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ABSTRACT 

A numerical study on a shear layer produced via a 

differential-disk rotation system reveals that the flow is 

susceptible to instabilities under certain conditions. The 

incompressible Navier–Stokes equations are solved on a 

two-dimensional meridional semi-plane. The steady-state 

axisymmetric base flows demonstrate strong depth-

independence and symmetry about the vertical mid-plane 

at low Rossby number (Ro) which is broken at higher Ro. 

Three-dimensional instability modes in the form of rings 

of vortices rearranged in a polygonal configuration 

extending the depth of the tank form at critical values of 

Ro and Ekman number. Differences in preferential states 

are observed between negative and positive Ro. 

NOMENCLATURE 

A Shear layer aspect ratio 

Ek Ekman number 

f Coriolis parameter 

H Height 

k Azimuthal wavenumber 

P Kinematic pressure 

Np Element polynomial degree 

Rd Disk radius 

Rt Tank radius 

Ro   Rossby number 

Re Reynolds number 

T Time period 

u Velocity vector 

  

α Diffusion coefficient 

λ Azimuthal wavelength 

 Dynamic viscosity 

μf Floquet multiplier 

ν Kinematic viscosity 

 Fluid density 

σ Growth rate 

Ω Tank rotation 

ω Disk rotation relative to tank 

ωz Axial vorticity 

INTRODUCTION 

Polygonal structures are widely observed in rotating 

flow systems. Rich examples of rotating flows are present 

on Earth, generated as a result of planetary rotation, and a 

physical understanding of these flows benefits many 

industrial processes. The presence of shear layers within 

these flows makes them susceptible to instabilities. The 

onset of instability causes an initially stable circular vortex 

structure to transition to other polygonal shapes. Striking 

examples of these polygonal deformations of vortices are 

observed in the massive polar vortices on planets, such as 

Saturn’s hexagonal North Pole vortex and Venus’ dipolar 

South Pole vortex. It has been proposed that these 

structures are a result of barotropic instability (Sommeria 

et al. 1991; Montabone et al. 2009; Aguiar et al. 2010). 

Numerous simple confinements have been successful 

in producing similar structures observed in nature, albeit at 

a much smaller scale. The experimental work of Hide & 

Titman (1968) pioneered investigations into these rapidly 

rotating flows, which is important in understanding the 

phenomena of oceanic and atmospheric dynamics where 

Coriolis forces are dominant. That study comprised of a 

rotating circular cylinder within which a differentially 

rotating disk was suspended. The differential rotation of 

the disk produced various boundary and shear layers 

which become unstable at a well-defined threshold. Two 

dimensionless parameters are used to categorize these 

rotating flows, namely the Rossby number Ro, and Ekman 

number, Ek. The Rossby number provides a measure of 

inertial to Coriolis forces while the Ekman number is the 

ratio between viscous and Coriolis forces. Thus, Rossby 

and Ekman numbers much less than unity imply that 

rotation is highly important.  

The results from Hide & Titman demonstrated a 

transition from axisymmetric flow to non-axisymmetric 

flow at a certain Rossby number threshold. As Ro is 

increased beyond this threshold, the initially circular shear 

layer circumscribing the disk becomes unstable and 

develops multiple vortices for positive Rossby numbers. 

Viewed along the axis of rotation, the vortices illustrate 

polygonal configurations. Further increases in Ro caused a 

reduction in the number of vortices down to a lower limit 

of two. A different phenomenon is observed for negative 

Ro whereby only an off-axis ellipse was obtained. This is 

in contrast with Fruh & Read (1999) who observed the 

transition to multiple vortex states for both negative and 

positive Rossby numbers. 

These polygonal structures have been observed and 

created in a variety of differential-disk(s) rotation 

configurations (Rabaud & Couder 1983; Fruh & Read 

1999; Aguiar et al. 2010), along with source-sink systems 

(Sommeria et al. 1991; Montabone et al. 2010), with and 

without the influence of varying the Coriolis parameter 

(Konijnenberg et al. 1999). The most unstable modes have 

been mapped onto numerous regime diagrams. Despite the 

differences in experimental set-ups, transition to lower 

modes with increasing supercriticality of a governing 

parameter of either Ro, Re or Ek, is a phenomenon 
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observed consistently in these shear layer experiments. In 

contrast to this tendency, the results of the linear stability 

theory on a shear layer and jet from Niino & Misawa 

(1984) suggested an increasing number of vortices with 

increasing Re. The model they investigated included the 

effects of both internal viscosity and Ekman friction, 

which were found to be equally important in determining 

the critical Re and the corresponding wavenumber. 

