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Vorticity dynamics at partial-slip boundaries
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In this paper we discuss the dynamics of vorticity at partial-slip boundaries. We consider
the total vector circulation, which includes both the total vorticity of the fluid and the slip
velocity at the boundary (the interface vortex sheet). The generation of vector circulation
is an inviscid process, which does not depend on either viscosity or the slip length at the
boundary. Vector circulation is generated by the inviscid relative acceleration between the
fluid and the solid, due to either tangential pressure gradients or tangential acceleration of
the partial-slip wall. While the slip length does not affect the creation of vector circulation,
it governs how vector circulation is distributed between the total vorticity of the fluid and
the interface vortex sheet. Specifically, the partial-slip boundary condition prescribes the
ratio between boundary vorticity and the strength of the interface vortex sheet, and the
viscous boundary flux transfers vector circulation between the interface vortex sheet and
the fluid interior to maintain this condition. The interaction between a vortex ring and
a partial-slip wall is examined to highlight various aspects of this formulation. For the
head-on collision, the quantity of vector circulation diffused into the fluid as secondary
vorticity increases as the slip length is decreased, resulting in a stronger secondary vortex
and increased rebound of the vortex ring. For the oblique interaction, the extent to which
the vortex ring connects to the boundary increases as the slip length is increased.

Key words: vortex flows

1. Introduction

The usual boundary condition at a solid–fluid boundary is the no-slip condition, ut −
vt = 0, where ut and vt are the tangential velocities of the fluid and solid, respectively.
The no-slip condition assumes that there is no jump in tangential velocity, or slip, across
the boundary. However, most real fluid–solid boundaries will exhibit some small amount
of slip (Thompson & Troian 1997), which is described using the partial-slip boundary
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condition,

ut − vt = λ∂ut

∂n
, (1.1)

where λ is the slip length, and n is the direction normal to the wall. While the slip
length is often negligible, there are a range of practical flow configurations where the
slip length must be considered, such as in microfluidic applications (Lauga, Brenner &
Stone 2007), dilute-gas flows (Morris, Hannon & Garcia 1992) or the motion of a contact
line (Thompson & Robbins 1989).

The partial-slip boundary condition is also used to model superhydrophobic surfaces,
which have an apparent slip length (Cottin-Bizonne et al. 2003; Tretheway & Meinhart
2004; Gao & Feng 2009). Such surfaces have been found to reduce skin-friction drag in
both laminar (Lee, Choi & Kim 2016) and turbulent (Gose et al. 2018; Park, Choi & Kim
2021) flows and can reduce flow separation, thereby reducing form drag (Jetly, Vakarelski
& Thoroddsen 2018; Mollicone et al. 2022) and preventing stall (Sooraj, Jain & Agrawal
2019).

The partial-slip boundary condition also generalises the free-slip boundary condition,
which occurs at a free surface. Contaminated surfaces display behaviour intermediate
between the no-slip and free-slip boundary conditions (Tryggvason et al. 1992; Hirsa
& Willmarth 1994; Tsai & Yue 1995), depending on the variation of the surfactant
concentration, and may therefore be approximated using the partial-slip boundary
condition.

Vorticity dynamics provides a useful alternative viewpoint for understanding the
dynamics of various flows, and often provides greater insight than momentum
considerations alone (Lighthill 1963). Zhu et al. (2014) have discussed the partial-slip
boundary condition from the perspective of vorticity dynamics, providing expressions
for the surface vorticity and the boundary vorticity flux. They illustrate the usefulness of
vorticity dynamics in understanding boundary layer control. Specifically, flow separation
is attributed to a surplus of vorticity in the boundary layer. Partial-slip boundaries reduce
the boundary vorticity flux, therefore reducing flow separation.

The present authors have recently developed a general formulation of boundary vorticity
dynamics (Terrington, Hourigan & Thompson 2022b), which does not explicitly depend
on the tangential boundary conditions, and can therefore be applied to a wide range of
interfaces and boundaries, including no-slip walls, free surfaces and fluid–fluid interfaces.
The present paper examines the dynamics of vorticity at partial-slip boundaries under this
formulation.

Our formulation treats the slip velocity at a partial-slip boundary as representing a vortex
sheet, or more precisely as a surface density of vector circulation (Terrington et al. 2022b).
There are two main benefits to this approach. First, the total vector circulation – including
both the total vorticity of the fluid and the vector circulation of the interface vortex sheet
– is generally conserved. While local creation of vector circulation may occur within the
interface vortex sheet, this will be balanced by an equal creation of opposite-signed vector
circulation elsewhere.

Second, we provide a general mechanism for the generation of vector circulation within
the interface vortex sheet, which applies equally to free-slip, no-slip and partial-slip
boundaries. Vector circulation is generated by the inviscid relative acceleration between
the fluid and the boundary, caused by either a tangential pressure gradient or acceleration
of the solid wall. The rate of generation of vector circulation does not depend on either the
fluid viscosity or the degree of slip at the wall.
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Vorticity dynamics at partial-slip boundaries

While neither viscosity nor slip length affect the creation of vector circulation, they
do govern how vector circulation is redistributed between the interface vortex sheet and
the total vorticity of the fluid. The partial-slip boundary condition provides a relationship
between the density of vector circulation in the interface vortex sheet and the tangential
boundary vorticity. The viscous boundary vorticity flux transfers vector circulation
between the interface vortex sheet and the fluid interior to maintain this condition. In
the limiting case of a no-slip boundary, all vector circulation is diffused into the fluid as
vorticity, since the no-slip boundary cannot sustain an interface vortex sheet.

The structure of this paper is as follows. First, in § 2 we discuss the theory of vorticity
and vector circulation dynamics at partial-slip boundaries. Then, in § 3 we examine the
interaction between a vortex ring and a partial-slip wall, to illustrate the behaviour of
vorticity at partial-slip boundaries. Finally, concluding remarks are made in § 4.

2. Theory

In this section we discuss the dynamics of vorticity and vector circulation at partial-slip
boundaries. The structure is as follows. First, we discuss the equations of motion and
boundary conditions from the perspective of linear momentum in § 2.1. Then, we introduce
the vorticity and the interface vortex sheet at a partial-slip boundary in § 2.2. We then
discuss the dynamics of vorticity and the interface vortex sheet in § 2.3. Finally, the
boundary conditions for vorticity at a partial-slip boundary are discussed in §§ 2.4 and 2.5.

2.1. Dynamics of linear momentum
We assume incompressible flow of a constant-viscosity Newtonian fluid, which is
governed by the continuity and Navier–Stokes equations:

∇ · u = 0, (2.1)

du
dt

= −∇p + 1
Re

∇2u. (2.2)

Quantities have been non-dimensionalised by a length scale L, velocity scale U and the
fluid density ρ. The fluid viscosity is denoted μ and Re = ρUL/μ is the Reynolds number.
The dimensionless pressure p includes both the dimensional pressure p∗ and the body force
potential φ∗

g , as p = ( p∗ + φ∗
g )/ρU2.

The general form of the partial-slip boundary condition is (Bazant & Vinogradova 2008)

u − v = M · (ŝ · T ), (2.3)

where T is the viscous stress tensor, M is the interfacial mobility tensor and ŝ is the unit
normal to the boundary directed into the fluid. This form of the partial-slip boundary
condition relates both the slip velocity and the permeability of the wall to the applied
surface stress.

The tensor M is useful for surfaces where the degree of slip depends on the direction,
such as patterned microsurfaces. In the present work, we assume no permeability of the
surface, i.e.

ŝ · (u − v) = 0, (2.4)

and that the surface slip is isotropic. For isotropic slip, and for a Newtonian fluid, we can
replace the tensor M with a scalar slip length λ (Legendre, Lauga & Magnaudet 2009; Zhu
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et al. 2014)
ŝ × (u − v) = Knŝ × (ŝ · ∇u + ∇u · ŝ), (2.5)

where Kn = λ/L is the Knudsen number (Legendre et al. 2009). For a non-rotating plane
wall, (2.5) reduces to the well-known form given by (1.1).

We can also express the partial-slip boundary condition in terms of a ‘slip coefficient’,
α = Kn/(1 + Kn):

(1 − α)ŝ × (u − v) = αŝ × (ŝ · ∇u + ∇u · ŝ). (2.6)

Here α = 0 corresponds to the no-slip boundary condition (Kn = 0) and α = 1
corresponds to the free-slip boundary condition (Kn = ∞).

2.2. Vorticity and vector circulation
Vorticity is the curl of velocity,

ω = ∇ × u, (2.7)

and can be interpreted as representing twice the mean rotation rate of an infinitesimal
fluid element (Truesdell 1954). It is often useful to consider the volume integral of
vorticity, which is known as the total vorticity (Poincaré 1893; Truesdell 1948). Using
the generalised Stokes theorem (Truesdell 1954, (7.3)), the total vorticity contained
in a volume V can be expressed as a surface integral of tangential velocity on the
control-volume boundary (∂V):

Γ =
∫

V
ω dV =

∮
∂V

n̂ × u dS. (2.8)

Here n̂ is the unit normal vector to ∂V , directed out of V .
Noting that (2.8) is analogous to the relationship between total vorticity and circulation

in two dimensions, we refer to the integral on the right-hand side of (2.8) as the vector
circulation (Terrington, Hourigan & Thompson 2021; Terrington et al. 2022b). This is a
different quantity to circulation, which is the line integral of velocity along a closed curve,
even in three dimensions. Our motivation for introducing the term ‘vector circulation’ to
refer to the right-hand side of (2.8), rather than referring to this quantity only as the ‘total
vorticity’, is to allow the slip velocity at an interface to be unambiguously interpreted as a
kind of vortex sheet.

