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The wake of a sphere undergoes a number of symmetry-breaking transitions as it changes from
laminar to turbulent. This paper concentrates on the "rst two transitions. At Re"212 a regular
transition occurs, when the wake develops a spectacular two-tailed structure consisting of
two trailing streamwise vortices. During the second transition at Re"272 the #ow undergoes
a Hopf bifurcation. In this case there is a complex interaction between the trailing vortices
leading to the periodic shedding of vortex loops. Both these transitions are shown to be
supercritical (or nonhysteretic). Landau models are constructed for both transitions and
the coe$cients determined. The visual impression of an apparently sudden bifurcation to the
two-tailed wake is shown to be due to the focal nature of the trailing vortices, which draws dye
into the cores, even if their net circulation is small. A precursor to the second transition to
the periodic wake is strong kinking of the trailing vortices about 1 diameter downstream from
the back of the sphere. The vorticity structure of the two-tailed wake prior to transition is also
quanti"ed which may prove useful for development of models of the transition process.
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1. INTRODUCTION

AS THE REYNOLDS NUMBER is increased, the wake behind a sphere undergoes a series of
well-de"ned transitions on its way to becoming fully turbulent. At low Reynolds number
the separation bubble is axisymmetric. The attached separation bubble grows in length
until the Reynolds number reaches approximately 210.

The "rst transition involves a (regular) symmetry-breaking topological change from
a steady axisymmetric wake with an attached separation bubble to a steady nonaxisymmet-
ric wake consisting of a shortened separation bubble with two trailing counter-rotating
vortices. In experimental visualizations dye is trapped in the vortex cores and this leads to
a dramatic two-threaded structure shown in Figure 1(a).

Johnson & Patel (1999) found numerically that this transition occurs at approximately
Re

c1
"211. This value compares well to the value determined by Tomboulides et al. (1993)

and Tomboulides & Orszag (2000) (Re"212) using a similar numerical formulation to that
used to obtain the current results. These values are consistent with experimental predictions
which tend to be lower, but have an upper limit close to the numerical estimates. This is
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Figure 1. Dye visualizations of the sphere wake: (a) two-tailed stationary wake; (b) wake in the periodic regime.
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probably because of perturbations introduced by the support structures. Magarvey
& Bishop (1961a,b) found the two-threaded wake to exist in the range 210(Re(270,
Nakamura (1976) found the transition occurred at Re"190, and Ormières (1999) and
Ormières & Provansal (1999) observed the two threads between 180(Re(280. In
addition, the stability analysis of Natarajan & Acrivos (1993) revealed a regular, i.e.,
time-steady transition at Re"210.

The second topological transition is from the steady two-threaded wake to a periodic
wake in which the trailing vortices form kinks that develop into strongly skewed loops, and
these move away downstream as shown in Figure 1(b).

Again, there have been various studies documenting and analysing this transition. The
critical Reynolds number (Re

c2
) has been determined experimentally to be: 280 (Ormières

& Provansal 1999), 300 (Sakamoto & Haniu 1995), between 270 and 290 by Magarvey
& Bishop (1961a, b), and in the range 200}300 in the older study by Taneda (1978).
Numerical simulations predict values Re"270 (Johnson & Patel 1999), and in the range
250}280 (Tomboulides et al. 1993). In addition, the stability analysis of Natajaran & Acri-
vos (1993) found the transition to occur at Re"277, although they based the stability
analysis on an axisymmetric base #ow.

The aim of the present study is to examine certain dynamical and topological features of
the "rst two transitions, in particular, whether they are subcritical or supercritical, i.e.,
whether the transitions are hysteretic or not. The initial regular transition, in particular,
shows a distinct (apparently discontinuous) change in #ow topology and it is di$cult to
imagine a priori how the transition could take place smoothly.

The transitions for the circular cylinder wake are well modelled by the Landau equation;
especially in the neighbourhood of the transitions. For example, Dus\ ek et al. (1994) apply
the model to the transition from steady two-dimensional #ow to periodic two-dimensional
#ow, and Henderson (1997) uses it to describe the transition from two- to three-dimensional
shedding. This theory can also be applied to the present system as has been done by
Ormières & Provansal (1999), especially for the second transition. They "nd that the
#uctuation energy varies linearly with (Re!Re

c2
), as expected for a supercritical transition

obeying the Landau model.

2. NUMERICAL METHOD

A uniform #ow with speed ;
=
"1 was directed along a positive z-axis past a sphere

centred at (z, r, h)"(0, 0, 0) of radius R"1. The Reynolds number is based on diameter (D)
and is de"ned as Re";

=
D/l, where l is the kinematic viscosity.