This paper considers a differential rotating system 

which comprises a rotating cylindrical container with flow 

variation imparted by the differential rotation of disks 

occupying the inner radius of the base and lid of the 

cylinder. Despite previous investigations on similar 

systems, the numerical stability aspect has not been 

thoroughly detailed in a three-dimensional model. Many 

past numerical investigations have approximated the flow 

field with the quasi-geostrophic equation and have used 

two dimensional models (Chomaz et al. 1988; Bergeron et 

al. 1996; Konijnenberg et al. 1999). Though the 

simulations tend to capture the same dynamical features to 

those observed in the experiments, they are unable to 

generate the wide range of flow states (Fruh et al. 2003), 

nor to examine the vertical structure of the flow when two-

dimensionality is broken. 

The aim of this study is to numerically investigate the 

linear stability of flows produced via a differentially-

rotating disk set-up using a three-dimensional model. 

Details of the basic flow structure and stability 

characteristics of both positive and negative Ro flows and 

the differences between them will be given.  

METHODOLOGY 

Geometric Model 

The system under investigation is comprised of a 

closed tank of radius Rt and height H. Two disks of radius 

Rd are centred at the top and bottom boundaries which 

align with the axis of rotation of the tank. The tank and 

disks rotate independently at a rate of Ω and Ω + ω, 

respectively. The proportions of the tank are scaled to 

match the set-up employed by Aguiar et al. (2010), which 

had Rt = 30 cm, Rd = 15 cm and H = 10 cm. A schematic 

diagram of the model is illustrated in figure 1. The tank is 

entirely filled with a working fluid which is assumed to be 

incompressible and Newtonian and characterised by the 

kinematic viscosity ν =  / , where is  the dynamic 

viscosity and  is the fluid density. 

 

 

 

Figure 1: Schematic diagram of the differential rotating 

disk geometry. The shaded regions represent the disks and 

the white regions the tank. Relative to a laboratory 

reference frame, the tank rotates at a rate of Ω while the 

disks rotate uniformly at Ω + ω. 

 

Figure 2: Two-dimensional axisymmetric mesh of an r-z 

semi-plane used for computations of the flow. Illustrated 

here are the macro elements of the discretised space. The 

dashed lines represent the tank boundaries which rotate at 

a rate of Ω, solid lines represent the disk boundaries which 

rotate at a rate of Ω + ω and the dash-dot line represents 

the axis of rotation and spatial symmetry.  

 

Governing Equations 

The flow is governed by the unsteady incompressible 

Navier–Stokes equations. Lengths, velocities, time and 

pressure have been normalised by Rd, RdΩ, 1 / Ω and 

RdΩ
2, respectively. Thus the non-dimensional form is 

given by  

 
  

  
            

     

     
   ,               (1a) 

     ,                                (1b) 

 

where u = (uz, ur, uϑ) is the velocity vector, P is the 

kinematic pressure, A = H / Rd is the reciprocal shear layer 

aspect ratio.  

It is notable that the choice of the reference quantities 

results in a diffusion coefficient which has a singularity 

and is negative for values of Ro > 2/A. As a consequence, 

only flows of Ro < 4/3 can be computed. Thus the 

selection of reference quantities has major implications for 

the numerical tractability of the system. An alternative 

scaling allows larger positive Ro to be explored, though 

that paradigm is not employed here. The Rossby number 

and Ekman number are defined as 
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where          is the mean (area-averaged) rotation 

rate of the disks and tank.  

Numerical Treatment 

The base flow is assumed to be axisymmetric and is 

computed on an axisymmetric meridional semi-plane 

which has been discretised into quadrilateral elements. 

The discretised mesh is shown in figure 2. The walls of the 

domain are solid and impenetrable with the exception of 

the left boundary which is treated with a symmetry 

boundary condition as per Blackburn & Sherwin (2004). 

The axis represents the axis of rotation and symmetry 

while the solid and dashed lines symbolise the disks and 

tank, respectively. There is a discontinuous jump in 

angular velocity across the disk-tank interface which is not 

modelled by an artificial forcing function such as that used 

by Konijnenberg et al. (1999). The element density of the 

mesh is higher in regions where boundary layers and shear 

layers are predicted to arise.  

The Navier–Stokes equations are solved in 

cylindrical coordinates through a spectral-element 
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discretisation in space and a third-order time-integration 

scheme based on backward differentiation (Karniadakis et 

al. 1991). This stiffy-stable scheme has been implemented 

in a similar study of vortices with apparent success by 

Bergeron et al. (2000). Imposed upon each macro element 

are Lagrangian tensor-product polynomial shape 

functions. The polynomial degree Np is varied to control 

spatial resolution and is interpolated at the Gauss–

Lobatto–Legendre quadrature points. The present 

implementation in cylindrical coordinates follows work by 

Sheard et al. (2005), and was recently validated by Cogan 

et al. (2011).  