Specifically, while Wu & Wu (1993) do not consider a slip velocity to represent a sheet
of vorticity, the slip velocity does unambiguously represent a surface density of vector
circulation or a boundary vortex sheet (Terrington et al. 2021, 2022b)

γ = ŝ × (u − v), (2.9)

where γ is the surface density of vector circulation due to the slip velocity at the boundary.
To demonstrate this, we consider the control volume V illustrated in figure 1. Part of the

boundary surface (∂V) lies on the partial-slip wall (∂V)s, while the rest of the boundary
lies in the fluid interior (∂V)f . We let u be the fluid velocity, v be the solid velocity and w be
the velocity of the control-volume boundary. Since (∂V)s must remain on the partial-slip
wall, we have the following condition on (∂V)s:

u · ŝ = v · ŝ = w · ŝ. (2.10)

The velocity at (∂V)s is not well defined, and may equal either the fluid velocity u or
the solid velocity v. To account for this, we let the surfaces (∂V)s,u and (∂V)s,v approach
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Solid

Solid velocity: v

Fluid velocity: u

Fluid
n̂

ŝ
(∂V)s,u

(∂V)s
(∂V)s,v

∂I

(∂V)f

Velocity of control-volume

boundary: w

V

Figure 1. Control volume V considered in this work. The boundary is separated into two portions: (∂V)s, the
portion that lies on the partial-slip wall; and (∂V)f , the portion that lies in the fluid interior. The boundary
curve to (∂V)s is denoted ∂I. Finally, n̂ and ŝ are the unit normal vectors to (∂V)f and (∂V)s, respectively.

(∂V)s from the fluid and solid sides, respectively. Taking the limits (∂V)s,u → (∂V)s and
(∂V)s,v → (∂V)s there is a vector circulation contained in the region bounded by these
surfaces:

Γ γ =
∫

(∂V)s,u

ŝ × u dS −
∫

(∂V)s,v

ŝ × v dS =
∫

(∂V)s

γ dS. (2.11)

Also considering the total vorticity of the fluid,

Γ ω =
∫

V
ω dV =

∫
(∂V)f

n̂ × u dS −
∫

(∂V)s,u

ŝ × u dS, (2.12)

the total vector circulation includes both the total vorticity of the fluid and the vector
circulation in the interface vortex sheet:

Γ =
∫

(∂V)f

n̂ × u dS −
∫

(∂V)s,v

ŝ × v dS = Γ ω + Γ γ . (2.13)

We note that discontinuities of tangential velocity have long been identified as vortex
sheets (e.g. Lamb 1924; Batchelor 1967). However, this identification is usually performed
by considering a thin surface containing a finite total vorticity, and then allowing the sheet
thickness to approach δ → 0, while keeping the total vorticity constant (e.g. Batchelor
1967, § 2.6). Wu & Wu (1993) have pointed out that such a vortex sheet is physically
different from a slip velocity at a fluid–solid boundary. In particular, the vortex sheet
obtained under the limit δ → 0 of a thin shear layer implies that fluid elements rotate
with an angular velocity ω = ∞, while a slip velocity implies that fluid elements on the
boundary slide relative to one another, without rotation.

While a slip velocity does not represent the physical rotation of fluid elements, it
does represent a surface density of vector circulation, as defined by the integral on the
right-hand side of (2.8). Moreover, interpreting this slip velocity as a kind of boundary
vortex sheet generalises a number of useful kinematic properties of the vorticity field,
including a generalised divergence-free condition, a generalised Biot–Savart law and a
generalised Stokes theorem (Terrington et al. 2021, 2022b). Recognising these compelling
mathematical reasons to interpret the slip velocity as a boundary vortex sheet, the present
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paper considers the vector circulation – which unambiguously includes both the total
vorticity of the fluid and the boundary vortex sheet – to be the primary quantity of interest.

2.3. Dynamics of vector circulation
We have previously developed a general formulation of the creation of vector circulation at
generalised fluid–fluid interfaces (Terrington et al. 2022b). The present subsection outlines
the main results of this formulation. The equations presented in this section are slightly
different from those in Terrington et al. (2022b). Specifically, the present paper considers
only the total vorticity of the fluid and the vector circulation of the boundary vortex sheet,
while the total vorticity of the solid was also considered in Terrington et al. (2022b).

The vorticity transport equation is obtained by taking the curl of (2.2) (Lamb 1924;
Batchelor 1967),

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω. (2.14)

The vorticity transport equation can also be expressed in integral form to give the rate of
change of total vorticity in the fluid (Truesdell 1948; Terrington et al. 2022b),

dΓ ω

dt
=
∫

(∂V)f

ω(w − u) · n̂ dS +
∫

(∂V)f

(ω · n̂)u dS −
∫

(∂V)f

1
Re

n̂ × (∇ × ω) dS

−
∫

(∂V)s

(ω · ŝ)u dS +
∫

(∂V)s

1
Re

ŝ × (∇ × ω) dS. (2.15)

Using (2.36) from Terrington et al. (2022b), the rate of change of Γ γ is

dΓ γ

dt
=
∫

(∂V)s

Σ dS −
∫

(∂V)s

1
Re

ŝ × (∇ × ω) dS +
∫

(∂V)s

[(ω · ŝ)u − (ωv · ŝ)v] dS

−
∮

∂I

[
1
2
(u · u − v · v) + (γ × ŝ) × (w × t̂)

]
ds, (2.16)

where Σ is a surface-density source of vector circulation:

Σ = −n̂ ×
[
∇p + dv

dt

]
. (2.17)

Here ωv = ∇ × v is the vorticity of the solid body and t̂ is the unit tangent vector to ∂I.
Finally, combining (2.15) and (2.16) gives the balance of total vector circulation, including
both the total vorticity of the fluid and the vector circulation contained in the boundary
vortex sheet:

dΓ

dt
=
∫

(∂V)s

Σ dS +
∫

(∂V)f

ω(w − u) · n̂ dS

+
∫

(∂V)f

(ω · n̂)u dS −
∫

(∂V)f

1
Re

n̂ × (∇ × ω) dS

−
∫

(∂V)s

(ωv · ŝ)v dS −
∮

∂I

[
1
2
(u · u − v · v) + (γ × ŝ) × (w × t̂)

]
ds. (2.18)

The physical interpretation of various terms in (2.15)–(2.18) was discussed in Terrington
et al. (2022b), and will be briefly restated here. The term Σ represents a surface-density
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source of vector circulation in the interface vortex sheet. Specifically, vector circulation is
generated by an inviscid relative acceleration between the fluid and the solid, due to either
a tangential pressure gradient or an external acceleration of the solid body. This extends
Morton’s (1984) inviscid theory of vorticity creation to three-dimensional flows, assuming
the slip velocity at the boundary is interpreted as a boundary vortex sheet.

The term
∫
(∂V)s

(1/Re)ŝ × (∇ × ω) dS in (2.15) and (2.16) is the viscous boundary
vorticity flux, which represents the viscous transfer of vector circulation between the
interface vortex sheet and the total vorticity of the fluid. Importantly, this term is absent
from (2.18), and therefore, viscosity is not involved in the generation of vector circulation.

Note that we have used Lyman’s definition of the viscous boundary vorticity flux, σ =
(1/Re)ŝ × (∇ × ω) (Lyman 1990), rather than the alternative Lighthill–Panton definition,
σ = −(1/Re)ŝ · ∇ω (Lighthill 1963; Panton 1984). Both definitions predict the same
kinematic evolution of the vorticity field, and there is not a clear physical justification
to prefer either definition (Terrington et al. 2021). For our purposes, we find Lyman’s
definition preferable, as it allows a completely inviscid description of the creation of vector
circulation.

Terms involving (ω · ŝ)u and (ωv · ŝ)v are related to vortex stretching and tilting.
Specifically, the terms involving (ω · n̂)u in (2.15) represent the rate of change of vector
circulation in the fluid due to the vortex stretching/tilting term:∫

(∂V)s

−(ω · ŝ)udS +
∫

(∂V)f

(ω · n̂)udS =
∫

V
ω · ∇u dV. (2.19)

Therefore, the corresponding term
∮
(∂V)s

ŝ · [ωu − ωvv] dS in (2.16) is interpreted as a
kind of vortex stretching/tilting occurring in the interface vortex sheet. The total vorticity
creation due to vortex stretching and tilting is given by the following terms in (2.18):∫

(∂V)f

(ω · n̂)u dS −
∫

(∂V)s

(ωv · ŝ)v dS =
∫

V
ω · ∇u dV +

∫
(∂V)s

ŝ · [ωu − ωvv] dS.

(2.20)

These terms demonstrate that vortex stretching can only produce a net creation of vector
circulation if vortex lines intersect the control-volume boundary (Terrington et al. 2022b).

The remaining terms in (2.15)–(2.18) describe the transport of vector circulation across
the control-volume boundary. Integrals over (∂V)f describe the transport of vorticity in
the fluid interior, by either advection (ω(w − u) · n̂) or viscous diffusion ((1/Re)n̂ × (∇ ×
ω)). Finally, the integral over (∂I) describes the transport of vector circulation within the
interface vortex sheet, along the interface.

