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Abstract 

The present work attempts to characterize the flow of shear-thinning power-law fluids past a flat plate as the angle 
of attack is varied. The effects of Reynolds number, shear-thinning characteristics and angles of attack on drag and 
lift of the flat plate were investigated, both experimentally and numerically. Carbopol 940 solutions of various 
strengths were used to approximate purely viscous shear-thinning non-Newtonian fluids for the experiments. An 
important finding is that at small angles of attack when the wall shear forms the dominant contribution to the drag, 
the non-Newtonian shear-thinning property leads to drag reduction, whereas for large angles of attack, when 
pressure-induced form drag is dominant, shear-thinning results in drag augmentation. This is consistent with the trend 
shown in the present study that lift increases as shear-thinning increases. It is demonstrated that a simple linear model 
developed for Newtonian creeping flow can be used to estimate the effect of angle on drag given both the drag 
coefficients corresponding to normal and tangential flow to the plate. 

Keywords: Non-newtonians; Shear-thinning flows 

1. Introduction 

The present study is concerned with fiat-plate flows of shear-thinning fluids which obey a 
simple power-law stress-strain relationship. The study stems from a desire to understand 
non-Newtonian flows around agitator impellers in mixing vessels, where skin friction and 
pressure distributions are directly related to the pumping rate and power consumption of the 
impellers. As a first step in achieving this aim, the drag and lift of a two-dimensional fiat plate 
at an arbitrary angle of attack were determined for both Newtonian and non-Newtonian 
shear-thinning fluids. 
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There are numerous experimental and computational studies on drag of spherical bodies in 
non-Newtonian fluid flows (e.g. [1-4], to mention just a few). A considerable body of 
information on the motion of rigid spherical particles falling in incompressible Newtonian or 
non-Newtonian fluid media has been summarized by Chhabra [5]. Estimation of the drag 
coefficient of particles has been made possible, given the fact that a wealth of experimental 
correlations of drag with Reynolds number, rheological properties and wall effects are available. 

In comparison, much less work has been done for non-spherical bodies, even for those of a 
regular shape such as cylinders and plates. The main concern of the present work is flow past 
a flat plate where the corresponding literature is very sparse. Most of the investigations found 
in the literature consider the flow past a flat plate placed tangential to the flow with infinite plate 
length, which is a special case of the present study. The drag in this case is associated with 
boundary layer developement, which generally has been treated by Prandtl's boundary layer 
approximation. Representative works using boundary layer theory can be found in the early 
papers by Schowalter [6] and Acrivos et al. [7] and also more recently by Nakayama [8] and 
Andersson and Toften [9]. However, since high viscosity (or equivalently low Reynolds number) 
is often the case for non-Newtonian fluid flows, the errors resulting from applying boundary 
layer theory can be substantial and experimental or computational validation, which is often 
lacking, is particularly needed. This is part of the objective of the present paper. 

In et al. [10] solved Newtonian flow past a flat plate at various angles of incidence numerically 
for Reynolds numbers up to 30. Their simulations show that the flow develops into patterns of 
two-vortex, one-vortex or no-vortex regions depending on Reynolds number and angle of 
incidence. It can also be concluded from their results that lift and drag coefficients decrease as 
the Reynolds number increases. No comparison with experiments, however, was mentioned in 
their work. Another relevant study was performed by Tamada et al. [11], again only for 
Newtonian fluids. They showed that for small Reynolds numbers, the asymptotic flow field at 
large distances from an immersed body is dependent on the force acting on the body. This 
enabled them to evaluate the force acting on the body as a function of the flow Reynolds 
number. Their calculations provided the drag coefficient variation with Reynolds number for a 
flat plate orientated either tangentially or normally to the flow at small Reynolds numbers. 

Published experimental data for drag and lift are not available in the low Reynolds number 
range for a flat plate as a function of angle of attack. This lack of information also exists for 
non-Newtonian fluids. The objective of the present work is to address this lack of knowledge 
and is aimed at providing detailed force coefficient data. Experimental results obtained using a 
force balance device in a closed-circuit liquid tunnel and computational results obtained using 
a finite-element code will be presented. The philosophy of the present approach of using both 
experimental and computational methods is that the latter, once validated by the former at each 
stage of investigation, can be used to explore the influence of various parameters rapidly and 
reliably with minimum effort. 