Optimization of computational resource and time was 

examined by varying the polynomial degree imposed on 

each element. Convergence of three global parameters was 

studied: the volume integral of the azimuthal velocity 

relative to the tank, the magnitude of the leading 

eigenvalue obtained via linear stability analysis of a 

perturbation with azimuthal wavenumber k = 12, and the 

L2 norm. Convergence of the global parameters was 

observed (though not shown here) with increasing Np , and 

all achieved an error of 0.1% or less at Np = 11 when 

compared to a higher-resolution result. Throughout the 

remainder of this paper a polynomial degree of 11 is 

employed. 

Linear stability analysis 

The non-axisymmetric three-dimensional structures 

developing on the underlying axisymmetric base flow are 

examined through a linear stability analysis (following 

Barkley & Henderson 1996; Sheard 2011). This technique 

allows the three-dimensional stability of individual 

azimuthal Fourier modes to be determined from leading 

eigenmodes of an evolution operator of the linearised 

Navier–Stokes equations. 

The Navier–Stokes equations are linearised by 

separating the velocity and pressure fields in their 

respective mean and (small) perturbation. The resulting 

products between perturbation terms are assumed to be 

small and neglected. This yields a linearised equation 

which has a similar form to the original Navier–Stokes 

equations, (1a) and (1b). The difference is in the advection 

operator which is no longer non-linear in u, as shown in 

equation 4. The primes and bars denote the perturbation 

and mean values, respectively, and α is the diffusion 

coefficient defined as (2EkA2)/(2-ARo). 
 

   

  
                                (4a) 

                                      (4b) 
 

Eigenvalues from the stability analysis correspond to 

Floquet multipliers (μf) of the system which can be 

complex. Leading eigenvalues dictate the dominant 

instability mode for each azimuthal wavenumber. An 

implicitly restarted Arnoldi method is used to extract the 

leading eigenmodes of the linearised perturbation fields 

(Sheard 2011). The growth rate is related to the Floquet 

multiplier via 
 

      ,                                 (5) 
 

where T is an arbitrary (due to the steady-state base flows 

in this study) time interval over which the equations are 

integrated within the eigenmode solver. Stable modes are 

characterised by |μf| < 1 (negative σ) and unstable modes 

by |μf| > 1 (positive σ). 

 

 

Rayleigh–Kuo criterion 

Rayleigh (1880) developed a necessary condition for 

three-dimensional instability in barotropic two-

dimensional flows of constant depth. This assumes that the 

Coriolis parameter is constant. However, variation of the 

Coriolis parameter simulated by a linearly-varying depth 

is usually a more appropriate approximation for 

geophysical applications. The importance of this Coriolis 

variation was considered by Kuo (1949) who extended the 

necessary condition developed by Rayleigh (1880). In 

cylindrical coordinates, the condition is given by 
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where f is the Coriolis parameter. The net result is that for 

barotropic instability to be possible, it is necessary that the 

gradient of absolute vorticity change sign somewhere 

within the domain. 

RESULTS 

Axisymmetric flow 

Steady-state solutions of the base flow were obtained 

for numerous Rossby number and Ekman number 

combinations. The Rossby numbers and Ekman numbers 

investigated here range between -1.0 < Ro < 0.6 and                            

5×10-5 < Ek < 4×10-3. Negative and positive Rossby 

numbers refer to cases where the disks are rotating slower 

and faster than the tank, respectively. 

 

 

(a) 

 

 
(b) 

 

 

Figure 3: Contours plots of azimuthal velocity (upper 

frame) and axial vorticity (lower frame) for axisymmetric 

flows with (a) Ro = 0.05 and Ek = 3×10-4 and (b) Ro = 0.6 

and Ek = 3×10-4. Blue to red contours show arbitrary low 

and high values, respectively.  
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The structure of the axisymmetric flows for a low and 

high Ro at a constant Ek is illustrated in figure 3. At low 

Ro, the flow demonstrates strong two-dimensionality with 

broad depth-independence in the interior of the tank 

(shown by vertical contour lines), as predicted from the 

Taylor–Proudman theorem (see Pedlosky, 1987). 

However, at higher values of Ro, this two-dimensionality 

breaks and the interior flow becomes complex in structure. 