Terms in (2.18) are defined only on the control-volume boundary ∂V , and therefore,
express a conservation principle for vector circulation (Terrington et al. 2022b). The
total vector circulation within V can only change if new vector circulation is added at
the boundaries – either by the transport of vorticity in the fluid interior (∂V)f , along
the interface vortex sheet (∂I), by the vortex stretching/tilting terms, or by the creation
of vorticity at the boundary (Σ). Importantly, if the solid wall is stationary and there
is no net external pressure gradient, then there is no net creation of vector circulation.
Local creation of vector circulation may occur but this is balanced by the creation of
opposite-signed vector circulation elsewhere. This extends a previous result of Poincaré
(1893) and Truesdell (1948), who show that the total vorticity in either an unbound fluid
domain or a fluid domain partially bounded by a stationary no-slip wall is constant in time,
assuming the vorticity flux terms decay sufficiently at infinity.
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2.4. Boundary conditions for surface-tangential vorticity
The general formulation outlined in § 2.3 is independent of the tangential boundary
condition. This subsection outlines how the partial-slip boundary condition is applied to
the general formulation.

As discussed in the previous subsection, vector circulation may be generated in the
interface vortex sheet by the inviscid relative acceleration between the fluid and the solid
(Σ = ∇p + dv/t), which is driven by tangential pressure gradients and the acceleration of
the solid boundary. Vector circulation in the interface vortex sheet may also be enhanced or
reoriented by the vortex stretching/tilting term. Viscosity is not involved in the creation of
vector circulation. Instead, the role of viscosity is to redistribute vector circulation between
the interface vortex sheet and the total vorticity of the fluid, via the boundary vorticity flux.

An expression for the boundary vorticity flux can be obtained from the tangential
momentum equation (Lighthill 1963; Lyman 1990; Wu & Wu 1996)

σ = 1
Re

ŝ × (∇ × ω) = −ŝ ×
[
∇p + du

dt

]
. (2.21)

This expression is commonly interpreted as representing two separate contributions that
determine the total boundary vorticity flux (Wu & Wu 1996; Dabiri & Gharib 1997; Zhu
et al. 2014; André & Bardet 2017): the pressure gradient ∇p and the fluid acceleration
du/dt (an additional viscous term is also obtained under the Lighthill–Panton definition
of the boundary vorticity flux). However, the fluid acceleration is partially a result
of the pressure gradient (2.2), so these should not be considered as separate physical
contributions to the total vorticity flux. Instead, (2.21) relates the boundary vorticity flux
to the tangential viscous acceleration of the fluid (Rood 1994a,b; Terrington et al. 2021).

We note that in the specific case of a no-slip boundary (α = 0), the fluid acceleration
(du/dt) and the acceleration of the solid wall (dv/dt) are equal. In this case, (2.21) becomes

σ = 1
Re

ŝ × (∇ × ω) = −ŝ ×
[
∇p + dv

dt

]
. (2.22)

The right-hand side of this equation can be interpreted as two separate physical effects,
namely the tangential pressure gradient ∇p and the acceleration of the solid wall dv/dt
(Morton 1984). We stress that the boundary vorticity flux is still equal to the tangential
viscous acceleration of the fluid. For a no-slip wall, however, this viscous acceleration
enforces the no-slip condition, and is therefore equal and opposite to the inviscid relative
acceleration driven by both the tangential pressure gradient and the acceleration of the
solid wall (Terrington et al. 2021).

For the more general case of a partial-slip boundary, however, the fluid and solid
accelerations are generally not equal. Therefore, the boundary vorticity flux is determined
by (2.21) and is equal to the tangential viscous acceleration of fluid at the boundary.
The tangential viscous acceleration is necessary to enforce the partial-slip boundary
condition (2.6). Therefore, from a vorticity dynamics perspective, the boundary vorticity
flux transfers vector circulation between the interface vortex sheet and the total vorticity
of the fluid, in order to satisfy the partial-slip boundary condition.

Moreover, the partial-slip boundary condition can be expressed in terms of the interface
vortex sheet and the boundary vorticity. First, we use the Caswell–Wu decomposition of
the strain-rate tensor (Wu et al. 2005) to obtain the following expression (Wu & Wu 1996;
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Zhu et al. 2014):

ŝ × (ŝ · ∇u + (∇u) · ŝ) = ω‖−ωr, (2.23)

ωr = −2ŝ × (∇‖(u · ŝ) + u · K). (2.24)

Here K is the surface curvature tensor, ∇‖ is the surface gradient operator (Wu 1995)
and ω‖ = ω − (ŝ · ω)ŝ is the surface-parallel vorticity. The partial-slip boundary condition
(2.6) provides the following relationship between the tangential boundary vorticity and the
interface vortex sheet:

(1 − α)γ = α(ω‖−ωr). (2.25)

The viscous boundary vorticity flux will redistribute vector circulation between the
interface vortex sheet and the total vorticity of the fluid to maintain this boundary
condition.

In (2.23)–(2.25), ωr represents the rotation of the interface. Specifically, ωr is twice the
angular velocity of the unit normal vector to a material fluid element on the boundary
(Peck & Sigurdson 1998). This rotation is due to either motion of the boundary (∇‖(u · ŝ))
or rotation of the fluid element as it flows along a curved boundary (u · K ).

The quantity ω‖ − ωr represents the tangential component of the relative rotation rate
between a material fluid element and the partial-slip wall. Equation (2.25) shows that this
quantity is proportional to the density of vector circulation in the interface vortex sheet,
with a coefficient of proportionality determined by the slip coefficient.

The partial-slip boundary condition generalises both the no-slip and free-slip boundary
conditions. For a no-slip boundary (α = 0), (2.25) reduces to γ = 0, or a no-slip boundary
cannot sustain an interface vortex sheet. Therefore, all vector circulation generated by the
inviscid relative acceleration is immediately diffused into the fluid interior by the viscous
boundary vorticity flux (2.22), in order to satisfy the no-slip condition (Morton 1984;
Terrington et al. 2021).

For a free-slip boundary (α = 1), (2.25) reduces to ω‖ = ωr, which is the well-known
boundary condition for vorticity at a free surface (Wu 1995; Peck & Sigurdson 1998;
Lundgren & Koumoutsakos 1999). This condition requires that the boundary fluid element
has a tangential rotation rate equal to that of the unit normal vector to the boundary
(Peck & Sigurdson 1998). The boundary vorticity flux transfers vector circulation between
the interface vortex sheet and the total vorticity of the fluid to maintain this condition,
as described previously by Lundgren & Koumoutsakos (1999), Brøns et al. (2014),
Terrington, Hourigan & Thompson (2020) and Terrington et al. (2022b) for free-surface
flows.

We remark that Wu & Wu (1993, 1996) have opposed the inviscid model of vorticity
creation, on the basis that the slip velocity does not represent the physical rotation of fluid
elements at the boundary. Therefore, they do not consider the slip velocity to represent
a vortex sheet, and consider only the total vorticity of the fluid. According to (2.15), the
total vorticity of the fluid in an initially irrotational flow can only change by the viscous
diffusion of vorticity at the boundary. Therefore, if one does not include the slip velocity
as a boundary vortex sheet, the generation of vorticity is a viscous process. We find that
the viscous diffusion of vorticity into the fluid results in an equal and opposite change to
the vector circulation contained in the boundary vortex sheet. Therefore, the generation
of vector circulation, which includes both the total vorticity of the fluid and the boundary
vortex sheet, is an inviscid process that does not depend on either viscosity or the slip
length.
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2.5. Boundary conditions for surface-normal vorticity
The surface-normal vorticity is related to the surface divergence of the interface vortex
sheet, through the generalised divergence-free condition (Wu 1995; Terrington et al. 2021,
2022b)

∇‖ · γ + ω · ŝ − ωv · ŝ = 0, (2.26)

which essentially states that vortex lines do not end on the boundary – they either continue
as vortex lines in the solid body or as vector circulation in the interface vortex sheet.
The surface-normal vorticity also obeys the surface-transport equation (Terrington et al.
2022b)

d
dt

∫
(∂V)s

ω · ŝ dS =
∮

∂I
(ω · ŝ)(w − u) · b̂ ds +

∮
∂I

σ · b̂ ds, (2.27)

which is the Kelvin circulation formula (e.g. (80.2) from Truesdell 1954) for a control
surface with arbitrary velocity. Here, b̂ is a unit vector both tangent to I and orthogonal
to ∂I. Terms on the right-hand side of (2.27) describe the transport of surface-normal
vorticity along the boundary by advection and viscosity, respectively. Terrington et al.
(2022b) show that this transport equation maintains the generalised divergence-free
condition (2.26).

The viscous term in (2.27) describes changes to the surface-normal vorticity that occur
as a consequence of the diffusion of surface-tangential vorticity across the boundary.
We have previously shown that this representation clearly illustrates how the kinematic
condition that vortex lines do not end in the fluid is maintained (Terrington et al. 2021,
2022b; Terrington, Hourigan & Thompson 2022a). For example, in the case of vortex ring
connection to a free surface (Terrington et al. 2022a), the diffusion of tangential vorticity
out of the fluid (breaking open of vortex lines) coincides with the appearance of new
surface-normal vorticity in the free surface (attachment of vortex lines to the boundary).

