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Abstract
Particle image velocimetry (PIV) selects the maximum of the cross-correlation map to
represent the modal displacement, and a wealth of information stored in the cross-correlation
is discarded. We introduce a novel method, termed polynomial element velocimetry (PEV),
which results in continuous velocity and velocity gradient measurements. PEV utilizes the
extra information stored in the cross-correlation to determine continuous velocity
measurements with low levels of measurement noise. In contrast to PIV, the continuous nature
of velocity measurements facilitates the direct determination of the velocity gradient. The PEV
method is applied to two laboratory flows: flow in a channel and flow behind a circular
cylinder at Reynolds number, Re = 30, and is shown to greatly reduce the noise in the
measurements. In addition, the accuracy of PEV is validated using two computer-generated
synthetic flows: parabolic flow in a channel and flow past a square cylinder at Re = 30. In
these cases, PEV is shown to reduce the velocity measurement error by up to 45% and the
vorticity estimation error by up to 77% when compared to PIV. A key benefit of the PEV
method is that it is capable of calculating continuous measures for flow gradient with greatly
reduced bias errors. In particular, PEV provides a more accurate measurement of the vorticity
near interfaces such as a cylinder wall or channel wall where PIV methods only provide
measurement data at half the sampling window size from the wall. Since PEV utilizes the
entire shape of the cross-correlation map to determine a local map for the underlying velocity,
minimal random error is transmitted to the estimated flow gradient. This feature of the PEV
method makes it optimal for flows where flow gradients are well defined and there are
insufficient pixels to fully resolve structures in the flow using PIV.

Keywords: PIV, cross-correlation, polynomial, continuous, gradient

(Some figures may appear in colour only in the online journal)

1. Introduction

The particle image velocimetry (PIV) technique, which has
been under development for over two decades [1, 2], has

been gaining popularity as a standard flow measurement
technique, especially for medical applications [3–6]. In such
applications, due to the difficult imaging conditions [3, 7],
small flow structures are difficult to resolve, making accurate
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flow gradients difficult to determine [7]. Fluid mechanics
properties derived from velocity gradients, such as the shear
stress and vorticity, are important quantities that are required
to make a physical interpretation of the flow.

Both the accuracy and spatial resolution of the flow
measurements are important in determining an accurate
representation of velocity gradients within these flows. There
is a trade-off between the accuracy of PIV in measuring
the velocity and its associated gradients and the spatial
resolution of the PIV velocity measurements [8, 9]. The
general PIV technique offers measurements that are discretized
into sampling windows and there is a limit to which the size
of a given sampling window can be reduced, i.e. physically
a unit pixel. Increasing the sampling window size reduces
the random error of the measurement (due to the increased
amount of information that contribute to the cross-correlation
map) while reducing the spatial resolution of the measurements
[10]. The accuracy also depends on factors such as the
particle seeding density [10] and image noise [11]. Decreasing
the sampling distance between these measurements/sampling
windows increases the spatial resolution of the measurements,
but leads to random errors in the estimated flow gradients
[8, 9]. Any underlying flow gradients within the sampling
window are also captured within the cross-correlation map.
However, with the general PIV technique, only the location
of the maximum signal from the cross-correlation map is
utilized. This maximum signal represents the modal velocity,
and all other information stored in the cross-correlation map
is discarded.

Existing techniques for improving the accuracy in the
estimated velocity gradient include recursive local correlation
[12], single pixel methods [13–15], image deformation
methods [16–18], least-squares pattern matching methods
[19–21] and more recently correlation-based least-squares
methods [22–25]. At least three methods in the literature
[19, 20, 32] are also capable of simultaneously and directly
measuring the gradients in the flow in addition to the velocity.
For completeness, a selection of the aforementioned methods
is reviewed here.

1.1. Recursive local correlation

Hart [12, 26] proposed a technique to improve spatial
resolution using a recursive correlation technique with a
correlation-based error correction method. This method [26]
involves multiplying adjacent correlation maps during PIV
interrogation to remove spurious vectors. This error correction
allows for discrete measurements at higher spatial resolutions
using the recursive correlation technique proposed by Hart
[12]. Due to the product operator in the correlation-based
correction process, all of the information within the cross-
correlation map is utilized to obtain the velocity measurement.
However, the quality of the information within the cross-
correlation map is greatly deteriorated in cases with low tracer
seeding and/or high levels of image noise.

