
The shear-layer instability of a circular cylinder wake
Mark C. Thompsona) and Kerry Houriganb)

Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical
Engineering, PO Box 31, Monash University, Melbourne 3800, Australia

(Received 26 October 2004; accepted 4 December 2004; published online 10 January 2005)

A reinterpretation is made of previously published data concerning the frequency of the instability
waves in the separated shear layer from a circular cylinder for Reynolds numbers in the range
103–105. An accurate fit to the observed variation can be achieved using a piecewise fit based on
theoretical and empirical arguments. A logical conclusion is that the ratio of the frequency of the
instability waves to the Kármán vortex shedding frequency is indeed determined by the
boundary-layerproperties at separation, as suggested by Bloor. ©2005 American Institute of
Physics. [DOI: 10.1063/1.1852581]

Bloor1 made possibly the earliest systematic study of
instability waves in the separated shear layer from a circular
cylinder. This instability has subsequently become known as
the Bloor–Gerrard instability. The occurrence of these shear-
layer vortices is now well established. They have been beau-
tifully visualized by Wei and Smith,2 Kourta et al.,3 and
Prasad and Williamson,4 amongst others.

By assuming that the instability occurring in the separat-
ing shear layers was governed by boundary-layer properties
at separation, she used simple boundary-layer theory to de-
duce the relationship between the frequency of these waves
fSL, the Kármán vortex frequencyfK, and the Reynolds num-
berRe, to befSL/ fK~Re1/2, whereRe=U`D /n, andU` is the
free-stream velocity,D is the cylinder diameter, andn is the
kinematic viscosity. This theoretical relationship was sup-
ported by her experimental data.

Two decades later, Wei and Smith2 used a vortex-
counting technique in conjunction with their flow visualiza-
tions to find that the shear-layer vortex frequency varied ac-
cording to the relationshipfSL/ fK=0.0047Re0.87; markedly
different from Bloor’s.1 To explain the difference between
their results and Bloor’s1 results, they suggested that it is
more appropriate to assume that the shear-layer instability
scales by local conditions within the shear layer. In particu-
lar, they proposed that the momentum thickness in the
middle of the exponential growth region of the separated
shear layer should be the appropriate lengthscale for scaling,
rather than the attached boundary-layer thickness at separa-
tion.

Only slightly later, Kourtaet al.3 presented power spec-
tra of signals from a hot wire located in the near wake of the
circular cylinder in theRe range 2000–16 000. Analysis of
these hot-wire frequencies supports theRe1/2 prediction of
Bloor. It has been speculated that the hydrogen bubbles used
in the experiments of Wei and Smith2 may have artificially
disturbed the shear layers, e.g., see Zdravkovich.5

Since the mid-1990s, the situation appears to have
changed once again. In several recent studies, the conclusion
appears to be that the experimental data are best fitted by a
functional relationship approximately halfway between that
of Bloor1 and Wei and Smith.2 In particular, Prasad and
Williamson4 re-examined previous data sets together with
their own and concluded that the best-fit exponent for theRe
dependence is 0.69. In addition, Norberg6 independently ana-
lyzed all the available data in this Reynolds number range
and estimated a similar value of 0.68. Prasad and
Williamson4 went further by proposing a theoretical expla-
nation for the observed dependence basing the frequency se-
lection on the length and velocity scales of the shear layer at
the variable downstream position where the shear-layer sig-
nal can first be detected experimentally. Using available data
on how this position depends on Reynolds number, and in-
cluding corrections due to the Strouhal number and base
pressure coefficient variations, they were able to estimate a
theoretical value for the exponent of 0.67.

In this paper we propose a different interpretation by
re-examining the data obtained by Prasad and Williamson4

and Norberg.7 We focus on these two data sets because they
represent experiments undertaken with great care producing
consistent data with very little scatter. Importantly, these data
sets are in good agreement in the region of overlap.

Figure 1(a) shows the frequency variation of the shear-
layer vortices over the Reynolds number range 103,Re
,105, from the experimental measurements of Prasad and
Williamson4 and Norberg.7 The line of best fit to the com-
bined data set isfSL/ fK=0.021Re0.69, as given by Prasad and
Williamson4 and independently verified by ourselves.

A close examination of the data clearly suggests that
instead of a universal fit applying over the entire Reynolds
number range, a more accurate characterization consists of
separating the data into discrete intervals that can be fitted
independently. Figure 1(b) shows the two longest intervals
where the data appears to be closely linear. These intervals
cover the approximate Reynolds number ranges 1500øRe
ø5000 (range 1) and 10000øReø50000 (range 2). For
both ranges, the best fit to the data gives a considerably
lower Reynolds number exponent than the global exponent.
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The dependence isfSL/ fK~Re0.57±0.04 for range 1 and
Re0.52±0.06 for range 2. There is also some evidence for a
short linear regime forRe,1500, but we focus on the two
main ranges in the following discussion.