3. Vortex ring interactions with a partial-slip boundary

In this section we examine the interaction between a vortex ring and a partial-slip
wall to illustrate the dynamics of vorticity and vector circulation. Vortex ring collisions
with both no-slip and free-slip walls have been widely studied as canonical examples
of vortex-boundary interactions, and the present section generalises these cases to the
partial-slip wall.

The head-on collision between a vortex ring and a plane no-slip wall has been examined
by many previous studies, including Walker et al. (1987), Homa, Lucas & Rockwell (1988),
Lim, Nickels & Chong (1991), Chu, Wang & Hsieh (1993), Orlandi & Verzicco (1993),
Chu, Wang & Chang (1995a), Swearingen, Crouch & Handler (1995), Jang, Chiba &
Watanabe (1996), Fabris, Liepmann & Marcus (1996), Naitoh, Banno & Yamada (2001)
and Mishra, Pumir & Ostilla-Mónico (2021). Vorticity of sign opposite to the primary
vortex ring is generated at the no-slip boundary, resulting in the creation of a secondary
vortex. The interaction between the primary and secondary vortices leads to a phenomenon
known as ‘rebound’, where the primary vortex ring changes direction and travels away
from the wall.

The head-on collision between a vortex ring and a flat free-slip wall is studied
numerically by Orlandi & Verzicco (1993), Archer, Thomas & Coleman (2010) and Mishra
et al. (2021), and the closely related interaction with a clean free surface is examined
experimentally by Song, Bernal & Tryggvason (1992). The mathematically equivalent
problem of the head-on collision between two identical vortex rings has also been studied
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Vorticity dynamics at partial-slip boundaries

by Oshima (1978), Shariff et al. (1988), Lim & Nickels (1992), Chu et al. (1995b),
Inoue, Hattori & Sasaki (2000), Guan et al. (2016) and Cheng, Lou & Lim (2018). No
secondary vorticity is generated at a flat free-slip wall, and therefore, vortex rebound
does not occur. Instead, the vortex ring expands laterally and approximately parallel to the
boundary. Generation of secondary vorticity and vortex rebound do occur at contaminated
free surfaces (Bernal et al. 1989), however, since these surfaces do not act as perfectly
free-slip boundaries. Instead, contaminated surfaces exhibit behaviour similar to that of a
partial-slip boundary.

The oblique interaction between a vortex ring and a flat no-slip wall is studied by Lim
(1989), Verzicco & Orlandi (1994), Cheng, Lou & Luo (2010), Couch & Krueger (2011)
and New, Shi & Zang (2016). Due to the loss of axial symmetry, vortex stretching is uneven
across the vortex ring, leading to the formation of bi-helical vortex lines at the part of the
vortex ring furthest from the wall (Lim 1989). At small and moderate inclination angles,
all parts of the vortex ring interact with the boundary at a similar time, forming a complete
secondary vortex ring (Cheng et al. 2010). At large inclination angles, the side of the vortex
ring nearest the wall interacts with the boundary first, generating secondary vorticity of the
same sign as the primary vortex ring, which then merges with the near half of the vortex
ring (Couch & Krueger 2011). The upper part of the vortex ring then interacts with the
boundary, ejecting vorticity from the boundary layer (Couch & Krueger 2011; New et al.
2016).

For the oblique interaction between a vortex ring and a flat free-slip wall (Balakrishnan,
Thomas & Coleman 2011), or a clean free surface (Bernal & Kwon 1989; Song et al.
1991; Lugt & Ohring 1994; Gharib & Weigand 1996; Ohring & Lugt 1996; Zhang, Shen
& Yue 1999; Terrington et al. 2022a), a phenomenon known as vortex connection occurs.
Surface-tangential vorticity from the upper part of the vortex ring diffuses out of the fluid
at the free-slip boundary, causing the vortex ring to open up and attach to the surface. For
the mathematically equivalent problem of an oblique interaction between two identical
vortex rings (Kida, Takaoka & Hussain 1991; Yao & Hussain 2020; Mouallem et al. 2021),
a related phenomena known as vortex reconnection occurs. Here, the two vortex rings open
due to the cross-diffusive annihilation of opposite-signed vorticity, and the open ends of
the two vortex rings are reconnected to form a single vortex ring.

In this study we examine both the head-on and highly inclined oblique interactions
between a vortex ring and partial-slip walls with various slip coefficients. For the head-on
collision, the quantity of secondary vorticity diffused into the fluid increases as the slip
coefficient decreases, leading to a stronger secondary vortex, and therefore, increased
rebound of the primary vortex ring. For the highly inclined oblique interaction, the extent
of vortex ring connection to the boundary increases as the slip length increases. No
connection to the boundary occurs for the no-slip boundary and the maximum extent of
connection occurs for the free-slip boundary.

The structure of this section is as follows. First, in § 3.1 we discuss the problem set-up
and numerical methodology. Then, in § 3.2 we examine the orthogonal interaction. Finally,
the oblique interaction is considered in § 3.3.

3.1. Numerical set-up
The flow configuration under consideration is as shown in figure 2. A vortex ring with
initial circulation Γ0, ring radius R0 and core radius a0 is situated at a height H0 above the
partial-slip wall, and is inclined an angle θ0 with respect to the wall. We assume the initial
vorticity distribution within the vortex ring core is Gaussian, following previous numerical
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Lz

Lyx

yz

H0
Γ0 θ0

R0

a0

Lx

Figure 2. Flow configuration investigated in this work. A vortex ring with initial circulation Γ0, ring radius
R0 and core radius a0 is positioned at a height H0 above a partial-slip wall, and is inclined at an angle θ0 with
respect to the wall. The computational domain is a rectangular box with dimensions Lx, Ly and Lz.

studies (Zhang et al. 1999; Terrington et al. 2022a),

ωaxial = Γ0

πa2
0

exp

(
− r2

a2
0

)
, (3.1)

where ωaxial is the component of vorticity aligned with the vortex core axis and r is the
distance from the vortex ring core.

The flow is non-dimensionalised by the vortex ring radius R0, the initial circulation
of the vortex ring Γ0 and the kinematic viscosity of the fluid ν. Therefore, the flow
is characterised by the following non-dimensional parameters: the Reynolds number
Re = Γ0/ν, the slip coefficient α = (λ/R0)/(1 + λ/R0), the core-diameter ratio a0/R0,
the depth ratio H0/R0 and the inclination θ0. The main focus of this investigation
is the slip coefficient, and therefore, all other parameters are held constant. For the
orthogonal interaction (θ0 = 0◦), we consider Re = 1743, a0/R0 = 0.4 and H0/R0 = 3
for comparison with data from Chu et al. (1995a), while for the oblique interaction, we
consider θ0 = 80◦, Re = 1570, a0/R0 = 0.35 and H0/R0 = 2.5, to compare our results
with Terrington et al. (2022a).

Numerical simulations were performed using the open-source software package
foam-extend 4.1, which is a fork of the OpenFOAM software. Foam-extend 4.1 was
previously used to simulate the related problem of a vortex ring interacting with a
deformable free surface (Terrington et al. 2022a). In the present study we use the
pimpleFoam solver implemented in foam-extend 4.1. In this solver, pressure–velocity
coupling is achieved using the PIMPLE algorithm, which combines the PISO (Issa 1986)
and SIMPLE (Patankar & Spalding 1972) algorithms. The continuity and momentum
equations ((2.2) and (2.1)) are discretised using the finite volume method. Gaussian
finite volume integration was used for all spatial derivatives, with second-order linear
interpolation for all terms aside from the advection term, which uses the second-order
linear-upwind interpolation. Time is discretised using a second-order backwards
scheme.

As shown in figure 2, the semi-infinite domain is truncated to lengths of Lx, Ly and Lz
in the x, y and z directions, respectively. For the orthogonal-interaction case, we use Lx =
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Mesh 1 Mesh 2 Mesh 3

N 1.8 × 106 6.0 × 106 14.4 × 106

�x 0.060 0.040 0.030
�y 0.060 0.040 0.030
�z4 0.10 0.067 0.050
�z0 0.020 0.013 0.010

Table 1. Numerical grids used for the orthogonal case (θ0 = 0◦). Here N is the total number of cells, while
�x, �y and �z indicate representative cell spacings near the vortex ring. Spacing in the z direction is provided
at both the partial-slip wall (�z0) and at z = 4 (�z4).

Ly = 20 and Lz = 10, which are sufficiently large as to not introduce significant domain
blockage effects (Cheng et al. 2010). The upper boundary (z = Lz) was set to a free-slip
boundary, while the remaining far-field boundaries (at x = ± Lx/2 and y = ± Ly/2) were
set to constant pressure outlets. For the oblique interaction, we used Lx = Ly = Lz = 10,
which is larger than the domain considered by Zhang et al. (1999). The upper boundary
z = Lz was set to a free-slip boundary, the side boundaries y = ± Ly/2 were set to
symmetry planes and periodic boundary conditions were applied at x = ± Lx/2. The
computational domain was meshed with a block-structured mesh using the blockMesh
utility in foam-extend 4.1.

