the same igpant

It could be thought that this growth and decay sequencetegisusimply a modulated oscillation, rendering the resgons
quasi-periodic, but not chaotic. However, this is not theegaas is clear from inspection of figure 2a. This shows a
projection of the phase space onto the lift-coefficientpldisement €' ,y) plane. If the response was quasiperiodic, a
spiral starting at the centre should be repeated over margsti However, it is shown that the trajectories do not repeat
passing close to each other but never repeating, anotherdrélof chaotic response.

To quantify this chaotic response, an estimate of the Lyapenxponent was calculated. This was done according the the
process described in the methodology. This required pipttie difference of the logarithms of the distances apawwof
points initially close over time, and identifying the gradt of the linear portion. An example of such a plot is given in
figure 2b. This process was repeated a series of times, viférett initial points. An average value of = 0.14 was
obtained, where the measurements\afiere such tha®.069 < A < 0.23. While the spread of the data was relatively
large, all indicated a positive value far quantifying that the response is chaotic.

CONCLUSIONS

Two-dimensional simulations of an elastically-mountetincder in cross-flow have been performed. It was discovered
that, for a particular value df *, the estimated Lyapunov exponent is positive, indicatiag the response is truly chaotic,
and not just the juxtaposition of two periodic solutions.
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