Symmetry about the mid-depth axis is also broken. The 

highest gradients in azimuthal velocity and axial vorticity 

remain concentrated around the disk-tank interface, while 

the flow is largely uniform outside of this region. Ekman 

boundary layers form along the disk-tank boundaries and a 

vertical Stewartson layer exists at the disk-tank interface. 

The observations seen for the positive Ro cases hold 

true for negative Ro, with the exception that the two-

dimensionality is not seen to break down for the range of 

negative Rossby numbers investigated here. Variation of 

the Ekman number influences the thickness of the region 

over which changes in vorticity occur. A small Ek 

produces small shear layers while a large Ek produces 

thicker shear layers. The Ekman number also has 

demonstrated a weak dependence on the degree of two-

dimensionality of the flow. A small Ek guides the flow 

towards barotropic flow. Thus results obtained for Ro and 

Ek much less than unity have demonstrated the predictions 

of the Taylor-Proudman theory. They also validate the 

quasi-geostrophic models used in previous studies. Ekman 

pumping and suction, respectively, are seen for positive 

and negative Ro at the disk-tank interface. 

The Rayleigh–Kuo criterion was applied to the 

extracted azimuthal velocity profile at mid-depth (where 

barotropic flow behaviour is exhibited). The gradient of 

absolute vorticity for various Ro is shown in figure 4. The 

necessary condition is satisfied by all cases as every trend 

crosses zero at least once in the domain. The common 

crossing occurs at the disk-tank interface (r=1), which is 

where the most dynamic flow behaviour is present. This 

suggests the possibility of a barotropic instability 

developing in that vicinity.  

 

 

 

 

Figure 4: Gradient of axial vorticity as a function of 

radius for various Rossby numbers at an Ekman number of 

Ek = 6×10-5. The curves all cross the zero-line axis at least 

once at the disk-tank interface (e.g. at r=1). For clarity, 

only negative Rossby numbers are shown.  

 
Figure 5: Growth rate σ as a function of wavenumber k 

for various Ekman numbers at Ro = -0.1578. The only 

stable flow found at this Ro is at Ek = 3.79×10-3. 

 

Linear stability analysis 

The axisymmetric steady-state flow solutions were 

used as a basis for the linear stability analysis. Azimuthal 

wavenumbers of 1 ≤ k ≤ 20 are considered for a wide 

range of Rossby and Ekman number combinations. The 

wavenumber relates to the azimuthal angular wavelength λ 

by k = 2π/λ. Within this range, the fastest-growing three-

dimensional mode is determined. The zeroth wavenumber 

is omitted as it was always found to be stable. In contrast 

the eigenvalues of the non-zero wavenumbers are complex 

which suggests that the mode is quasi-periodic. 

Differences in the stability between positive and negative 

Rossby numbers are highlighted in the following sections.  

Negative Rossby number 

The growth rates of each wavenumber investigated 

here, at a constant negative Rossby number for various 

Ekman numbers are shown in figure 5. Only the              

Ek = 3.79×10-3 curve has its peak growth rate under the 

zero-line which suggest that it is stable. Its profile 

comprises a local maximum at smaller wavenumbers 

followed by a gradually decreasing growth rate profile 

with increasing wavenumber. As Ek decreases, the initial 

hump expands over a wider range of wavenumbers with 

the peak growth rate occurring at larger wavenumbers. 

The most unstable wavenumber at Ek = 1.26×10-3 is k = 4, 

while it is k = 11 at Ek = 6.32×10-3. These trends have not 

been seen to differ for Rossby numbers down to Ro = -1.0. 

As the Rossby number is decreased, the magnitudes of the 

growth rates become larger, allowing large Ekman number 

flows to become unstable. 

A typical perturbation field for negative Rossby 

numbers which has been decoupled from its base flow is 

illustrated in figure 6. It features two vertical bands of 

opposing vorticity which extends the entire depth of the 

tank at r = 1. This is in support of the results obtained 

from the Rayleigh–Kuo analysis. Decreases in Rossby 

number cause these bands of vorticity to become thinner. 

A three-dimensional visualisation of the instability mode 

generated by superposing the mode on the base flow is 

shown in figure 7. The k = 4 mode comprises a ring of 

axial vortices arranged in a 4-sided polygon. On either 

side of the vorticity ring are lower-vorticity patches. The 

mode structure is largely independent of depth and is only 
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Figure 6: An isolated perturbation field of the most 

unstable wavenumber at (Ro, Ek) = (-0.1578, 1.26×10-3). 

The mode is of k = 4. Blue to red contours show arbitrary 

low and high values of axial vorticity, respectively. 