For the orthogonal interaction, we perform a mesh resolution and validation study by
comparing with experimental and numerical data from Chu et al. (1995a) for the no-slip
case (α = 0). Three meshes with increasing resolution were used, as listed in table 1. We
performed two sets of simulations. The first uses a0/R0 = 0.21, to match the parameters
used by Chu et al. (1995a). As shown in figure 3(a), which plots the trajectory of the vortex
ring core, this first set of simulations is in good agreement with the numerical data of Chu
et al. (1995a) and reasonable agreement with the experimental data. However, as shown
in figure 3(b), the maximum vorticity magnitude is not as well resolved. In particular, the
initial vorticity magnitude does not match the initial condition ω0 = Γ0/(πa0). Therefore,
mesh 3 is too coarse to resolve the initial core radius of a0/R0 = 0.21. A second set
of simulations was performed with a larger initial core radius of a0/R0 = 0.4. While
the vortex ring trajectory now differs from Chu et al. (1995a), due to the change in the
initial core radius, changes in both the vortex ring trajectory and the maximum vorticity
magnitude between meshes 2 and 3 are small. Therefore, a0/R0 = 0.4 was used for this
study, and mesh 2 is considered satisfactory.

For the oblique case, a mesh resolution study was performed at α = 1 (free slip), with
parameters matching our previous numerical study of the interaction between a vortex
ring and a free surface (Terrington et al. 2022a). Three meshes were used, as listed in
table 2. Figure 4 plots the maximum spanwise vorticity in the symmetry plane, as well
as the maximum vorticity magnitude at the free-slip wall, for each of the three meshes.
The change in the solution between meshes 2 and 3 is small, and therefore, mesh 3 is
considered converged. The solution obtained for the interaction between a vortex ring and
a free surface (Terrington et al. 2022a), at Fr = 0.01 (i.e. nearly flat), is also shown, and
good agreement is observed. The slight differences in solution are likely due to the lack of
a periodic domain in Terrington et al. (2022a), and the different domain size between the
two studies.
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(b)(a)

Figure 3. Grid resolution and validation study for the orthogonal interaction between a vortex ring and a
no-slip wall, showing (a) the trajectories of the vortex core, and (b) the time histories of the maximum vorticity
magnitude, normalised by the initial maximum vorticity ω0 = Γ0/(πa2

0). Two different initial core radii are
considered, a0/R0 = 0.21 and a0/R0 = 0.4. Numerical and experimental data from Chu et al. (1995a) are also
shown in (a). Physical parameters are θ = 0, Re = 1743 and H0/R0 = 3.

Mesh 1 Mesh 2 Mesh 3

N 3.0 × 106 12.2 × 106 24.0 × 106

�x 0.040 0.025 0.020
�y 0.040 0.025 0.020
�z4 0.10 0.064 0.051
�z0 0.010 0.0064 0.0051

Table 2. Numerical grids used for the oblique case (θ0 = 80◦). Here N is the total number of cells, while �x,
�y and �z indicate the cell spacings near the vortex ring. Spacing in the z direction is provided at both the
partial-slip wall (�z0) and at z = 4 (�z4).

0

0.5

1.0

1.5

2.0

10 20

Symmetry plane

ω
m

ax
/ω

0

Free-slip boundary

Mesh 1,
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Mesh 2
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Terrington et al.

30
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Figure 4. Resolution study for the oblique interaction between a vortex ring and a free-slip boundary, showing
the maximum magnitude of vorticity in both the symmetry plane and the free-slip boundary, for θ = 80◦,
Re = 1570, a0/R0 = 0.35 and H0/R0 = 2.5. Numerical data from Terrington et al. (2022a) for the interaction
between a vortex ring and a free surface with Fr = 0.01 are also provided.
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Figure 5. Contour plots of vorticity in the plane y = 0 overlaid with velocity vectors for the interaction
between a vortex ring and a free-slip wall (α = 1). The contour levels are ωy = . . . , −0.3, −0.1, 0.1, 0.3, . . ..

3.2. Orthogonal interaction
This section considers the head-on collision between a vortex ring and a partial-slip wall
(θ0 = 0). Contours of spanwise vorticity (ωy) in the x–z plane, overlaid with velocity
vectors, are presented in figure 5 for a free-slip boundary (α = 1), in figure 6 for a no-slip
boundary (α = 0) and in figure 7 for partial-slip boundaries with α = 0.5 (a,b), α = 0.25
(c,d) and α = 0.1 (e, f ). A transient animation comparing the vorticity contours for four
different slip coefficients (α = 1, 0.25, 0.1, 0) is also provided in supplementary movie 1
available at https://doi.org/10.1017/jfm.2024.68.

The free-slip case is shown in figure 5. This case exhibits three distinct stages of motion,
as recognised by Chu et al. (1995b) for the mathematically equivalent problem of the
head-on collision between two identical vortex rings. First, in the free-travelling stage,
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Figure 6. Contour plots of vorticity in the plane y = 0 overlaid with velocity vectors, for the interaction
between a vortex ring and a no-slip wall (α = 0). The contour levels are ωy = . . . , −0.3, −0.1, 0.1, 0.3, . . ..

the vortex ring initially approaches the wall under its own self-induced velocity, where
it is deflected and travels radially outwards along the wall. Next, in the vortex stretching
stage, strong vortex stretching results in a reduction in the vortex ring core radius, and
an increase in the maximum vorticity magnitude (figure 5c). As discussed by Orlandi
& Verzicco (1993), the vortex ring core forms a head–tail structure during this stage of
the interaction. Finally, in the viscous dissipation stage, large vorticity gradients near the
boundary lead to the diffusion of vorticity out of the fluid, resulting in a reduction in the
peak vorticity magnitude in the vortex ring core (figure 5d).
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Figure 7. Contour plots of vorticity in the plane y = 0 overlaid with velocity vectors, for the interaction
between a vortex ring and a partial-slip wall with α = 0.5 (a,b), α = 0.25 (c,d) and α = 0.1 (e, f ). The contour
levels are ωy = . . . , −0.3, −0.1, 0.1, 0.3, . . ..

For the no-slip case (figure 6), the flow is modified by the generation of secondary
vorticity at the boundary. As discussed by Cheng et al. (2010), secondary vorticity of sign
opposite to the primary vortex ring is generated at the boundary. As the primary vortex
ring interacts with this boundary layer, it draws vorticity away from the wall, forming a
secondary vortex (figure 6b). The interaction between the primary and secondary vortices
then lifts the primary vortex away from the wall, in a process known as rebound (Lim et al.
1991). The removal of vorticity from the boundary layer by the primary vortex ring also
reduces the tangential motion of the vortex ring along the boundary (Orlandi & Verzicco
1993). Finally, a second interaction between the primary vortex ring and the wall produces
an additional tertiary vortex ring (figure 6d).

The partial-slip cases exhibit behaviour intermediate between the limiting free-slip and
no-slip cases. As shown in figure 7, the quantity of secondary vorticity diffused into the
fluid increases as the slip coefficient is decreased, with no secondary vorticity created for
the free-slip case (figure 5) and the strongest secondary vorticity generated at a no-slip
boundary (figure 6). As a result, the quantity of secondary vorticity removed from the
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Figure 8. Variation in (a) the trajectory of the vortex ring core and (b) the time history of maximum vorticity
magnitude, against slip coefficient (α), for both the primary (solid lines) and secondary (dashed lines) vortex
rings.

boundary layer to form the secondary vortex increases as the slip coefficient is decreased.
The increased removal of vorticity from the boundary layer results in a reduction in the
radial motion of the vortex ring along the wall.

The increased strength of the secondary vortex also results in a stronger rebound effect.
Figure 8(a) plots the trajectories of the primary (solid lines) and secondary (dashed
lines) vortex ring cores, which are identified as local maxima in vorticity magnitude.
The trajectories of the primary vortex ring for partial-slip boundaries are intermediate
between the two limiting cases of no-slip (α = 0) and free-slip (α = 1) boundaries. The
distance from the vortex ring to the wall increases as the slip coefficient decreases, due to
stronger interactions with the secondary vorticity. No rebound occurs for α = 1, 0.5 and
0.25 (i.e. the distance from the wall decreases monotonically), and the secondary vortex
(defined as a local maxima of vorticity magnitude) is either weak or non-existent for these
slip lengths. Rebound occurs for α = 0.1, 0.05 and 0, and a stronger secondary vortex is
formed for these cases. The strength of the rebound increases as the slip length increases,
corresponding to an increase in the strength of the secondary vortex.

Figure 8(b) presents the maximum azimuthal vorticity for the primary (solid lines) and
secondary vortices (dashed lines) for a range of slip coefficients. For the free-slip case
(α = 1), the maximum vorticity of the primary vortex nearly doubles as the vortex ring
interacts with the wall, due to increased vortex stretching as the vortex ring radius increases
(Orlandi & Verzicco 1993). As α is decreased, the peak value of the maximum vorticity
decreases, indicating a reduction in the vortex stretching effect as the radial motion of the
vortex ring is reduced by the generation of secondary vorticity.

3.2.1. Mechanism of secondary vorticity creation
To summarise the preceding analysis, the main effect of the slip coefficient is to control the
amount of secondary vorticity diffused into the fluid from the boundary, with increased
secondary vorticity as the slip coefficient is decreased. This results in an increased
rebound, and a reduction in the radial distance travelled along the wall.