This study covers Reynolds numbers ranging from Re < 1 (creeping flow range) to an 
intermediate region (Re ~ 200) where the Reynolds number is sufficiently high that both inertia 
and viscous forces are important. The power-law model is considered in order to investigate the 
influence of shear-thinning rheological properties on both drag and lift coefficients. 
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2. Experimental facilities 

2.1. Test tunnel 

A return-circuit liquid test tunnel located at CSIRO, Highett, Australia, was used for the 
experiments, as shown schematically in Fig. 1. The working section of the tunnel is 770 mm 
long, 244 mm wide and 244 mm high, and the walls are made of transparent acrylic 
material. The velocity of the tunnel can be varied using a variable speed controller and the 
maximum velocity in the working section is approximately 0.4 m s -~. Flat plates 20, 40, 59 
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Fig. 1. Closed-circuit test tunnel and the force measurement system. 
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and 70 mm in length, all with a thickness of  1.6 mm, were used for the experiments. Two 
circular endplates were employed to minimize tunnel boundary layer interference. 

2.2. Force measurement 

The force balance measurement system is also shown schematically in Fig. 1. The flat 
plate section under test was connected to a pendulum-type force amplification balance 
mounted on a universal joint. Two load cells manufactured by Transducer Technology 
were used to measure drag and lift of the plate simultaneously. The load cell were inter- 
faced to an analogue to digital (A/D) data acquisition system in an IBM-compatible 
486PC. Calibration of  the force measurement system was conducted using known weights 
suspended from cord lines over pulleys. The error in the force measurement was es- 
timated by comparing computer readings based on calibration coefficients and known 
weights. It was found that the system had an uncertainty of 0.2 g at the 95% confidence 
level. Typically, this corresponds to a full-scale system error of 0.4% at the 95% confidence 
level. 

2.3. Test fluid 

The test fluid consisted of  a clear, neutralized aqueous solution of Carbopol 940. 
A volume of  1000 1 was pumped around the test tunnel. The concentrations used were 
0.125, 0.09 and 0.05% by weight. The fluid exhibits shear-thinning characteristics, i.e. 
the viscosity of  the liquid reduces as shear rate increases. The apparent viscosity of  the 
fluid was measured using a Contraves Rheomat  108 and a Carri-med CSL100 cone and 
plate rheometer. Brookfield viscosity standards were used to validate rheological measure- 
ments. 

Fig. 2 shows the apparent viscosity of the Carbopol solutions. Carbopol fluid is known to 
possess a yield stress, however, within the range of  shear rate of interest a power-law 
relationship was found to characterize adequately the viscosity versus shear-rate behaviour. 
This was implied by the linear variation shown in the log- log  plot in Fig. 2 The equation 
for the power-law model is 

v = K~", (1) 

where n is a non-dimensional power-law index and K is a consistency parameter. Typical values 
for n and K used in the present experiments are listed in Table 1. 

A slow viscosity degradation was observed which was attributed to the shearing experienced 
by the circulation of  the fluid in the tunnel and rheological measurements were conducted before 
and after each experiment. The viscosity of the liquid is also sensitive to temperature and 
consequently the latter was monitored to ensure that it was maintained within the range 
16.5 + 0.5°C. 
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Fig. 2. Rheology of Carbopol  940 water solution over a range of concentration. 

3. T h e o r y  and n u m e r i c a l  m e t h o d  

3.1. Newtonmn creeping flow: a linear model 

In order to understand the flow at low Reynolds numbers, it is illuminating to examine the 
extreme case, i.e. creeping flow. For Newtonian creeping flow (Re<< 1), the inertia force is 
negligible and the Navier-Stokes equations simplify to 

Vp 
- -  - # V u  = 0, (2)  
P 

Table 1 
Typical parameters used in the experiments 

Fluids n K (Pa s") Shear rate (s 1) 

0.125% Carbopoi  0.32 6.67 1 - 100 
0.09"/,, Carbopol  0.44 2.37 1-100 
0.05'!/,, Carbopol  0.65 O. 1103 1 - 1 O0 
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Fig. 3. Resultant force acting on a flat plate for creeping Newtonian flow using the linear superposition model. 

where p is the pressure, p is the density, /t is the viscosity and u is the velocity vector. Since 
this equation is linear, a linear superposition of  solutions can be applied to predict the 
resultant force on a flat plate placed at an angle to the incoming flow, denoted by a, as 
shown schematically in Fig. 3. The velocity vector is decomposed into a tangential compo- 
nent, ut = u cos ~ and a normal component  un = u sin ~. The forces associated with the two 
velocity components  are Ft and F, ,  respectively. They correspond to the drag force of  the 
plate at ~ = 0 and ~ = 90. 