1.2. Single-pixel methods

Single-pixel resolution methods pioneered by Westerweel et al
[13] use 1 × 1 pixel interrogation windows to obtain time-

averaged single-pixel resolution velocity measurements from
an image sequence. This method is capable of resolving small
flow structures at the cost of utilizing a large number of image
pairs, typically over 1000. Scharnowski et al [15] improved
the two-point ensemble correlation [14] to determine Reynolds
stresses at single-pixel resolution. This method determines the
stresses based on the shape of the cross-correlation peak. A
Gaussian fit-function is applied (as opposed to the optimization
routine described in this paper) to determine the shape of
the correlation peak. Using the peak shape characteristics,
the probability distribution function (PDF) of the velocity is
computed and from this, the Reynolds stresses. Although this
technique is capable of resolving small-scale flow structures,
single-pixel ensemble is applied to 20 000+ image pairs, and
the technique is sensitive to the number of image pairs utilized
in the ensemble correlation average.

1.3. Image deformation methods

In recent times, image deformation has become a part of the
standard PIV interrogation process. The fundamentals of this
technique date back to Huang et al [27] who proposed a particle
image distortion technique intended to improve the reliability
of the PIV technique in flows with high velocity gradients.
Image deformation, as it is now known [16, 17], addresses
some of the weaknesses of PIV relating to spatial resolution
and peak locking [28]. This technique involves conducting
standard PIV on the raw images and fitting the resulting
velocity data to create a predictor field. This predictor field
is used to distort the images and interrogation is conducted
again at a finer resolution. The process is repeated iteratively
until a convergence criterion is met. The method is sensitive
to the interpolation schemes used to create the predictor
fields and the image distortion. At least two studies have
investigated optimizing these routines [29, 30]. Scarano [18]
introduced a correction method that involves optimizing four
correlation maps separately to directly determine the second-
order derivatives for the two displacement components in x
and in y. The derivatives are used to correct the displacement
obtained from the cross-correlation analysis. This method
demonstrated improved accuracy in determining the velocity
gradient of an experimental wall jet flow with CCD noise and
under-resolved particle images.

1.4. Least-squares image/pattern matching methods

Least-squares matching is a similar concept to image
deformation and involves an optimization routine to match
image segments by geometric deformation. This optimization
can be run globally, using a routine to ensure global continuity
of the solution such as that implemented in the correlation
image velocimetry (CIV) technique [19, 31], or locally.
Upon convergence, measures of the local velocity and the
deformation rate of the image are simultaneously determined.
Ruan et al [20] proposed a method (referred to as direct
measurement of vorticity) to directly determine the vorticity of
particle images using a local optimization routine. Kitzhofer
et al [32] applied a similar local least-squares matching routine
to 3D cuboids of volumetric data.
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1.5. Advanced correlation-based methods

Recently, a set of PIV techniques using a least-squares
correlation map matching approach have obtained 3D velocity
measurements using the depth information inherent in micro-
PIV flows [22, 24] and holographic flows [25]. These methods
are established on a concept that the convolution of the
probability density function of the velocity and the auto-
correlation of the particle image closely resembles the shape
of the cross-correlation peak [15, 22, 33]. To decode the
depth information, holographic correlation velocimetry [25]
uses the particle image diffraction pattern, while volumetric
correlation velocimetry [22] uses the out-of-focus effects on
the particle image. While these methods are capable of offering
high-resolution measurements in the out-of-plane axis, the
in-plane velocity measurements are still discretized into the
interrogation sub-regions in which the total cross-correlation
map was calculated.

1.6. Summary

The above-mentioned methods are optimized for their
respective applications. The general PIV technique offers a
single measurement at each interrogation region, which is
obtained from the highest signal in the cross-correlation map
representing the modal velocity within the underlying region
of the flow. The accuracy in estimating velocity gradients
is affected by the uncertainty in measuring the velocity
and the spatial resolution of these measurements. Single-
pixel methods offer measurements with a very high spatial
resolution at the cost of a large number of image pairs.
Hence, single-pixel methods trade temporal resolution for
spatial resolution. Least-squares matching methods directly
determine a continuous measurement for the velocity and
its associated gradients by matching reconstructed particle
volumes or image segments. While the accuracy of least-
squares matching methods in estimating the gradient is not
affected the same way as with general PIV, it has yet to be
thoroughly studied.