980 A58-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.68


Vorticity dynamics at partial-slip boundaries

0
–4

–2

0

2

4

1.0

α = 0.1

α = 1

α = 0.25

α = 0

0.5
0

–2
0
x

y

z

2

4

–4

–2

0

2

4

1.0
0.5

0

–2
0
x

y

z

2

4

–4

–2

0

2

4

1.0
0.5

0

–2
0
x

y

z

2

4

–4

–2

0

2

4

1.0
0.5

0

–2
0 xy

z

2

4

0.25 0.50 0.75

|γ |

(b)

(a)

(c)

(d )

Figure 9. Colour plot showing the magnitude of vector circulation in the interface vortex sheet |γ |, as well as
vortex lines in the interface vortex sheet, at t = 20. Transparent isosurfaces of vorticity magnitude |ω| = 0.5
are also shown, with blue indicating the primary vortex and red indicating the secondary vorticity.

We now consider the mechanism responsible for generating the secondary vorticity.
Recall that the slip velocity represents a sheet of vector circulation at the partial-slip
boundary:

γ = êz × u. (3.2)

Here êz is the unit normal vector in the vertical direction. Figure 9 presents a colour-density
plot of the magnitude of vector circulation in the interface vortex sheet (|γ |), as well as
vortex lines in the interface vortex sheet (lines tangent to γ ), at t = 20, and for a range
of slip coefficients. Transparent isosurfaces of vorticity magnitude are also shown. A
transient animation of this figure is also presented in movie 2.

For a free-slip boundary (figure 9a), vector circulation is generated in the interface
vortex sheet as the vortex ring approaches the wall, with orientation opposite to that of the
primary vortex ring. For partial-slip walls (figure 9b,c), vector circulation is still present in
the vortex sheet, however, the strength of the vortex sheet decreases as the slip coefficient
is decreased. Finally, there is no interface vortex sheet at the no-slip wall (figure 9d).
The reduced strength of the interface vortex sheet corresponds with an increased levels of
secondary vorticity, indicating that vector circulation is diffused out of the interface vortex
sheet and into the fluid.
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Symmetry axis

S

ba

Cf
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Figure 10. Control surface S and boundary curve C for computing the circulation balance. Here Cs is the
portion of C on the boundary, while Cf is the remaining portion that lies in the fluid interior.

To examine the creation of the interface vortex sheet, as well as the secondary vorticity,
we consider the reference surface S shown in figure 10. The boundary curve of this
surface is split into two portions: the curve Cf is in the fluid interior, while Cs lies on
the partial-slip wall. The total circulation (Γ ) is expressed as

Γ = Γω + Γγ , (3.3a)

Γω =
∫

S
ω · dS =

∮
Cs+Cf

u · ds, (3.3b)

Γγ =
∫

Cs

−u · ds, (3.3c)

and includes contributions from vorticity in the fluid interior (Γω) and circulation in the
interface vortex sheet (Γγ ). The orientation of S is such that the circulation due to the
primary vortex ring is positive.

Using (2.40), (2.49), (2.50) from Terrington et al. (2022b), the rates of change of Γ , Γω

and Γγ are given by

dΓ

dt
= [pb − pa], (3.4a)

dΓω

dt
=
∫

Cs

[
1

Re
ŝ × (∇ × ω)

]
· n̂ ds, (3.4b)

dΓγ

dt
= [pb − pa] −

∫
Cs

[
1

Re
ŝ × (∇ × ω)

]
· n̂ ds, (3.4c)

where n̂ is the unit normal to S, and we have assumed all fluxes of vorticity across Cf are
negligible. Since the partial-slip wall is held stationary, a net change in the total circulation
can only be generated by tangential pressure gradients. These pressure gradients accelerate
the fluid with respect to the wall, generating circulation in the interface vortex sheet.
The viscous boundary flux (1/Re)ŝ × (∇ × ω) transfers circulation between the interface
vortex sheet and the fluid interior, in order to maintain the partial-slip boundary condition,
without generating a net circulation.

Figure 11 presents time histories of Γ (solid lines), Γω (dashed lines) and Γγ

(dash-dotted lines) for a range of slip coefficients, while figure 12 presents the rate of
change of circulation, as well as the pressure and viscous terms from (3.4), for the free-slip
(a), α = 0.1 partial-slip (b) and no-slip (c) cases.
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Figure 11. Time history of the circulations in the fluid (Γω), interface vortex sheet (Γγ ) and the total

circulation (Γ = Γω + Γγ ), for a range of slip coefficients.
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Figure 12. Time histories of the rates of change of circulations in the fluid (Γω), interface vortex sheet (Γγ )
and total circulation (Γω + Γγ ), as well as the viscous and pressure terms from (3.4), for slip coefficients
(a) α = 1, (b) α = 0.1 and (c) α = 0.

We first consider the initial approach of the vortex ring to the boundary (0 < t < 20).
As shown in figure 11, the total circulation is approximately independent of slip coefficient
during this time interval. Figure 12 confirms that this circulation is generated by tangential
pressure gradients at the boundary. To understand the pressure gradients involved, we
provide the sketch in figure 13. As the vortex ring approaches the boundary, the velocity
field induced by the primary vortex ring features a stagnation point at the symmetry axis,
which is a region of high pressure. Fluid at the boundary is accelerated away from the
stagnation point, resulting in a slip velocity at the boundary. This is equivalent to a vortex
sheet, with orientation opposite to that of the primary vortex ring.

While the slip coefficient does not affect the generation of circulation, it governs how
circulation is redistributed between the interface vortex sheet and the fluid interior. The
partial-slip boundary condition (2.25) provides the following relationship between the
boundary vorticity and the strength of the interface vortex sheet:

αω‖ = (1 − α)γ . (3.5)
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Figure 13. Sketch of the general vorticity creation mechanism. The vortex ring induces a tangential velocity
at the boundary, thereby creating an interface vortex sheet. Depending on the slip coefficient, the boundary
vorticity flux transfers vorticity into the fluid interior to satisfy the partial-slip boundary condition.

Circulation is transferred between the interface vortex sheet and the fluid interior to
maintain this condition. As the slip coefficient is decreased, the ratio of interface
circulation to boundary vorticity decreases and, therefore, a greater quantity of circulation
is diffused into the fluid as secondary vorticity.

For the free-slip case, the partial-slip boundary condition is ω‖ = 0, and therefore, no
secondary vorticity is diffused into the fluid. Referring to figure 11, the circulation in the
fluid (Γω) remains constant for 0 < t < 20, while a negative circulation is generated in
the interface vortex sheet. As shown in figure 12(a), the pressure gradient generates the
negative circulation in the interface vortex sheet, and there is no viscous flux of vorticity
into the fluid.

For t > 20, the primary vortex ring interacts with the boundary. To maintain ω‖ = 0 on
the boundary, vorticity from the primary vortex ring is diffused out of the fluid and into the
interface vortex sheet, as indicated by the viscous flux term in figure 12(a). This produces
equal and opposite changes to the circulations Γω and Γγ . Both the magnitude of positive
Γω and the magnitude of negative Γγ decrease by an equal amount, without affecting the
total circulation (figure 11).

For the no-slip boundary, the partial-slip boundary condition reduces to γ = 0.
Therefore, all circulation generated by tangential pressure gradients is diffused into the
fluid as secondary vorticity. Referring to figure 11, Γγ remains equal to zero, while Γω

decreases due to the creation of negative secondary vorticity. As shown in figure 12(c), the
pressure gradient and viscous flux terms are equal (aside from small numerical errors in
computing the vorticity gradients), and therefore, all circulation generated by the tangential
pressure gradient is immediately diffused into the fluid as secondary vorticity.

For partial-slip boundaries, both secondary vorticity and interface circulation must exist
at the boundary. Therefore, some circulation is diffused into the fluid, while the rest
remains in the interface vortex sheet. As shown in figure 12(b), the viscous flux is less
than the pressure-gradient term over the interval 0 < t < 20, and therefore, only a part
of the circulation generated by the tangential pressure gradient is diffused into the fluid
as secondary vorticity. As shown in figure 11, the amount of circulation diffused into the
fluid increases as the slip coefficient is decreased. This is due to the partial-slip boundary
condition (3.5), which requires a greater ratio of boundary vorticity to interface circulation
as α is decreased.

For t > 20, the pressure-gradient term is small (figure 12b), and therefore, the total
circulation remains relatively constant. However, the viscous flux remains significant,
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Vorticity dynamics at partial-slip boundaries

transferring circulation out of the interface vortex sheet and into the fluid. As shown
in figure 7, the primary vortex ring interacts with the boundary vorticity, both drawing
positive vorticity away from the boundary, as well as reducing the magnitude of boundary
vorticity by the viscous cross-annihilation of opposite-signed vorticity. Therefore, new
vorticity must be added at the boundary by the viscous flux to maintain the partial-slip
boundary condition.

3.3. Oblique interaction
We now consider the oblique interaction (θ0 = 80◦). Figures 14–17 present three-
dimensional visualisations of the interaction between a vortex ring and a partial-slip
boundary, with slip coefficients of α = 1 (figure 14), α = 0.25 (figure 15), α = 0.1
(figure 16) and α = 0 (figure 17). In each of these figures, (a–c) plot isosurfaces of vorticity
magnitude (|ω| = 0.5), vortex lines in the fluid and a colour-density plot of surface-normal
vorticity (ωz) at the partial-slip wall. Subfigures (d–f ) present a colour-density plot of
the magnitude of vector circulation in the interface vortex sheet (|γ |), vortex lines in
the interface vortex sheet (i.e. curves tangent to γ ) and transparent vorticity magnitude
isosurfaces. A transient animation of these figures is provided in supplementary movie 3.