Assuming the Stokes drag equation is applicable and the flat plate has a unit width: 

Ft = C'tlmU cos ~, (3) 

Fn = C' , I tau sin 7, (4) 

where C't and C~, are constants dependent  on plate geometry but independent of  velocity, 
and a is the plate length. The lift force L can be expressed as 

L = Fn COS c~ -- Ft sin 

I~au C '  
= 2 ( " - C~) sin 2a, (4) 

and similarly the drag D can be written: 

D = F.  sin ~ + Ft cos 

= p a u ( C ' ,  sin 2 ~ + C~ cos 2 ~). (5) 

A consequence of  the above formulation is that in the Newtonian creeping flow region, the 
drag or lift o f  a flat plate at an arbitrary angle of  attack can be evaluated using only the 
normal  and tangential drag coefficients. 

Al though these equations are developed for Newtonian creeping flow, it will be shown 
later than experimental results suggest that they can be used to estimate the flat plate drag to 
a good degree of  accuracy for non-Newtonian shear-thinning flows over a wide range of  
Reynolds numbers. 
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3.2. N u m e r i c a l  technique  

The time-independent Navier-Stokes equations can be written as 

p (u • V)u = - V p  + V • r 

and 

V'u=0 ,  

where ~ is the stress tensor. For a shear-thinning fluid, the shear stress can be expressed in the 
form 

= 2q( f ' ) S .  

The cartesian components of the rate of strain tensor (S) are given by 

s, ,  = + 

f 

and q is the viscosity which in general depends on the shear rate, ~;, = x/2Z0 (So&j). 
The rheological relationship between viscosity and shear rate under investigation in this paper 

is of the form 

q = K9" 1. (6) 

For the calculations described in this paper, the two-dimensional Navier-Stokes equations 
are discretized using the Galerkin finite-element method (FEM). The penalty function approach 
is used to eliminate explicitly the pressure from the computations by penalizing the continuity 
constraint. Explicitly, the pressure is expressed as 

p = - 2 p V  • u, 

where )~ is a large parameter which can depend on the Reynolds number. For the range of Re  

under investigation, typically it is taken as 106; however, the results are not sensitive to the exact 
value. The method is standard and details can be found in Zienkiewicz and Taylor [12], for 
example. 

The discretized non-linear equations formed from the application of the Galerkin finite-ele- 
ment method are solved by the generalized Newton method. The dependence of the viscosity on 
the shear-rate is explicitly taken into account in the formation of the Jacobian matrix leading to 
quadratic convergence of the iteration process. However, since the radius of convergence of 
Newton's method is generally small, the solution is approached gradually by either or both, 
starting from a lower Reynolds number solution, or from a fluid with weaker shear-thinning 
behaviour. For the Reynolds number range investigated, achieving convergence was not 
difficult. 

The code was validated by comparing predictions for a test problem described by Rubart  and 
B6hme [13]. In particular, the anchor and blade impeller problem that they described was set up 
and solved. The resulting predictions of the stream function at the wall of the vessel agreed to 
within approximately 0.1% over the ranges of  shear-thinning parameters and Reynolds numbers 
studied. 
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4. Results 

4. I. Exper imenta l  validation o f  F E M  code 

The drag coefficient is defined a s  C D = D/(1 /2pU2)a ,  where D is drag, U is free stream 
velocity, a is plate length and p is density. In general, Co is a function of ~, the angle of attack, 
i.e. CD = CD(~). The drag coefficients at ~ = 0 ° and 90 ° are of some special interest and are 
denoted by CDt and CDn for later use (i.e. CDt = CD(0) and CDn = CD(90)). The generalized plate 
Reynolds number is defined, using power-law model parameters, as 

p U 2 - "a ~ 
Re - (7) 

K 

Fig. 4 shows a comparison of  experimental results and FEM simulations for n = 0.32. For the 
plate placed tangentially to flow, drag of  two different plate lengths were measured to show that 
the data collapsed on to a single line. In general, it can be concluded that the experimental and 
computed results are in good agreement, except for the case of  the flat plate placed normally to 
the flow or at low Reynolds numbers, where the experimental results predict a higher value. The 
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Fig. 4. Experimental  validation of  the F E M  code, shear-thinning index n = 0.32. 
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discrepancy is probably a result of water tunnel blockage, which is most severe for the normal 
flow case. Support for this hypothesis was obtained by measuring the drag for different plate 
lengths (and thus an increase in blockage) leads to an increase in drag coefficient. 