The error bounds are statistical error estimates based on
a 95% confidence interval assuming that at each Reynolds
number the fractional error in the measured frequency ratio
is normally distributed. Importantly, note that the exponent
ranges defined by these error boundsdo notinclude the best-
fit global exponent of 0.69, calculated for the entire data set.
In fact, an exponent of 0.69 is five or more standard devia-
tions outside the best fit value for each of the individual fits.
The most likely explanations are either that both sets of data
contain some systematic error, or that the proposal that a
universal exponent applies over the entire range is incorrect.
Hence we ask the obvious question: Does it make physical
sense to consider separate ranges? We feel the answer is
definitely yes.

Figure 2 shows how three related flow parameters vary
over the relevant Reynolds number range. Figures 2(a) and
2(b) are reproduced from Norberg’s7,8 papers on circular cyl-
inder wakes. These figures show the variation in Strouhal
number,St, and base pressure coefficient,CPb, with Reynolds

number. Figure 2(c) shows the Reynolds number variation of
the fluctuating pressure atu=90°, close to the separation
point, from Norberg’s9 paper. First, consider the behavior of
the base pressure coefficient. In terms of the range of interest
here,CPb varies relatively slowly over ranges 1 and 2 iden-
tified and considerably more rapidly in between as indicated
by the overlaid linear segments. This effect is shown even
more strongly in the plot of the fluctuating lift. The latter
shows two distinct Reynolds number ranges where the value
is approximately constant corresponding remarkably closely

FIG. 1. (a) Variation of the shear-layer frequency ratio with Reynolds num-
ber from the studies of Prasad and Williamson(Ref. 4) and Norberg(Ref. 7).
The line of best fit to the data is shown.(b) Proposed alternative fit to the
data.

FIG. 2. (a) Strouhal number,(b) base suction coefficient, and(c) fluctuating
lift coefficient at 90°, as functions of Reynolds number. These plots have
been reconstructed from Fig. 3 of Norberg(Refs. 7 and 8) and Fig. 6 of
Norberg(Ref. 9). The overlaid dashed line segment appearing in the last plot
highlights the relatively constant behavior within ranges 1 and 2.

021702-2 M. C. Thompson and K. Hourigan Phys. Fluids 17, 021702 (2005)

Downloaded 14 Feb 2005 to 130.194.127.97. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



to the ranges given above. These approximate ranges are
1000,Re,4000 andRe.10000. In between, the fluctuat-
ing pressure changes rapidly with Reynolds number. Physi-
cally, the observed variation can be associated with the dra-
matic shortening of the mean separation bubble from large
values at low Reynolds numbers to small values at high Rey-
nolds numbers. ForReù104 the variation in bubble length,
or formation length, is considerably less.

The remarkable difference in the immediate wake of the
cylinder as the Reynolds number is varied is demonstrated
clearly in Fig. 3. These images show typical instantaneous
vorticity fields obtained by PIV measurements. They have
been provided by Saelim and Rockwell.10 They show the
wake atReø4000, where the formation length is relatively
long, and the severely shortened wake atRe=10 000. The
transition from the long formation length, low Reynolds
number wake state to the short, high Reynolds number wake
state takes place over the Reynolds number range 4000
øReø10 000, consistent with the marked increase in the
fluctuating lift at 90° over this interval as shown in Fig. 2(c).
This behavior was documented in the pioneering studies of
Linke.11 When the formation length is long, the separating
shear layers are relatively unaffected by the Karman shed-
ding, which occurs much further downstream. On the other
hand, when the formation length is short at the higher Rey-
nolds numbers, the separating shear layers are strongly af-
fected. In particular, the shear layersflap considerably, and
they will be stretched more and hence will be thinned, due to
the influence of the forming Karman vortices, which are in
close proximity. Thus, we are left with the situation in which
the shear layers and shear-layer environment are approxi-
mately similar separately in regimes 1 and 2(except for the
natural shear-layer thinning with Reynolds number) but not
in between. In addition, if the shear layers are stretched lon-
gitudinally through the action of the forming Karman vorti-
ces, a readjustment to a higher frequency ratio above the
underlying trend should be observed, due to the increased
narrowing of the shearlayers. This is indeed what is sug-
gested by Fig. 1(b) above. To reiterate, given that the shear
layer changes remarkably in between ranges 1 and 2, it is not
surprising that the hypothetical dependence proposed by
Bloor breaks down since it depends on the shear layer main-
taining self-similarity.

To this point we have argued that the relationship pro-
posed by Bloor should apply over the approximate ranges 1

and 2, but not in between. However, the best fit Reynolds
number indices are still slightly higher than the theoretical
value suggested by Bloor. Why is it so?

To address this issue we return to the analysis of Bloor1

who proposed that the shear-layer frequency should scale as
fSL~Ubl /ds, where Ubl is the velocity at the edge of the
boundary layer andds is the boundary layer thickness at the
point of separation. Neither the boundary layer velocity or
thickness appear to have been measured systematically over
the Reynolds number range 103,Re,105, although some
point measurements exist. However, for sufficiently high
Reynolds number, the velocity at the edge of the boundary
layer is directly dependent on the pressure coefficient there,
CPbl

. While the variation of this parameter also has not been
documented in the literature, it should be approximately
equal to the base pressure coefficient, since the pressure re-
mains almost constant in the separation zone at the back of
the cylinder. This has been pointed out previously by Will-
iamson, Wu and Sheridan,12 and Roshko;13 indeed Prasad
and Williamson4 assume this association in their derivation
of the shear-layer frequency ratio variation. Specifically,

Ubl < U`s1 − CPbd1/2.