A background on the factors that affect the accuracy of
estimating flow gradients using standard PIV is presented in
section 2. The technique that is the subject of this manuscript
is described in section 3. In section 4, the proposed method is
applied to synthetic computer-generated images for flow in a
channel and flow past a square cylinder. The simulations are
validated by applying the proposed method to two laboratory-
based flows in a channel and the wake behind a circular
cylinder at a low Reynolds number [34].

2. Accuracy of flow gradient measurements

PIV, in its standard form, involves dividing a pair of
consecutively acquired images into several discrete domains
called sampling windows. Upon subsequent PIV interrogation,
each sampling window yields a two-component velocity
measurement that closely represents the velocity of the tracer
particles in the underlying flow. The accuracy in estimating the
velocity gradient is dependent on factors such as the imaging
resolution and the tracer particle seeding density. However,

this accuracy is also dependent on the computational method
used to determine the flow gradients. The velocity gradients
can be estimated through finite-difference techniques [35],
polynomial fitting [8] on a discrete grid of velocity samples or
direct estimation using a least-squares image/pattern matching
approach [19]. The accuracy of the estimated velocity gradient
is dependent on the spatial resolution and the accuracy of the
PIV velocity measurements. The sampling distance between
the velocity measurements determines the spatial resolution
of PIV measurements. The uncertainty in the PIV velocity
measurement is dependent on factors such as image noise
and the particle seeding density. The strength of the cross-
correlation signal is mainly dependent on the image seeding
density and it has been shown that at least seven particle
images are optimal [10]. However, in most cases it is difficult
to conduct the experiment multiple times to optimize seeding
densities. In such cases, it is advisable to use the sampling
window size as a means to effectively improve the accuracy of
the PIV velocity measurements.

A Monte Carlo simulation utilizing computer generated
synthetic images was conducted to study the accuracy of PIV
in estimating flow gradient parameters such as the vorticity, as
a function of the sampling window size and sampling distance.
Synthetic images of 2048 × 2048 pixel2 were generated for a
Lamb–Oseen vortex flow [36], where the tangential velocity,
ut, and out-of-plane vorticity, ωz, are given by

μt r = �

2πr

[
1 − exp

(−r2

L2

)]
, (1)

ωzr = −�

4πνt
exp

(−r2

L2

)
, (2)

where r2 = X2 + Y 2 and (X, Y) are global in-plane Cartesian
coordinates, � is the circulation, ν is the kinematic viscosity
and t is time. The core radius, L, of the Lamb–Oseen vortex is
defined as

L =
√

4νt, (3)

which describes the long-timescale viscous decay of the
vortex.

The numerical analysis has been conducted for a
circulation, �, of 1000 px2 s−1 and a core radius, L, of
100 pixels. All images are generated with 256 gray
levels. The PIV vorticity error in the measurement is the
difference between the estimated vorticity from PIV velocity
measurements and the analytical solution from equation (2).
The sampling window size, W , is varied from 8 pixels to
256 pixels. Varying the sampling distance, �, varies the
window-overlap ratio and is varied from 8 pixels to 256 pixels.
Figure 1 shows a contour plot of the RMS of the PIV error in
estimating the in-plane vorticity, as a function of the sampling
window size, W , and the sampling distance, �, normalized
to the vortex diameter, 2L. The vorticity field is calculated
from the in-plane PIV velocity measurements using the
least-squares polynomial fit method described in Fouras and
Soria [8].

The RMS error is optimized over a limited range of
sampling window size and sampling distance. Under the
given flow conditions, a PIV interrogation scheme utilizing
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Figure 1. RMS of the error in estimating the vorticity (contours) as
a function of the sampling window size, W , and the sampling
distance, �, normalized to vortex diameter, 2L. The accuracy of the
estimated vorticity is optimized with sampling window size as well
as the sampling distance.

64 × 64 pixel2 sampling windows (W/2L = 0.32) with a
sampling distance of 16 pixels (�/2L = 0.08 or 75% window
overlap) optimizes the estimated PIV vorticity. There is almost
no variation in the error with sampling distance below �/2L =
0.16, and the error is primarily a function of the sampling
window size, W . As the sampling distance is increased above
�/2L = 0.32, the spatial resolution of velocity measurements
used to estimate the vorticity is poor. There is a significant
loss in accuracy of the estimated vorticity in this region of the
parameter space.

