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Summary Results are presented that show for a small range of flow speeds, the vortex-induced vibration response of an elastically-
mounted cylinder is chaotic. This is in spite of the flow beingrestricted to being two-dimensional. Aside from observation of high
amplitudes of response and disordered vortex configurations in the wake, the leading Lyapunov exponent is estimated from the numer-
ical experiment data. The fact that this exponent is positive gives quantitative evidence for the fact that the responseis chaotic.

INTRODUCTION AND BACKGROUND

Vortex-induced vibration of an elastically-mounted cylinder constrained to oscillate across the flow is governed by three
parameters: the Reynolds number,Re = UD/ν; the reduced velocity,U∗ = U/fND; and the mass ratio,m∗ = m/mf .
Here,U is the freestream velocity,D is the cylinder diameter,ν is the kinematic viscosity,fN is the natural frequency of
the cylinder,m is the mass of the cylinder, andmf is the mass of fluid displaced by the cylinder.
Experiments such as those by Khalak & Williamson (1999) indicate there are two periodic regimes of response over a
range ofU∗. However, experiments by Hoveret al. (1998) suggest that the higher-amplitude response regime is highly
disordered.
Blackburn & Henderson (1996) and Leontiniet al. (2006) conducted two-dimensional simulations that returned results
qualitatively indicating that this higher-amplitude response regime is possibly chaotic.
The current results, where the largest Lyapunov exponent has been estimated from the data, quantitatively confirm that
this response is genuinely chaotic.

METHODOLOGY

The simulations were conducted using a well-validated spectral-element method. Details of the implementation can be
found in Thompsonet al. (1996).
Lyapunov exponents measure the divergence of trajectoriesin phase space. The phase space is constructed of all the
state variables of a system. Considering just the cylinder,there are three state variables; the transverse displacement y,
the cylinder velocity,Vcyl , and the lift force coefficient,CL. It can be considered that the fluid effects can be “lumped”
in the forcing term, resulting in a three-dimensional phasespace. As the Lyapunov exponents measure divergence, they
essentially measure the rate that points that start close toeach other in phase space move away from each other. To
first-order, this can be written as

d(t) = exp λtd0 (1)

whered is the distance between two points close together in the phase space,λ is the Lyapunov exponent, andt should go
to infinity. However, as data obtained from non-linear systems will eventually saturate (meaning higher-order terms, other
than the first-order terms shown in the above equation will dominate),t must be limited. A good choice is something
close to a primary period of the system. However, if it is chaotic, this can be difficult to choosea priori. For this study, the
time period chosen was the timestep. The results obtained were then smoothed, obtaining essentially an average. Further
details of the implementation can be found in Rosensteinet al. (1996).
Equation 1 can be re-arranged to read

log(d(t)) − log(d0) = λt (2)

Therefore,λ can be devised by plotting the differences between the logarithms of successive distances between two
initially close points in the phase space, and measuring thegradient (or at least the gradient of an initially linear section,
before higher-order terms have significant effect). A positive value ofλ indicates that the response is chaotic.

RESULTS

The results presented here are from data obtained for valuesof the control parametersRe = 200, m∗ = 10, andU∗ = 4.6.
These values result in almost the highest peak amplitude ofy obtained when the flow is two-dimensional, exceeding0.5D
in one direction. The time history of the flow is far from periodic, as indicated from the images in figure 1. These images
are a series of images of contours of vorticity at different times during the simulation. It is seen that the wake progresses
from an ordered single-row configuration of vortices, to a double-row configuration of vortices, then into disorder. This
disorder reduces the oscillation amplitude, and the process begins anew.
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Figure 1. Snapshots of the wake forU∗ = 4.6, when (a)τ = 300, (b) τ = 350, (c) τ = 416, and (d)τ = 450, demonstrating the
evolution of the wake over time.
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Figure 2. (a) A projection of the response in phase space, plottingCL againsty. This plot clearly demonstrates that the response is
not quasiperiodic. (b) An example of the type of plot used to determine the leading Lyupanov exponent. The solid line is the running
average oflog(d(t)) − log(d0). The dotted line is the instantaneous value of the same quantity.

It could be thought that this growth and decay sequence results in simply a modulated oscillation, rendering the response
quasi-periodic, but not chaotic. However, this is not the case, as is clear from inspection of figure 2a. This shows a
projection of the phase space onto the lift-coefficient, displacement (CL,y) plane. If the response was quasiperiodic, a
spiral starting at the centre should be repeated over many times. However, it is shown that the trajectories do not repeat,
passing close to each other but never repeating, another hallmark of chaotic response.
To quantify this chaotic response, an estimate of the Lyapunov exponent was calculated. This was done according the the
process described in the methodology. This required plotting the difference of the logarithms of the distances apart oftwo
points initially close over time, and identifying the gradient of the linear portion. An example of such a plot is given in
figure 2b. This process was repeated a series of times, with different initial points. An average value ofλ = 0.14 was
obtained, where the measurements ofλ were such that0.069 < λ < 0.23. While the spread of the data was relatively
large, all indicated a positive value forλ, quantifying that the response is chaotic.

CONCLUSIONS

Two-dimensional simulations of an elastically-mounted cylinder in cross-flow have been performed. It was discovered
that, for a particular value ofU∗, the estimated Lyapunov exponent is positive, indicating that the response is truly chaotic,
and not just the juxtaposition of two periodic solutions.
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