We also present contour plots of spanwise vorticity (ωy) in the symmetry plane (y = 0),
overlaid with velocity vectors, in figures 18 and 19 for α = 1 (figure 18a–c), α = 0.25
(figure 18d–f ), α = 0.1 (figure 19a–c) and α = 0 (figure 19d–f ). A transient animation of
these figures is also provided in supplementary movie 4.

We begin by considering the free-slip case (α = 1). The main feature of the interaction
is that the vortex ring opens up and attaches to the boundary (Bernal & Kwon 1989;
Terrington et al. 2022a). Initially, the vortex ring is a closed loop (figure 14a). The
upper part of the vortex ring corresponds with negative spanwise vorticity in figure 18(a),
while the lower part of the vortex ring corresponds with positive spanwise vorticity. As
the vortex ring interacts with the free-slip boundary, vortex lines open up and attach
to the boundary (figure 14b,c). The opening up of vortex lines corresponds with the
loss of positive spanwise vorticity from the symmetry plane, as seen in figure 18(b,c),
while the attachment of vortex lines to the boundary corresponds with the appearance of
surface-normal vorticity ωz at the boundary (figure 14c).

The free-slip case is mathematically equivalent to the oblique interaction between
two identical vortex rings studied by Kida et al. (1991). Many flow features are
identical between both cases, including the flattening of the vortex ring core near the
boundary/symmetry plane (figure 14b), the breaking open of vortex lines (figure 14c),
and a small ‘thread’ of non-reconnected vorticity remaining after the interaction
(figure 14c). The attachment of vortex lines to the surface observed here corresponds to
the reconnection of the two vortex rings in Kida et al.’s (1991) study.

We now consider the interface vortex sheet. As shown in figure 14(d), vector circulation
is generated in the interface vortex sheet as the vortex ring approaches the boundary. The
initial vortex sheet comprises two sets of closed-loop vortex lines. As the vortex ring
interacts with the free-slip boundary, positive spanwise vorticity (ωy) is diffused out of
the fluid and into the interface vortex sheet. Therefore, in the final state the interface
vortex sheet primarily contains positive spanwise-oriented vector circulation (figure 14f ).
Moreover, according to (2.26), vortex lines in the interface vortex sheet begin and end at
regions of positive and negative vertical vorticity (ωz), respectively. Therefore, after the
vortex ring has attached to the boundary, vortex lines in the interface vortex sheet begin
and end at the locations where the ends of the vortex ring are attached to the boundary
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Figure 14. Interaction between a vortex ring and a free-slip wall (α = 1). Subfigures (a–c) present isosurfaces
of vorticity magnitude |ω| = 0.5, vortex lines in the fluid and a colour-density plot of surface-normal vorticity
ωz at the boundary. Subfigures (d–f ) present a colour plot of the strength of the interface vortex sheet |γ | and
vortex lines in the interface vortex sheet (curves tangent to γ ), overlaid with a transparent isosurface of vorticity
magnitude.
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Figure 15. Interaction between a vortex ring and a partial-slip wall, with α = 0.25. Subfigures (a–f ) are as
labelled in figure 14.

(figure 14c, f ). Effectively, the vortex ring remains a closed loop, with the lower part of
the vortex ring having been diffused out of the fluid, and into the interface vortex sheet
(Terrington et al. 2022a).

We now consider the no-slip case, α = 0. The no-slip boundary cannot sustain
an interface vortex sheet, and therefore, γ = 0 (figure 17d–f ). Any vector circulation
generated at the boundary by tangential pressure gradients is immediately diffused into
the fluid as secondary vorticity. Secondary vorticity is clearly evident in figure 17(a),
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Figure 16. Interaction between a vortex ring and a partial-slip wall, with α = 0.1. Subfigures (a–f ) are as
labelled in figure 14.

and comprises two sets of closed loops. The closed loops of secondary vorticity are
qualitatively similar to the closed loops of vector circulation in the interface vortex sheet
generated for the free-slip case (figure 14d). This suggests that the pressure gradients
during the initial approach of the vortex ring are relatively independent of the slip
length. While the generated vector circulation remains in the interface vortex sheet for
the free-surface case, it is instead diffused into the fluid as secondary vorticity for the
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Figure 17. Interaction between a vortex ring and a no-slip wall (α = 0). Subfigures (a–f ) are as labelled in
figure 14.

no-slip case. The generated secondary vorticity is also clearly evident in the contours of
spanwise vorticity presented in figure 19(d). Negative secondary vorticity is generated
directly beneath the vortex ring, while positive vorticity is generated both upstream and
downstream of the vortex ring. These regions of positive and negative secondary vorticity
correspond to where the loop-shaped vortex lines intersect the symmetry plane.

There is no vortex reconnection to the boundary for the no-slip case. Instead, the lower
part of the vortex ring interacts with the secondary vorticity. During the initial stages
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Figure 18. Contours of spanwise vorticity (ωy) in the symmetry plane (y = 0), overlaid with velocity vectors,
for slip coefficients (a–c) α = 1 and (d–f ) α = 0.25. The contour levels are ωy = . . . , −0.3, −0.1, 0.1, 0.3, . . ..

of this interaction (figure 17b), vortex lines in the lower part of the vortex ring open up
and connect with vortex lines in the secondary vorticity. This produces a single set of
closed vortex lines (figure 17c), with no clear distinction between primary and secondary
vorticity. Referring to the contours of spanwise vorticity (figure 19b,c), the lower part
of the vortex ring merges with the secondary vorticity. The small amount of negative
secondary vorticity is annihilated by the much larger quantity of positive vorticity, leaving
only positive vorticity. This positive vorticity remains in the fluid, and does not diffuse out
of the boundary.

We now consider the partial-slip cases, which exhibit behaviour intermediate between
the limiting cases of no-slip and free-slip boundaries. We consider two main flow features.
First, the amount of secondary vorticity diffused into the fluid increases as the slip length
is decreased. Second, the extent of vortex connection to the boundary increases as the
slip length is increased. We now discuss these two observations using our theoretical
formulation of vorticity dynamics.
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Figure 19. Contours of spanwise vorticity (ωy) in the symmetry plane (y = 0), overlaid with velocity vectors,
for slip coefficients (a–c) α = 0.1 and (d–f ) α = 0. The contour levels are ωy = . . . , −0.3, −0.1, 0.1, 0.3, . . ..

3.3.1. Generation of secondary vorticity
The amount of secondary vorticity diffused into the fluid increases as the slip length is
decreased, as is clearly evident by comparing figures 18(a,d) and 19(a,d). No secondary
vorticity appears for the free-slip case (α = 1), while a small amount of secondary
vorticity appears for α = 0.25. The amount of secondary vorticity increases as α is
decreased further to α = 0.1, and the maximum quantity of secondary vorticity is
generated for the no-slip case (α = 0).

The appearance of secondary vorticity in the fluid coincides with a reduction in the
strength of the interface vortex sheet. The free-slip boundary has the strongest vortex
sheet (figure 17d), and the strength of the vortex sheet decreases as the slip length is
reduced (figures 15d and 16d). Finally, no vortex sheet is present at the no-slip boundary
(figure 17d).

These observations are readily understood under the inviscid model of vector circulation
generation. The creation of vector circulation at the boundary is due to tangential pressure
gradients, which produce an inviscid relative acceleration between the fluid and the
boundary. In figure 20 we plot contours of surface pressure at t = 20 for both the free-slip
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Figure 20. Contours of pressure on the boundary for (a) α = 1 and (b) α = 0, at t = 20. Transparent
isosurfaces of |ω| = 0.5 are also shown for reference.

(α = 1) and no-slip (α = 0) boundaries. The pressure profiles are relatively insensitive
to slip coefficient, with only a small difference in the magnitude of the pressure peaks,
and therefore, the distribution of vector circulation generated at the boundary does not
significantly depend on the slip coefficient. Fluid at the boundary is accelerated away
from the positive upstream pressure peak and towards the negative downstream pressure
peak.

The interface vortex sheet can also be interpreted as a consequence of the tangential
velocity induced by the primary vortex ring, as shown in figure 21. Directly below the
vortex ring, the induced tangential velocity is negative, indicating that negative vector
circulation is generated there. Both ahead of the upstream stagnation point and behind
the downstream stagnation point, the induced tangential velocity is positive, indicating
positive vector circulation. Considering the full three-dimensional flow (figure 21b), fluid
is accelerated away from the upstream stagnation point (due to the positive pressure)
and towards the downstream stagnation point (due to the negative pressure), resulting in
two sets of closed loops of vector circulation. This matches the closed loops of vector
circulation in the interface vortex sheet at a free-slip boundary (figure 14d) and the closed
loops of secondary vorticity at the no-slip boundary (figure 17a).