The current simulations employed a spectral/spectral-element method for axisymmetric
geometries. A spectral-element discretization was used in the r}z plane and a Galerkin}
Fourier expansion in the h-direction. Typically, sixth-order tensor product Lagrangian
polynomial expansions were used in each element and 24 Fourier planes in the h-direction.
An initial study was performed to verify that the resolution was su$cient to resolve the
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details of the #ow, and selected higher-resolution simulations were used to verify the
accuracy of the results. More details about the method can be found in Thompson et al.
(1996).

3. RESULTS

3.1. THE FIRST TRANSITION

Numerical simulations were performed at Reynolds numbers between 200 and 300. This
covers the regular and periodic transitions. Typically, the initial velocity "eld for the next
Reynolds number in the sequence is the asymptotic state of the previous Reynolds number
solution examined.

We assume and verify that the initial transition behaves according to the Landau model:

dA

dt
+pA!lA3, (1)

where A represents the (global) perturbation amplitude of some quantity from the base #ow.
The right-hand side e!ectively represents the "rst two terms in a series expansion. The
truncation is appropriate in the neighbourhood of the critical Reynolds number providing
l is positive, otherwise higher-order terms determine saturation of the unstable mode. The
coe$cient p is the growth rate coe$cient in the linear regime. It changes from negative to
positive through the transition and hence determines the stability of the system. The
transition is supercritical if l is positive so that the "rst nonlinear term causes the initial
linear growth of the instability to saturate. If l is negative then the next term in the series is
required because that term (or higher-order terms) leads to the saturation of the transient
growth. It can be shown (e.g., Dus\ ek et al. 1994) that the energy in the mode (A2) varies as
p/l, which in turn is proportional to (Re-Re

c2
). Thus, the transition can be shown to be

supercritical by examining the sign of l and the behaviour of the A2 away from the
transition. (Note that because this transition is from one steady solution to another, A does
not need to carry any phase information, so it is su$cient to take it to be real. For the
second transition, a Hopf bifurcation, it is necessary to take A and the equation coe$cients
to be complex numbers.)

Two methods were used to determine the nature of the transition. The "rst involved
recording the time-dependence of the velocity components during the transient evolution at
a (mesh) point (4)3, 0, 0) downstream of the sphere. The azimuthal velocity component (w)
can be used to monitor the growth of the instability, since it is zero prior to criticality.
Although the parameter l may vary in magnitude (because the saturation value of the
velocity perturbation will vary from point to point), we expect the sign should be consistent
throughout the wake. The linear growth rate (p) does not vary with position. Since the
amplitude in the Landau model should be a global property of the wake, another method
was used to verify the results obtained by this method. The second method was to de"ne
a global amplitude by

DAD2"
1

<
41)%3%

;2
=
P)

D (u
3D

!u
2D

)D2 d<, (2)

where the integral is over ), the volume of the domain (Henderson 1997). [The nondimen-
sionalization by the volume of the sphere (<

41)%3%
) and the upstream speed (;

=
) is arbit-

rary.] This integral depends on the numerical domain size, which again means that l is not
determined uniquely, but since we are mainly interested in the sign of the cubic term this is
not a concern.



Figure 2. (a) The transition in terms of the global amplitude method. The dashed straight line shows the linear
behaviour (for reference). The Reynolds number is 215. (b) Plot of d logDAD/dt versus DAD2 during transition. The
vertical intercept gives the growth rate (p"0)004868) and the gradient is equal to l ("3)78). The linear behaviour
near DAD2"0 also veri"es that the "rst nonlinear term in the Landau model is a cubic term. The deviation from

linearity for higher values indicates that higher-order terms become important close to saturation.
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One determination of the critical Reynolds number is obtained from the behaviour of the
linear growth rate (p) versus Reynolds number. Using a quadratic "t to the growth rate
measured at Re"205, 215, and 220, it becomes positive at Re

c1
"212, close to predictions

from other direct simulations and stability analysis.
The nature of the transition was determined by the sign of l for Re"215; just slightly in

excess of the critical Reynolds number. Figure 2(a) shows the logarithm of the amplitude of
global perturbation mode. The evolution using the point method (not shown) is consistent
with this behaviour. This graph indicates the supercritical nature of the transition since the
initial deviation from linearity is to decrease the growth rate.

