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in a medium. The appropriate form of D,,(k) for a realistic
electron distribution in the present context can be included
simply by inserting it in (7).

The same procedure as described above can be used to
calculate electron-proton scattering cross-sections. These
calculations are in progress and will be presented in subsequent
papers.
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Rapidly Rotating Core-
Collapse Models

M. C. Thompson, Mathematics Department, Monash
University, Clayton, Victoria*

Abstract: Very few (if any at all) three dimensional models
of the final evolutionary stages of a star’s life have appeared
in the literature. Such models may be important if the stellar
core maintains sufficient rotational energy during it’s lifetime
so that when collapse finally occurs, the increase of rotational
energy to gravitational energy, may lead to a non-axisymmetric
instability.

A sequence of core collapse models with decreasing rotation
rate is considered. These models were calculated using a three
dimensional, post-Newtonian, hydrodynamical, numerical code.
The results show that for high precollapse rotational energies
the core can become unstable resulting in the formation of what
resemble ‘spiral arms’. Unfortunately, because of limits on
computer time, the calculations had to be discontinued shortly
after this development occurred.

* Present address CSIRO, Division of Energy Technology, Highett,
Victoria.
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At present little is known on the role that rotation plays during
the dynamical collapse phase at the end of a massive (i.e. 8
M®<MZAMS<7O MG) star’s life. During this final stage the
core collapses through approximately 2 orders of magnitude in
radius. This causes «, the ratio of rotational to gravitational
potential energy, to increase so that angular momentum will
be conserved. If the precollapse value is large enough then the
subsequent increase will lead to important dynamical effects.

An indication of what can occur comes from the classical
study of uniformly-rotating homogeneous (i.e. Maclaurin)
ellipsoids (see Tassoul 1978 for a review). This work indicates
that the outcome of the collapse is likely to be determined by
how large o becomes. For «<0.14 the body is stable. However
for 0.14< «<0.27 a Maclaurin spheroid is unstable to non-
axisymmetric perturbations and will evolve towards a more
energetically stable form such as a triaxial (e.g. Jacobi) ellipsoid
through the action of viscous or gravitational radiation
damping. This new form may also be unstable. Further for
«>0.27 a Maclaurin ellipsoid is dynamically unstable.
Unfortunately this theory only predicts when certain modes
become unstable and not the final state. In this regard there have
been very few attempts to numerically model the evolution of
rotationally unstable bodies (but see Durisen and Tohline 1981,
for the evolution of a rapidly («=0.33) rotating polytrope).

Importantly these classical results seem to be applicable to
more general rotation laws and density distributions such as
differentially rotating polytropes (Bodenheimer and Ostriker
1973).

What happens during the final dynamical collapse stage will
depend crucially on just how much angular momentum has been
exchanged between the core and the envelope during the
preceding evolution. (If one assumes that no angular momentum
is exchanged between the core and the envelope throughout the
entire evolution then, given typical ZAMS rotation rates, the
core will reach a critical angular velocity well before reaching
the pulsar stage.) Endal and Sofia (1978) used an axisymmetric
numerical model to evolve rotating 7 and 10 solar mass stars
from pre-main sequence until their hydrogen exhausted cores
had grown to approximately 1 M. At that stage the timestep
was too small to continue the calculations. However a rough
extrapolation of their results lead them to conclude that such
stars would become unstable to non-axisymmetric perturbations
prior to explosive carbon burning. They concluded that the core
may fragment leading to a very complicated subsequent
evolution.

However Hardorp (1974) and also Greenstein et al. (1977)
take the view that there is more or less a continuous exchange
of angular momentum throughout the entire evolution. Their
main evidence for this comes from the comparatively slow
rotation rates of pulsars and white dwarfs. For instance, on¢é
can estimate the rotation rate of the Crab pulsar at birth from
the present rate of decrease in angular velocity. The value arrived
at is only one tenth of that necessary to cause equatorial mass
shedding. Therefore these authors think that considerable
angular momentum exchange occurs during normal stellar
evolution.

Reconciling the two different points of view is difficult.
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Perhaps magnetic fields play a role redistributing angular
momentum during and after the final collapse. In any case it
seems worthwhile to examine the possible outcomes of a
dynamical core collapse as a function of the initial rotation state.

The Numerical Method

The numerical model uses Smoothed Particle Hydrodynamics
(Gingold and Monaghan 1982) modified to include post-
Newtonian terms. Since the presentation at the 1983 conference
(Thompson 1983) there have been two main changes. A new
form of the equation of state (Lamb et al. 1978) is now being
used. This is based on the discovery that the entropy per particle
will stay close to 1 k throughout the entire collapse (Bethe ef al.
1979). A key conclusion is that this will prevent neutrons from
dripping out of the nuclei at 10'! g/cm?, since this would require
a significant increase in the entropy. This prevents the adiabatic
index from dropping sharply at this point and means that the
gravitational and pressure forces will be in closer equilibrium
than was previously thought.

The other important change was to the form of the artificial
viscosity used in the numerical scheme. This new artificial
viscosity was described at last years conference (Pongracic ef al.
1984). It is important in that it allows the calculations to proceed
further than previously.