While the slip coefficient does not affect the generation of vector circulation, it
determines how vector circulation is distributed between the interface vortex sheet and the
fluid. The partial-slip boundary condition prescribes the ratio between vector circulation
in the interface vortex sheet and boundary vorticity: αω‖ = (1 − α)γ . For the free-slip
boundary, this becomes ω‖ = 0, and all vector circulation remains in the interface vortex
sheet. For the no-slip boundary, we have γ = 0 and all vector circulation is diffused into
the fluid as secondary vorticity. For the partial-slip boundary, both boundary vorticity and
the interface vortex sheet must exist simultaneously. As α is increased, a greater quantity of
vector circulation must remain in the interface vortex sheet, and therefore, less secondary
vorticity is diffused into the fluid.

3.3.2. Extent of vortex ring connection to the boundary
The extent of vortex ring connection to the boundary also depends on the slip coefficient.
For the free-slip case (figure 14c), most of the vortex lines open up and attach to the
boundary, and this is accompanied by the loss of most of the positive spanwise vorticity
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Figure 21. Sketch illustrating the generation of vector circulation in the interface vortex sheet. The
approaching vortex ring induces a tangential velocity at the boundary, thereby creating a vortex sheet.
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Figure 22. Control surface analysis for examining vortex ring connection to the boundary.

from the fluid (figure 18c). For α = 0.25 (figure 15c), the vortex ring opens up and
connects to the boundary. However, slightly more positive spanwise vorticity remains in
the fluid (figure 18f ), indicating a reduced extent of reconnection. For α = 0.1 (figure 16c),
some vortex lines open up and attach to the boundary, however, many of the vortex lines
remain as closed loops. This corresponds with a substantial quantity of positive spanwise
vorticity remaining in the fluid (figure 19c). Finally, no vortex connection occurs at the
no-slip wall (figure 17c) and all positive spanwise vorticity remains in the fluid (figure 19f ).

The dynamics of vortex ring connection to the boundary can be understood using the
system of control surfaces shown in figure 22 (Terrington et al. 2022a). Here, S is the
symmetry plane, while I1 and I2 are the portions of the partial-slip wall on each side of the
symmetry plane. These surfaces share a common boundary at the connection line, C. The
vortex connection process involves a loss of positive circulation from S (i.e. opening up
of vortex lines), and an increase of positive circulation in I1 and of negative circulation in
I2, indicating the attachment of vortex lines to the boundary. The magnitudes of positive
circulation gained in I1 and of negative circulation gained in I2 are both equal to the
magnitude of negative circulation lost from S, as a consequence of the kinematic condition
that vortex lines do not end in the fluid (Terrington et al. 2022a).

In figure 23(a) we plot the time histories of the circulations: ΓS, ΓI1 and ΓI2 , which
are the circulations in S, I1 and I2, respectively. We also plot Γγ = ∫

C γy, which is the
circulation contained in the interface vortex sheet, along the connection line C. Vortex
reconnection to the boundary is associated with a decrease in ΓS, indicating the loss
of positive spanwise vorticity from the fluid. This is also associated with an equal and
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Figure 23. Time histories of (a) the circulations ΓS, ΓI1 , ΓI2 and Γγ , and (b) the rate of change of circulations
−dΓS/dt = dΓI1/dt = −dΓI2/dt = dΓγ /dt, for a range of slip coefficients. The viscous boundary flux Fν is
also shown in subfigure (b).

opposite change to the circulation Γγ , as the vorticity lost from the fluid is transferred into
the interface vortex sheet. Finally, there is an equal increase of both positive circulation
in ΓI1 and of negative circulation in ΓI2 , indicating the attachment of vortex lines to the
boundary.

The free-slip case (α = 1) has the largest changes to each of the circulations, indicating
the greatest extent of vortex connection. The changes to the circulations reduce as α is
decreased, indicating that the extent of reconnection is reduced. Finally, the circulations
remain constant for the no-slip boundary (α = 0), indicating that vortex connection does
not occur.

The rate of change of the circulations ΓS, ΓI1 , ΓI2 and Γγ are given by (4.11a–e) from
Terrington et al. (2022a):

dΓS

dt
= d

dt

∫
S
ωy dS = −Fν, (3.6a)

dΓI1

dt
= d

dt

∫
I1

ωz dS = Fν, (3.6b)

dΓI2

dt
= d

dt

∫
I2

ωz dS = −Fν, (3.6c)

dΓγ

dt
= d

dt

∫
C

γy ds = Fν, (3.6d)

Fν =
∫

C

1
Re

[
∂ωy

∂z
− ∂ωz

∂y

]
ds. (3.6e)

Importantly, the rates of change of all of the circulations are governed by the viscous
flux of vorticity along the connection line, Fν . This viscous flux simultaneously describes
the diffusion of spanwise vorticity out of the fluid (dΓS/dt) and into the interface vortex
sheet (dΓγ /dt), as well as the appearance of positive and negative vorticity in I1 and
I2, respectively (dΓI1/dt and dΓI2/dt). Importantly, this clearly explains why the exact
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quantity of circulation lost from the symmetry plane is gained in the boundary, which is a
necessary consequence of the kinematic condition that vortex lines do not end in the fluid
(Terrington et al. 2022a).

Figure 23(b) plots the rates of change of circulations (−dΓS/dt = dΓI1/dt = dΓγ /dt =
−dΓI2/dt), as well as the viscous flux Fν , for a range of slip coefficients, confirming that
the rate of change of circulations are described by the viscous flux (small numerical errors
are present due to the difficulty of accurately computing vorticity gradients, which are third
derivatives of velocity). The viscous flux, and the rate of change of circulation, increase as
the slip coefficient is increased, resulting in a greater extent of reconnection.

To understand why vortex reconnection depends on the slip coefficient, recall that the
viscous flux Fν ensures that the partial-slip condition is satisfied at the boundary. For a
free-slip boundary, this condition requires that ω‖ = 0 on the boundary. As the vortex ring
impinges upon the boundary (figure 18b), positive spanwise vorticity is brought near the
boundary. Due to the condition ω‖ = 0 at the boundary, there is a large vorticity gradient
∂ωy/∂z at the boundary, resulting in a large viscous flux of vorticity Fν . Therefore, positive
vorticity is removed from the fluid, and into the vortex sheet, maintaining the free-slip
boundary condition at the boundary. The viscous flux Fν also results in the appearance of
surface-normal vorticity at the boundary, indicating the attachment of the vortex ring to
the boundary.

For partial-slip boundaries, some negative spanwise vorticity must remain at the
boundary to satisfy the partial-slip boundary condition αω‖ = (1 − α)γ . As the slip
coefficient is reduced, a greater quantity of negative vorticity must remain in the fluid,
and therefore, less vorticity is diffused out of the fluid by the viscous flux Fν . This results
in a reduced extent of vortex reconnection.

Finally, for the no-slip boundary, no interface vortex sheet can exist (γ = 0). Therefore,
no circulation is diffused out of the fluid and the net viscous flux Fν is zero. As a result,
reconnection does not occur at a no-slip boundary.

4. Conclusions

We have discussed the generation and transport of vorticity and vector circulation at
partial-slip boundaries, using our general formulation of vorticity dynamics (Terrington
et al. 2022b). The slip velocity at the boundary represents a surface density of vector
circulation, i.e. an interface vortex sheet. The total vector circulation, including both the
total vorticity of the fluid and vector circulation in the interface vortex sheet, is generally
conserved. Specifically, if there is no external acceleration of the solid boundary, and no
net external pressure gradient, the total vector circulation will remain constant. Under
these conditions, local generation of vector circulation may still occur on a section of the
boundary, but this will be balanced by the generation of opposite-signed vector circulation
elsewhere.

The creation of vector circulation does not depend on either viscosity or the partial-slip
boundary condition. Vector circulation is generated by the inviscid relative acceleration
between the fluid and the solid at the boundary, due to either external acceleration of the
boundary or a tangential pressure gradient. Vector circulation within the interface vortex
sheet may also be amplified and reoriented by the vortex stretching/tilting term.

While the creation of vector circulation does not depend on either viscosity or the no-slip
condition, both viscosity and the no-slip condition determine how vector circulation is
redistributed between the total vorticity of the fluid and the interface vortex sheet. The
partial-slip boundary condition provides a relationship between the density of vector
circulation in the interface vortex sheet and the boundary vorticity. The strength of the
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interface vortex sheet is greater for large slip lengths, while the intensity of boundary
vorticity is greater for small slip lengths. Finally, the viscous boundary vorticity flux
transfers vector circulation between the interface vortex sheet and the total vorticity of
the fluid to maintain the partial-slip boundary condition, but does not generate a net vector
circulation.

The interaction between a vortex ring and a partial-slip wall was examined to illustrate
various aspects of our formulation. For the orthogonal interaction, vector circulation is
generated at the boundary by tangential pressure gradients as the vortex ring approaches
the boundary. While the quantity of vector circulation generated does not depend on
the slip coefficient, a greater quantity of vector circulation is diffused into the fluid as
secondary vorticity when the slip length is reduced. The secondary vorticity subsequently
alters the motion of the primary vortex ring, lifting it away from the wall and reducing the
radial motion of the vortex ring along the wall.

For the oblique interaction between a vortex ring and a partial-slip wall, the vortex ring
opens up and connects to the boundary. Specifically, spanwise vorticity from the lower part
of the vortex ring is diffused out of the fluid and into the interface vortex sheet, causing the
vortex ring to attach to the boundary. The extent of connection depends on the slip length.
As the slip length is decreased, a greater quantity of vorticity must remain in the fluid, in
order to satisfy the partial-slip boundary condition, and therefore, the extent of connection
is reduced.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.68.
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