The parameters p and l can be determined accurately by plotting d logDAD/d t versus DAD2.
For the point speed method this plot is shown in Figure 2(b). The y-intercept corresponds to
p, and the gradient gives l. The values are p"0)004868 and l"3)78. This growth rate
agrees with the value obtained by the global mode method.

Note that the Landau model theory (and dimensional analysis) suggests that the growth
rate depends on the di!usion timescale and the distance to the critical Reynolds number,
i.e.,

1

p
&

D2

l
(Re!Re

c1
)~1. (3)

For Re"215, the right-hand side is 129, given (Re!Re
c1
)+3, while the actual growth rate

timescale is 1/0)00486"205.
The Landau model also predicts that the square of the amplitude of the perturbation

should be proportional to (Re!Re
c1
) close to the transition. Figure 3 shows the behaviour

of the energy in the saturated mode as a function of Reynolds number. A convenient
measure of the energy is given by the azimuthal component, i.e.,

DAh D2"
1

<
41)%3%

;2
=
P)

DwD2 d<. (4)

This is used because it does not require the calculation of the two-dimensional base #ow
(since the azimuthal velocity component is zero prior to transition).



Figure 3. Plot of DAh D2 against Reynolds number again con"rming the transition is supercritical and well
described by the Landau model.
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3.2. THE TRANSITION PROCESS

There has been some discussion in the literature of the physical process leading to the
transition and maintenance of the saturated state. For example, Johnson & Patel (1999)
examine the process in terms of pressure, and Shirayama (1992) in terms of limiting surface
streamlines. Some insight into the physical mechanism behind the bifurcation can be gained
by examining the development of streamwise vorticity during the transition. Figure 4(a)
shows streamwise vorticity isosurfaces corresponding to u

z
"$0)01 at time 1400. Again

the Reynolds number is 215. This is still in the linear growth regime. The initial develop-
ment of streamwise vorticity apparently results from the tilting of azimuthal vorticity
generated on the surface of the sphere. Below the transition point, rings of #uid which pass
close to the surface of the sphere maintain their axes pointing along the z-axis. Above the
critical point these rings become tilted, as can be veri"ed by examining isosurfaces of
stream-wise velocity component near the surface of the sphere. This tilting converts the
azimuthal vorticity into streamwise vorticity * positive on one side of the sphere and
negative on the opposite side, as is shown in Figure 4(a). After generation, the vorticity is
carried away from the surface into the wake #ow when the #ow separates from the
separation line at the back of the sphere. This process produces the double-threaded wake
structure as seen in the experiments. The threads maintain considerable vorticity down-
stream as shown in Figure 4(b), which displays the wake structure at saturation. Johnson
& Patel (1999) discuss the transition process in more detail and in particular demonstrate
that the transition from axial to planar symmetry is associated with the out-of-symmetry-
plane velocity component in the wake.

As commented previously, the experiments indicate that the two-threaded wake seems to
appear quite suddenly once the critical Reynolds number is exceeded. Also note the
apparently discontinuous change in wake topology, which seems to suggest that the
transition might be subcritical. However, it is di$cult for experiments to determine
hysteresis directly. As shown in the previous section, the Landau model indicates the
transition is not subcritical. The visualization of the developing streamwise vortex "laments
shown in Figure 4(a) provide an explanation of why the dye "laments appear to occur
discontinuously at transition. The visualization shows that there is a release of streamwise
vorticity into the wake from distinct points on opposite sides of the attached separation



Figure 4. (a) Isosurfaces of positive and negative streamwise vorticity (u
z
"$0)01) in the neighbourhood of

the sphere during the transition to non-axisymmetric #ow for Re"215. (b) Isosurfaces at saturation for the same
Reynolds number.
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bubble. Note that this visualization shows the shape of linear instability mode structure.
Importantly, the two trailing vortices do not migrate from the centreline as they grow in
strength. Even very close to transition, although these structures possess little streamwise
vorticity, they act as stable foci and hence draw dye into their cores. Thus, it is expected that
there should be a sudden change to the wake at transition as monitored by dye visualiz-
ations.

3.3. WAKE DEVELOPMENT AFTER THE FIRST TRANSITION

The wake in this regime is characterized by counter-rotating vortex threads, usually
observed in the experiments as two trailing dyelines. The counter-rotating vortices induce
a velocity at the centreline of each other causing them to be convected away from the
centreplane.

For Re"250, the vortex thread structures are visualized in Figure 5. This "gure shows
a top and side view of the threads highlighted by plotting the 0)015-isosurface of the
imaginary component of the eigenvalue of the velocity gradient tensor [e.g., Mittal (1999)].