The Model

Only stars massive enough to evolve through the various nuclear
burning stages to possess an iron core are considered. The
current theory predicts that stars with ZAMS masses in the range
15-70 M® will be able to evolve fairly smoothly through all the
nuclear burning stages to form an iron core. In addition it is
believed that at least some stars with masses in the range
8-15 M@ will also manage to eventually evolve through to this
stage although their actual evolutionary paths may be
considerably more complicated. (See Trimble 1982, 1983, for
a review of pre-supernova evolution.)

Since iron is the most stable element no further exothermic
reactions are possible. Once the core mass increases to Mch, the
Chandrasekhar limiting mass, electron degeneracy pressure can
no longer provide support against gravity and collapse is
inevitable.

This numerical model considers the inner core alone. The
initial model for the collapse studies uses a 1.1 M core, which
is just in excess of My for the equation of state used. The model
core is artificially supported against collapse by raising the
pressure by 10% above its true value. To initiate the collapse
the pressure is suddenly reduced to its correct value.

Since the rotation state is unknown at the pre-collapse stage
several forms for the initial rotation law were tried. This rotation
was imposed on the core prior to starting the collapse. For most
of the cases examined the initial value of o was very small
initially (< 0.01) so that one would expect that the pre-collapse
model would not be too far from equilibrium.

For most of the cases examined the main effect of rotation
is to cause some flattening of the core during the collapse.
However for ainiiai > 0.002 it appears that the rotational energy
builds up enough to lead to a dynamical instability. Consider
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a differentially rotating core with an angular momentum of
8.2 x 10*” erg-sec. (This rotation is almost sufficient to prevent
the core from collapsing.) In this case « reaches a value of
approximately 0.22 during the collaspe. Initially it was
approximately 0.01. The numerical results indicate that the core
will become dynamically unstable near maximum density.
Figure 1 shows rotation plane density contours approximately
1 second after initiating the collapse. At this stage the core has
become slightly triaxial. One pattern rotation period later
structures resembling spiral arms form (Figure 2). Finally
Figure 3 shows the core after a further three quarters of a
rotation period. Matter in the spiral arms has been shed into
an equatorial ring which expands outwards from the core taking
with it a considerable proportion of the angular momentum.
Unfortunately this was the last model calculated because of
restriction on computer time.

The remaining central blob of matter is still triaxial at the
end of the calculations and will presumably radiate energy and
angular momentum through the emission of gravitational
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Figure 1 — Rotation plane density contours approximately one second
after the start of the collapse. The contours are quite distorted at this
stage. The core is no longer axisymmetric.
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Figure 3 —The final model calculated (approximately three quarters of
a rotation period after the model shown in Figure 2). By this time the
matter in the arms has been shed into an equatorial ring (not shown)
but the core remains triaxial.

radiation, eventually losing enough angular momentum to
become axisymmetric again.

Other models examined indicate that similar behaviour occurs
when the angular momentum is greater than 4.0 x 10*” erg-sec.
Below this value the core does not develop any lasting
perturbation at least until after maximum density has been
reached.

Conclusion

These post-Newtonian models of core collapse indicate that
rotation can play a significant role in the dynamics if, prior to
collapse, the rotational energy is sufficiently large. The models
indicate that if « is greater than approximately 0.002 the
rotational energy can build up to levels which will lead to the
core becoming non-axisymmetric and eventually shedding an
equatorial ring of matter in an effort to reduce the overall
angular momentum. The loss of axisymmetry would lead to a
large flux of gravitational radiation.
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The Role of Kinetic Boundary
Conditions in Generating
Type Il Solutions for
Rayleigh-Benard Convection

J. O. Murphy and N. Yannios, Department of
Mathematics, Monash University

Introduction

A new family of solutions for stationary convection (Murphy
and Lopez 1984) has been established which exists within the
astrophysical range of parameter values—large Rayleigh number
and low Prandt] number. These single mode Type II solutions,
which have a non-zero component of vertical vorticity,
apparently do not exist at higher Prandtl numbers and are
characterized by a lower vertical velocity and heat flux, when
compared to the equivalent single mode Type I solutions for
Rayleigh — Benard convection with zero vertical vorticity. In turn
the vertical component of vorticity associated with Type II
solutions is responsible for modifying the horizontal components
of the velocity field to establish cyclonic or swirling type
solutions within the hexagonal convection cell.

So far numerical time-dependent investigations have
established the existence of these Type II solutions only in the
case when the stress-free boundary conditions hold —the ones
usually considered appropriate in astrophysical situations. The
question now arises as to whether or not these Type II solutions,
which persist in the absence of any external effects associated
with rotation or an applied magnetic field, are just a
manifestation of the choice of free boundary conditions. If this
should be the case, and in spite of their helical structure and
other significant physical features, their validity in any
astrophyical applications would at least be in doubt.

The principle objective of this study is to now establish what
effect the choice of boundary conditions has on the generation
and growth of a vertical component of vorticity, and also
ascertain if the astrophysical choice of free-free boundary
conditions represents the most efficient in terms of convective
heat transport. Accordingly, time integrations of the governing
equations, including the vertical vorticity terms, for the four
possible combinations of boundary conditions have been
undertaken and the results then examined on a comparative basis
with particular emphasis on the magnitude of the total heat
transfer and magnitude of the vertical vorticity at the respective
boundaries.

Equations

When the single mode approximation is employed the time
dependent non-linear equations for Rayleigh— Benard
convection in a Boussinesq layer of fluid, which is heated
uniformly from below, are given by (Lopez and Murphy 1983):