For a laminar flat-plate boundary layer,at a fixed point
the boundary-layer thickness scales asd /D~Re−1/2. How-
ever, for a circular cylinder, the situation is a little more
complicated. The separation point is not fixed. It moves from
the rear of the cylinder at low Reynolds numbers towards the
front at higher Reynolds numbers. It is difficult to find de-
finitive data on the exact variation with Reynolds number,
especially since the separation point moves considerably dur-
ing a shedding cycle. From collected data from a number of
authors presented in Zdravkovich,5 the separation angle is
about 95° atRe=300, dropping to 82° at 12 000. Its value
reduces only very slowly, if at all, for higher Reynolds num-
bers until the onset of the drag crisis atRe.23105. Because
of the considerable variation of the separation point, espe-
cially over range 1, the boundary layer thickness at separa-
tion will deviate from theRe−1/2 law. It is expected that the
boundary layer thickness should obey a relationship of the
form

ds/D ~ Re−1/2fsussRedd,

where fsusd accounts for the variation due to the movement
of the separation angle,us, with Reynolds number.

Putting these relationships together allows the frequency
ratio to be written

fSL

fK
= k

U`

DfK
s1 − CPbd1/2Re1/2

fsusd
= kF s1 − CPbd1/2

Stfsusd
GRe1/2,

whereSt= fKD /U` is the Strouhal number andk is a propor-
tionality constant. Thus, the relationship proposed by Bloor
requires that the base pressure coefficient, Strouhal number,
and the separation angle do not vary significantly over the
Reynolds number range of interest. While the base pressure
coefficient and Strouhal number can be obtained from Fig. 2,
the functionfsusd, or equivalentlydssRed, is not readily avail-
able.

FIG. 3. Typical instantaneous vorticity fields showing the change in the
near-wake structure as the Reynolds number is varied. These images have
been obtained from PIV measurements obtained by Saelim and Rockwell
(Ref. 10).
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This term was estimated numerically by solving the
steady Navier–Stokes equations directly for laminar flow
past a cylinder with a symmetry boundary condition along
the centerline. An extensively tested third-order finite-
element code was used. A grid resolution study was per-
formed to ensure the results were grid independent. In sup-
port of this approach, Dimopoulos and Hanratty14 showed
experimentally that the separation angle for a steady flow
produced with the aid of a splitter plate matched the time-
mean separation angle for the flow without a splitter plate,
although this was for much lower Reynolds numberssRe
,300d. The separation point and boundary layer thickness
were measured directly from the results. AtRe=1500 the
separation point was measured asus.91°, dropping tous

.84° atRe=5000. These values appear to be consistent with
the experimental values given above. A power-law fit for
range 1 gaveds/D~Re−0.528. Thus, fsussRedd~Re−0.028. The
separation angle changes more slowly over range 2, hence
the variation off can probably be neglected for that range.

Prasad and Williamson4 estimated the contribution of the
Strouhal number and base pressure variation over the entire
Reynolds number range as

s1 − CPbd1/2

St
~ Re0.075.

(See Fig. 16 from that paper.) In fact, this is an overestimate
of the variation for ranges 1 and 2 individually because the
base pressure gradient in each of these ranges is less, as seen
from Fig. 2. We performed our own fits to find the correction
factor (including the new contribution from the changing
separation angle) is

F s1 − CPbd1/2

Stfsusd
G ~ Re0.084 andF s1 − CPbd1/2

Stfsusd
G ~ Re0.046,

for ranges 1 and 2, respectively.
Therefore, if the boundary-layer properties at separation

govern the shear-layer instability then the predicted fre-
quency variation should befSL/ fK~Re0.584 for range 1 and
fSL/ fK~Re0.546 for range 2. These agree remarkable well
with the measured variations ofRe0.57±0.04 and Re0.52±0.06,
respectively.

Note that the correction due to the change in the position
of the separation angle is very small and neglecting it does
not affect the conclusion. Also note that the Strouhal number

and base pressure coefficient corrections are well established
and have been used by Prasad and Williamson4 in formulat-
ing their theoreticalfSL/ fK~Re0.69 relationship. The main
difference from their analysis is that they use a different
lengthscale to derive the frequency ratio. They assume that
the appropriate length scale is the shear-layer thickness at a
downstream distance at which the shear-layer fluctuations
can first be sensed experimentally. This seems somewhat ar-
tificial, since it may depend on the sensitivity of the experi-
mental measuring equipment. Finally, note that the small lin-
ear regime in the range 1200øReø1500 can be
incorporated into range 1 within the error bounds.

Thus, the current analysis suggests that, to within experi-
mental uncertainty, the boundary-layer properties at separa-
tion are sufficient to account for the observed Reynolds num-
ber variation of the shear-layer frequency, as proposed by
Bloor.1
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