As evident in the contour map shown in figure 1, the
accuracy of the estimated flow gradient is dependent on the
spatial resolution of the PIV data points as well as the sampling
window size used for the PIV interrogation scheme. The effects
of the sampling window size and sampling distance on the
accuracy of estimated flow gradient can be explained with the
concepts of random errors and bias errors. It is well known
that the total error in estimating the velocity gradient is the
sum of random errors and bias errors. Figure 2(a) illustrates
the random error, bias error and the total error in estimating
the velocity gradient as a function of the sampling distance
between adjacent velocity measurements. This line plot is
indicative of a single slice in the contour map in figure 1.
Consider the optimal center of the graph where the total
error is minimized. As the sampling distance is decreased
(i.e. at higher spatial resolutions), the flow variations are fully
captured by the numerous measurements and bias error in
the gradient estimate is minimized. In this case, the velocity
gradient error is primarily a function of the random error in the
numerous velocity measurements contributing to the gradient
estimation [8]. As the sampling distance is increased (i.e. at low
spatial resolutions), the uncertainty in the measured velocity or
random error transmitted in to the velocity gradient estimation

(a)

(b)

Figure 2. (a) Graphical representation of the coupling effect of bias
errors (dotted line) and random errors (dashed line) that contribute
to the total error (solid line) in estimating the velocity gradient. This
coupling effect is a function of the sampling distance between
velocity measurements as graphically depicted in (a). (b) Graphical
representation of the error, depicted by the gray contours, in the
estimated velocity gradient as a function of sampling window size
and sampling distance.

method is reduced. The flow variations are not represented
well by the low resolution and introduce bias errors to the
gradient estimate [8]. The random error and the bias error
cannot be minimized simultaneously resulting in an optimal
spatial resolution as shown in the graph. In addition, random
errors and bias errors introduced in to the velocity gradient
estimate are also a function of the sampling window size as
evident in figure 1.

Figure 2(b) shows a conceptual representation of the
velocity gradient error map (depicted by the gray contours)
presented in figure 1. Increasing the sampling window size
improves the signal strength of the cross-correlation map and
the shape of the cross-correlation peak is distorted due to
underlying flow variations [37]. While the flow variations are
well represented within the cross-correlation map, subsequent
PIV interrogation, which utilizes the signal peak, yields the
modal velocity over the sampling domain and bias errors are
introduced into the velocity gradient calculation. Decreasing
the sampling window size produces a cross-correlation map

4



Meas. Sci. Technol. 23 (2012) 105304 C R Samarage et al

with poor signal strength and random noise due to the
inadequate number of particle image pairs that contribute to
the cross-correlation [10]. Typically at least seven particle
image pairs are required for the cross-correlation map to
have adequate signal strength for ideal measurements [10].
PIV interrogation on a cross-correlation map with noise
artifacts leads to a higher probability of the interrogation
routine selecting a noise peak instead of the signal peak.
This leads to random velocity measurements or outliers [1].
While bias errors are minimized, there is a higher transmission
of random error in to the gradient estimation process. The
level of random error that is transmitted to the gradient
estimation method can be reduced by vector validation routines
[38, 39] to remove outliers in the velocity measurements. These
underlying processes discussed here are the key factors that
contribute to the elliptical shape of the contours that is evident
in figure 1, and conceptually presented in figure 2(b).

We propose a method capable of velocity measurements
with high spatial resolution utilizing a single pair of images.
This method is capable of directly determining the velocity
gradient while minimizing the aforementioned random errors
and bias errors simultaneously.

3. The proposed technique

A novel method to directly determine a piece-wise grid of two-
dimensional polynomials defining the entire flow is presented.
The method, which the authors term polynomial element
velocimetry (PEV), solves for a tensor-product of polynomials
by modeling an estimate for the cross-correlation map and
performing a nonlinear minimization with the measured cross-
correlation map obtained from standard PIV.