The di!usion timescale D2/l"Re D/;
=

is approximately 500 for the dimensions used in
the current simulations. Since the velocity in the wake is approximately the free-stream
velocity, this means that di!usion is slow to cross-di!use the two vortex threads, so they
should preserve some strength for a considerable distance downstream even though they
are close together.

Cross-sectional contour plots of the streamwise vorticity are shown in Figure 6 at z"3R
and 12R downstream of the sphere. The contours deviate considerably from circularity even
in the cores, presumably due to both cross-di!usion and the initial formation mechanism.
Concerning the latter, Johnson & Patel (1999) have demonstrated that the tilting of vortex
rings (as discussed above) in the initial formation region leads to streamwise vorticity being
shed from a more downstream portion of the recirculation region. However, it is still
possible to "t the pro"les reasonably well using a combination of Gaussian vorticity
distributions.

A least-squares "t of the actual vorticity distribution was computed for the following
functional "t:

u6
z
"!S exp[!(x!x

0
)2/a2!(y!y

0
)2/b2]

#S exp[!(x#x
0
)2/a2!(y!y

0
)2/b2] (5)



Figure 5. (a) Top and (b) side view of the trailing vortex threads for Re"250. See text for details. The view of the
sphere is obstructed by the isosurface. Note the irregularity of the structure covering the sphere is an artefact of the

nonregular node-point distribution.

Figure 6. Streamwise vorticity contours for Re"250 at (a) z"3R and (b) 12R.
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with z in the range [2R, 15R]. Here x and y are the Cartesian coordinates in the cross-
planes. There are "ve "tting parameters: S, a, b, x

0
and y

0
. The goodness of "t improves

further downstream. A typical indication of the "t is shown in Figure 7 for Re"250 and
z"10R. Notice that the distribution in the y-direction is not symmetrical about the centre
of each vortex; this is probably at least partially due to the induced velocity moving the
vortices away from the centreplane.

The variation of the parameters as a function of distance and Reynolds number is shown
in Figure 8. Interestingly, these "gures show increased kinking of the trailing vortex
"laments at 3 radii downstream from the sphere centre as the Reynolds number gets close to
Re

c2
, especially noticeable in terms of the distance parameter x

0
. The tails get closer

together at this point, before moving apart again. Figure 9 is an isosurface plot of the tail
structure at Re"270, only slightly below the transition Reynolds number Re

c2
. This clearly

shows the distortion. The kinking is considerably weaker at lower Reynolds numbers such
as shown in Figure 5. It seems reasonable to speculate that this may be associated with the
transition to the periodic wake. A typical post-transition visualization of the tail structure is
shown in Figure 9(b) (see also Mittal 1999).

Figure 8(f ) shows the variation of maximum vorticity in the threads as a function of
downstream distance for Re"250. This indicates the vorticity at the centre of the threads



Figure 7. Variation of streamwise vorticity through the centres of the vortices in (a) the x-direction and (b) the
y-direction. Solid lines show numerical predictions and dashed lines are least-squares "ts; Re"250, z"10R.

Figure 8. Size parameters (a) a and (b) b, position parameters (c) x
0

and (d) y
0
, and (e) strength parameter S: n,

Re"230; s, Re"250, h: Re"270. (f ) Variation of maximum vorticity in the trailing vortex threads with
downstream distance.
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Figure 9. Isosurface plot of the vorticity structure. (a) Two-tailed wake at Re"270, just below the transition to
periodic wake #ow. (b) Re"290 (side view).
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decays (through di!usion and cross-annihilation) by a factor of about three over the
"rst "ve diameters downstream of the sphere. The decay is much slower further down, and
clearly the vortices maintain some strength for a considerable distance downstream.

3.4. THE SECOND TRANSITION

According to the current simulations, between Re"270 and 280 the transition from
a stationary nonaxisymmetric wake to a periodic nonaxisymmetric wake takes place.

At Re"270 the growth rate for the development of the periodic mode is a
R
"!0)00283,

while at Re"280 the value is a
R
"0)015. Linear interpolation between these two values

indicates that the transition occurs at about Re
c2
+272. This is consistent with other

numerical predictions described previously [e.g., Johnson & Patel (1999), Tomboulides
et al. (1993), Tomboulides & Orszag (2000)] and slightly lower than the transition value of
277 predicted by the linear stability analysis of Natarajan & Acrivos (1993).