4.2. Flat plate tangential to the f low 

Fig. 5 summarizes the results of the FEM simulations for a range of power-law index n on a 
logarithmic scale. Also included are the numerical results of Tamada et al. [11] for Newtonian 
flow, showing good agreement. In the low Reynolds number region, i.e. Re = 1-10, the 
variation of drag coefficient with shear thinning index is not significant. At higher Reynolds 
numbers, there is a strong dependence of CD on n. For a given Re, a reduction in n, 
corresponding to an increase in the non-Newtonian shear-thinning effect, results in a decrease in 
CD. This drag reduction behaviour is similar to that found for shear-thinning flow past spheres, 
as reported by many authors. Amongst others, Mena and Manero [4] measured the drag force 
acting on a sphere moving inside a container using a balance device. They found that the drag 
reduction for both shear-thinning inelastic Carbopol fluid and elastic Boger fluid is large. 

Traditionally, this flow has been considered in the context of boundary layer development. 
Using boundary layer theory, Acrivos et al. [7] showed that the wall shear stress can be 
represented by 

r0 _ (Re,)-~..<1 + n)C(n) ' (8) 
DU2 . 
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where Rex is the generalized Reynolds number for power-law fluids based on x, the distance 
from the leading edge of the plate and the external velocity U, 30 is the wall shear stress, p is 
the fluid density and C(n) is a function dependent on n, the power-law index. One objective of 
the present work is to estimate the error resulting from applying boundary layer theory at lower 
Reynolds numbers, for which the accuracy of the boundary layer assumptions is questionable. 
This will allow the minimum Reynolds number to be determined for which boundary layer 
theory provides reasonable accuracy as a function of shear-thinning index. 

Fig. 6(a)-(c) show the wall shear stress distributions at three Reynolds numbers for n = 0.28, 
where x is the coordinate measured from the plate leading edge. The prediction using the 
boundary layer approximations of Eq. (8) are included for comparison. Not surprisingly, the 
discrepancy between the FEM results and boundary layer predictions is large for lower 
Reynolds number. For example, at Re = 3.9, the boundary layer prediction underestimates the 
shear stress by about 50% over almost the entire length of the plate. 

As the Reynolds number increases the agreement improves. Reasonable agreement over the 
firs half of the plate is observed for Re = 42.7; however, the discrepancy is still large for the 
trailing-edge section. As the Reynolds number is further increased to 86.5, the FEM and 
boundary layer predictions are in closer agreement (Fig. 6c), except near both edges. The drag 
integrated from the wall stress distribution differs by only 5% at this Reynolds number. As 
might be expected, the local shear stresses at both the leading and trailing edge are not well 
predicted by boundary layer theory even for higher Reynolds numbers. The approximation 
over-predicts near the leading edge, predicting an infinite shear stress at the singular point x = 0. 
The difference at the trailing edge is also very large, amounting to a 49% error for Re = 86.5 and 
n = 0.28. Similar behaviour is also found to exist for other values of n. 

As a useful guide for practical applications, a 5% error limit is chosen as the criterion to select 
the minimum Reynolds number for the applicability of boundary layer theory. At lower 
Reynolds numbers the boundary layer approximation is considered to be inadequate. The results 
for a range of shear-thinning index n are given in Table 2. 

4.3. Influence of angle of attack 

Typical experimental results are shown in Fig. 7a at three Reynolds numbers for ~ = 0-90 °. 
The drag is the largest when the plate is normal to the flow and smallest when it is tangential 
to the flow. The details of the variation of CD with the angle of attack can be approximated by 
the model curves shown in the figures. The curves represent the model equation developed in 
Section 3.1; the non-dimensional form of Eq. (5) is expressed in the following way: 

C D = CDn sin 2 ~ + CDt COS 2 0~. (9) 