 
Figure 7: A perturbation field of wavenumber k = 4 at 

(Ro, Ek) = (-0.1578, 1.26×10-3) which has been allowed to 

evolve over time on an underlying frozen base flow. The 

axial vorticity contours are extracted at mid-depth and the 

mode exhibits a 4-sided polygonal appearance.  

 

Figure 8: A Ro-Ek regime diagram of the most unstable 

azimuthal wavenumbers in the negative-Ro regime. The 

contours level of the curves represents the preferential 

mode.   

 

observed to vary close to the horizontal boundaries, in 

keeping with a barotropic instability. 

For the range of Ro and Ek studied here, the lowest 

unstable wavenumber was found to be k = 3. The regime 

diagram shown in figure 8 illustrates the dependence of 

the preferential modes in the Ro-Ek parameter space. It 

demonstrates a weak dependence on Rossby number as the 

contour lines remain largely horizontal at small Ekman 

numbers. There exists an increase in unstable mode with 

increasing Ro magnitude. This is in contrast to the 

experimental results of Fruh & Read (1999), who found 

decreasing wavenumber for increasing Ro magnitude. 

Although their system and the system studied here differ, 

the discrepancy is likely due to the non-linear effects in 

the experiment. The disagreement between linear stability 

and experimental results were also observed by Niino & 

Misawa (1984). 

Positive Rossby number 

Many similarities in stability characteristics are seen 

between negative and positive Rossby numbers. The 

commonalities will be briefly described and attention will 

focus on the differences.  

The growth rate as a function of wavenumber has a 

similar profile seen in figure 5 for small Rossby numbers. 

That is, a local low-wavenumber peak followed by a 

decreasing growth rate with increasing wavenumber. The 

wavenumber of peak growth rate also increases with 

decreasing Ekman number. This trend is broken as Ro is 

increased. Notably evident at Ro = 0.6, the gradually 

decreasing section at higher wavenumbers begins to 

exhibit its own mode of instability. This is illustrated in 

figure 9. At large Ek, the initial primary peak is dominant 

and the resulting unstable wavenumber is low. Decreases 

to Ek lead to the high-wavenumber mode peak becoming 

larger in amplitude and ultimately exceeds growth rates of 

the small-wavenumber mode. Thus, the high wavenumber 

mode becomes dominant. The change of the most unstable 

wavenumber is dramatic and the rapid increase in 

wavenumber does not appear to have an upper limit. The 

appearance of this second instability mode may relate to 

the flow states referred to as chaotic in Aguiar et al. 

(2010). 

At the higher Rossby numbers, the perturbation field 

does not illustrate long depth-independent vertical 

vorticity bands like those shown in figure 6. Instead, the 

bands are truncated and additional vorticity structures are 

observed throughout the flow. Axial vorticity contours of 

an evolved perturbation coupled with the base flow is 

shown in figure 10. Lower-level vorticity is seen to 

circumscribe the triangular inner vortex. The structure 

depicted here varies throughout the depth of the tank. 

Though not shown here, the positive-Ro parameter 

space exhibits dominant unstable wavenumbers varying 

from k = 2 to 7 for low-wavenumbers and k = 17 to 40 for 

 

Figure 9: Growth rate σ as a function of wavenumber k 

for various Ekman numbers at Ro = 0.6. All curves shown 

are unstable. Two peaking structures of σ are present. 
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Figure 10: A perturbation field of wavenumber k = 3 

superposed on the base flow at (Ro, Ek) = (0.6, 3.64×10-3). 

The axial vorticity contours are extracted at mid-depth and 

the mode represents a triangle-like configuration. 

 

high wavenumbers. It might be possible to simulate 

unstable wavenumbers from k = 8 to 16 with particular Ro 

and Ek combinations. Comparisons with modes obtained 

in Aguiar et al. (2010) illustrate differences which again, 

may be attributed to the differences between linear and 

non-linear flow states. 

CONCLUSION 

The linear stability of a differential-disk rotating flow 

has been explored for a range of Ekman numbers over 

both positive and negative Rossby number. As positive Ro 

is increased, the depth-independence becomes disturbed. 

Consequently, the instability modes which develop vary in 

structure with depth. For the range of negative Ro 

explored, the flow maintains a high degree of depth-wise 

two-dimensionality. 

For positive and negative Ro, linear stability analysis 

predicts that decreases in Ek leads to higher unstable 

wavenumbers. A single mode peak in growth rate as a 

function of wavenumber is seen to grow in amplitude for 

negative Ro. A similar trend is seen for small positive Ro. 

However, at higher Ro, a second mode becomes dominant 

at higher wavenumbers.  
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