In this case, because phase information is required, the transition is modelled by the
complex Landau equation

dA

dt
"(a

R
#ia

I
)A!l

R
(1#ic)DAD2A. (6)

By assuming a solution of the form A"o exp[i/(t)], this complex equation can be
decomposed into an equation for the amplitude, o, and an equation for the phase, /(t). The
equation for the (real) amplitude is of the same form as before

do
dt

"a
R
o!l

R
o3 (7)

[see Le Gal et al. (2001), this issue, for more details]. As for the previous transition, the
nature of the instability can be assessed by examining the sign of the (real) Landau
coe$cient (l

R
). Figure 10(a) shows the growth and saturation of the periodic wake. Initially,

the #ow receives a large jolt as the Reynolds number is increased from Re"270 to 280. The
transient dies away while the growth of the instability is still in the linear regime.

Numerical estimates of the coe$cients in the Landau model can be obtained from Figure
10(b) which shows the variation of d logD<

!.1
D/dt with D<

!.1
D2, where D<

!.1
D is the amplitude

of the velocity in the r}h plane at the sampling point (4)3, 0, 0). This plot provides values of
a
R
"0)015 and l

R
"40)54, verifying the transition is supercritical. This "nding is consistent

with the experimental investigations of Ormières & Provansal (1999) who demonstrated
supercriticality by showing the linear variation of perturbation energy with Reynolds
number above the transition value. An attempt is currently being made to verify the
conclusion of the point method by using the global amplitude method. The results will be
reported elsewhere.



Figure 10. (a) Growth and saturation of the wake instability at Re"280 as measured by the vertical velocity
component at a point in the wake. (b) d logD<

!.1
D/dt versus D<

!.1
D2 used to determine the values of a

R
and l

R
. This

indicates the transition is supercritical.
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Simulations closer to the transition Reynolds number have also allowed an accurate
determination of the Landau constant of c"!0)554 at Re"273. It is of interest that this is
signi"cantly smaller in magnitude than the corresponding value cK!3 for the Hopf
bifurcation for a circular cylinder wake [e.g., Dus\ ek et al. (1994), Le Gal et al. (2001)].

4. CONCLUSIONS

This paper has examined the "rst two transitions in the wake of a sphere. Both the regular
transition at Re"212 and the Hopf bifurcation at Re"272 are supercritical (or nonhys-
teretic), as determined from the evaluation of the cubic coe$cients of the Landau model.
The apparent sudden occurrence of the two-threaded wake structure observed in the
experiments seems to be due to the release of streamwise vorticity into the wake from
distinct points on opposite sides of the attached separation bubble. Even though these
stream wise vortical structures possess little vorticity close to the transition Reynolds
number, they act as stable foci and hence draw dye into their cores, leading to the possible
misinterpretation of the transition as subcritical.

The vortical structure of the trailing threads has also been quanti"ed and clearly shows
kinking at about 3 radii downstream of the centre as the Reynolds number approaches the
critical value. It may be possible to use this quantitative description of the wake to construct
a simpli"ed physical model of the transition process.

REFERENCES

DUS[ EK, J., LE GAL, P. & FRAUNIED , P. 1994 A numerical and theoretical study of the "rst Hopf
bifurcation in a cylinder wake. Journal of Fluid Mechanics 264, 59}80.

HENDERSON, R. D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition.
Journal of Fluid Mechanics 352, 65}112.

JOHNSON, T. A. & PATEL, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. Journal of
Fluid Mechanics 378, 19}70.

LE GAL, P., NADIM, A. & THOMPSON, M. 2001 Hysteresis in the forced Stuart}Landau equation:
application to vortex shedding from an oscillating cylinder. Journal of Fluids and Structures 15,
445}457.

MAGARVEY, R. H. & BISHOP, R. L. 1961a Transition ranges for three-dimensional wakes. Canadian
Journal of Physics 39, 1418}1422.

MAGARVEY, R. H. & BISHOP, R. L. 1961b Wakes in liquid}liquid systems. Physics of Fluids 4, 800}805.
MITTAL, R. 1999 Planar symmetry in the unsteady wake of a sphere. AIAA Journal 37, 388}390.



TRANSITION IN SPHERE WAKES 585
NAKAMURA, I. 1976 Steady wake behind a sphere. Physics of Fluids 19, 1}18.
NATARAJAN, R. & ACRIVOS, A. 1993 The instability of the steady #ow past spheres and disks. Journal

of Fluid Mechanics 254, 323}344.
ORMIEE RES, D. 1999 Etude expeH rimentale et modeH lisation du sillage d'une sphère à bas nombre de
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