Where Con and Cot are drag coefficients for the plate placed normal and tangential to the flow, 
respectively. The agreement between the creeping model predictions and the experimental results 
is good even outside the creeping flow region as shown in Fig. 7a, suggesting that non-linearities 
due to flow inertia and shear-thinning characteristics do not have a substantial influence on 
modifying the variation of drag with angle of attack, at least for the Reynolds number range 
investigated. The use of the present model offers a simple way to estimate the drag force of a 
plate placed at an arbitrary angle to the flow, provided that both the drags of the plate aligned 
at 0 ° and 90 ° to the flow are known or can be determined. 
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Table 2 
Suggested minimum Reynolds numbers for the applicability of the boundary layer approximation for non-Newtonian 
shear-thinning fluid flows (at the listed Reynolds numbers the error in the estimated integrated drag is about 5%) 

n 0.1 0.32 0.60 0.80 1.0 

Re 45 100 200 170 120 

The influence of non-Newtonian shear-thinning was determined by varying n in the FEM 
code and computing drags at various ~. Typical results are plotted in Fig. 7b. The curves in 
the figure are predictions using the superposition model. It is interesting that at small angles 
of attack, the drag coefficient reduces as the shear-thinning effect increases, whereas at large 
angles of attack, the drag coefficient increases as the shear-thinning effect reduces. 

This indicates that there is a critical angle below which shear-thinning causes drag reduc- 
tion and above which non-Newtonian shear-thinning causes drag augmentation. This will be 
discussed in more detail in the following section. 

4.4. Drag on a f ia t  plate normal to the f low 

Fig. 8 plots the results for the drag coefficient variation with the generalized Reynolds 
number for a number of different shear-thinning indices n. It is noted that, at a given 
Reynolds number, the drag coefficient of a plate normal to the flow increases for increasing 
shear-thinning as n is reduced. This trend is exactly opposite to that of the plate placed 
tangentially to the flow. Instead of drag reduction, drag augmentation is then observed. This 
can be explained through the following argument. The drag consists of two components, i.e. 
skin friction drag due to wall shear stress and form drag due to pressure difference. These 
two components can vary with shear-thinning in different ways. Since drag of a flat plate 
placed normally to the flow is solely determined by form drag, this implies that pressure 
induced drag increases with shear-thinning. In a similar way, it is clear that since the drag of 
a flat plate placed tangentially to the flow is solely due to wall shear stress, it is apparent 
that skin friction reduces as shear-thinning increases. For a plate placed at an arbitrary angle 
of attack, both components contribute and a critical angle separates the region into two 
zones. The effect of increasing non-Newtonian shear-thinning can be summarized as follows: 
at angles smaller than the critical angle, wall shear stress is dominant leading to drag 
reduction, and at angles larger than the critical angle, surface pressure is dominant resulting 
in drag augmentation. 

It is also interesting that the curves of the normal drag coefficient vs. Reynolds number 
are straight lines at low Reynolds numbers (typically for Re < 4) and become non-linear at 
higher Reynolds numbers (Re > 4). This is associated with a transition from the creeping 
flow region to an inertial region at higher Reynolds numbers. This change is delayed when 
the plate is placed tangentially to the flow, as is evident from Fig. 5, where it is seen that the 
drag coefficient curves are straight lines even for Re > 100. 
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Fig. 8. Drag coefficient for a flat plate aligned normally to a (non-Newtonian) flow. 

4.5. Lift of  a flat plate 

One important feature of flow past an inclined flat plate is the development of a force normal 
to the flow, i.e. lift. An equivalent form of Eq. (9) for lift coefficient can also be derived for 
creeping flow: 

C L = 2 1 - ( C D n  - -  C D t  ) sin 2~. (10) 
To examine the applicability and generality of this equation in the creeping flow regime, the lift 
coefficient at ~z = 45 was computed and compared with (CD. - C D t ) / 2  in Fig. 9 for Re = 0.06 and 
over a range of n. Good agreement between the two is apparent. This result suggests that the 
non-linearity due to shear-thinning is not important in the creeping flow regime and the simple 
superposition model is valid for both Newtonian and non-Newtonian flows. 

It is also noted that, at a given generalized Reynolds number, the lift coefficient increases as 
shear-thinning increases. This is largely due to the fact that an increase in shear-thinning causes 
an increase in the drag coefficient of the plate placed normal to flow in the creeping flow regime. 

It is of interest to characterize the angle at which maximum lift occurs. The linear model 
predicts that this angle should be 45 ° for creeping flow, as is clearly implied by Eq. (10). In et 
al. [10] showed that for Newtonian flow this angle is equal to 45 ° at Re = 1 and decreases as the 
Reynolds number increases. Fig. 10 summarizes the present results for different shear-thinning 
indices and the Newtonian results of In et al. The data for both Newtonian and non-Newtonian 
fluids appears to collapse into a single curve, suggesting that non-Newtonian effect may not be 
crucial in determining the angle at which maximum lift occurs. 
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This is further confirmed by the results shown in Fig. 11, where the lift coefficients at Re = 14 
for two different shear-thinning indices are plotted against the angle of attack. The maxima for 
both curves occur for ~ ~ 35 °, despite the difference in the value of n. The deviation from the 
theoretical prediction of 45 ° is related to the effect of inertia, which at higher Reynolds numbers 
contributes to the formation of a dead zone behind the plate with vortices either attaching to or 
shedding from the plate, causing a reduction in lift. The other interesting feature borne out by 
Fig. 11, as mentioned previously, is that Cc increases as n decreases, suggesting that non-New- 
tonian shear-thlnning increases the lift coefficient. 

Eq. (10) indicates that the lift coefficient is proportional to the difference between the two 
drag coefficients of the plate, placed normally and tangentially to the flow. Since the former 
increases with shear-thinning and the latter reduces with shear-thinning, it is clear that the result 
shown in Fig. 11 is qualitatively in agreement with the trend predicted by the linear model 
developed for creeping flow. 

5. Discussion 

Adachi et al. [1] solved for the flow of non-Newtonian shear-thinning fluids past a sphere 
numerically. They decomposed the total drag of  the sphere into friction drag and pressure drag, 
and found that the friction drag decreases and the pressure drag increases, as shear-thinning 
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Fig. 9. Comparison between lift coefficient at ~ = 45 ° and ~(CD,1--CDt): variation with shear-thinning index n for 
creeping flow, Re = 0.06. 
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Fig. 10. Maximum lift angle variation with Reynolds number,  numerical and experimental results. 

increases. Similar behaviour was found in the present work. The ratio of pressure drag to 
friction drag is crucial in determining the effect of non-Newtonian shear-thinning on the total 
drag of a body. For a flat plate, this ratio is dependent on the angle of attack, as demonstrated 
in the present work. The magnitude of this influence is dependent on the Reynolds number. For 
instance, in the low Reynolds number range, the non-Newtonian effect becomes marginal in 
modifying the drag of a plate placed tangentially to the flow, as is evident in Fig. 5. 

The linear model developed in this work may serve as a useful tool in quickly determining the 
drag coefficient of a flat plate at an arbitrary angle for both Newtonian and non-Newtonian 
fluid flows, provided that the two drag coefficients for the plate, i.e. for the plate placed 
normally and tangentially to the flow, are known. This appears to indicate that the nonqinearity 
caused by both inertia and shear-thinning does not influence the variation of drag with the angle 
of attack substantially, although these two drag coefficients are influenced by both inertia and 
shear-thinning. It seems likely that this estimation method may also be useful for more general 
geometries, such as airfoil-shaped bodies. Future work is needed to verify this conjecture. 

6. Conclusions 

The lift and drag coefficients of a fiat plate placed in a power-law non-Newtonian fluid have 
been investigated both experimentally and numerically. Simulations using a FEM code predict 
lift and drag coefficients in good agreement with experimental results obtained with a force 
balance. A linear Newtonian creeping flow model was described which uses the drag coefficients 
for the plate at 0 ° and 90 ° to the flow to predict drag and lift at intermediate angles. The results 
show that the model works well even outside the creeping flow region. 
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Shear-thinning was found to cause drag reduction for a fiat plate at small angles of attack and 
drag augmentation at large angles of attack. In addition, the lift coefficient increases as 
shear-thinning is increased. This result is also consistent with the linear theory. The angle at 
which the maximum lift occurs is not sensitive to non-Newtonian shear-thinning; this angle 
decreases from the theoretical value of 45 ° in the creeping flow regime to smaller values at 
higher Reynolds numbers. 

The present study also determined the extent of the applicability of the boundary layer 
approximation for a fiat plate placed tangentially to the flow. Minimum Reynolds numbers have 
been provided for a range of shear-thinning index n for which the boundary layer approximation 
(for drag), gives at most 5% integrated error. 
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