Graphical representations of the steps involved in the PEV
method are illustrated in figures 3–5. The overall flow field
is discretized into a grid of regular regions called elements
(I), as shown in figure 3. These elements are analogous to
elements in spectral element methods used in computational
fluid dynamics (CFD) [40–43]. Standard PIV with smaller
sampling windows is conducted over the larger PEV elements
(II). PIV measurements local to the region of flow inside the
element are extracted (III) to determine a first approximation
for the underlying flow. Although not a necessary condition
for convergence, this first approximation reduces the time
to convergence for the solver. Figure 4 shows the PEV
process implemented over a single element in the flow field.
The measured cross-correlation and auto-correlation maps are
computed using two image snapshots for each PEV element
(IV). Two-dimensional polynomials are fitted to the extracted
PIV measurements to describe the local horizontal and vertical
components of the flow within the element (V).

The flow polynomials are used to estimate for the cross-
correlation map (VI) within the element as shown in figure 4
and further expanded in figure 5. The PEV method applied to
flows in this study uses a two-dimensional bi-cubic polynomial
for each component of the local displacement. The flow
polynomials for the horizontal component (�x(x, y)) and the
vertical component (�y(x, y)) of the local displacement are

Figure 3. Graphical representation of the element discretization
process. (I) The entire flow field is discretized into a grid of regular
regions called elements. (II) Standard PIV with smaller sampling
windows is conducted over the entire flow field and the PIV data
local to the element is extracted to be utilized toward a first guess for
the solver (III). Note: Image data, PIV data and cross-correlation
data shown in the figure are for illustrative purposes and are not a
representation of experimental data.

given by

�x(x, y) =
3∑
i

3∑
i

ai jx
iy j and �y(x, y) =

3∑
1

3∑
1

bi jx
iy j,

(4)

where 0 � i + j � 3, and x and y are spatial coordinates in the
cross-correlation map that range from 0 to 1 over the element.
aij and bij are the coefficients of the polynomial that describes
the horizontal component and vertical component of the local
velocity, respectively.

The polynomials determine the ability of the technique
to represent the flow and the order can be varied depending
on flow conditions or gradients. For complex flows or special
cases exhibiting spatial symmetries, Lagrangian polynomials
or Fourier polynomials could instead be utilized. For example,
it may be possible to represent discontinuities found in
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Figure 4. Graphical representation of the PEV process on a single
element. (IV) The cross-correlation map is computed over the
element between the snapshots at t1 and t2. (V) A polynomial is
locally fit to the PIV data extracted in (III) (figure 3), to determine a
first approximation to reduce the time to convergence of the
nonlinear solver. (VI) The local flow polynomials are used to derive
an estimate for the cross-correlation map, C, within the element
(expanded in figure 5). (VII) A nonlinear solver is utilized to
compare the estimated cross-correlation map with the measured
cross-correlation map from (IV). (VIII) The solver solves a set of
local polynomials for the displacement that minimize the error
between the estimated and measured cross-correlation maps. Note:
Image data, PIV data and cross-correlation data shown in the figure
are for illustrative purposes and are not a representation of
experimental data.

supersonic/hypersonic flows through the use of step functions.
The polynomials for the displacement for �x and �y
(equation (4)) can be divided by the time-interval between
two successive snapshots to determine polynomials that define
a map for the horizontal component (u) and the vertical
component (v) of the local velocity. These displacement
polynomials (equation (4)) can also be directly differentiated
to obtain a continuous measure for the velocity gradients or
vorticity, which is given by

ωz ∼= 1

�t

[
∂

∂x
(�y) − ∂

∂y
(�x)

]
, (5)

or directly integrated to determine quantities such as the
volumetric flow rate.

It has been demonstrated in Fouras et al [33], and more
recently in Scharnowski et al [15] that the cross-correlation,
C, is the convolution of the auto-correlation map, A, of the
image and the PDF, P for the displacement. In PEV, the
PDF of the local flow velocity is constructed using the flow
polynomials and convolved with the image intensity map, I,
within the element as depicted by process (VI.I) in figure 5.
This modification to the original concept allows for particle
images to contribute more to the PDF reducing the effect
of regions in the flow with no particle images. The cross-
correlation is estimated by PEV using

C(x, y) = [I(x, y) ⊗ P(x, y)] ⊗ A(x, y). (6)

The estimated cross-correlation, derived from the initial fit to
PIV data and the method above (VI.II), typically differs from
the measured cross-correlation map. A nonlinear minimization
routine is used to find the local flow polynomials that
minimize the error between the estimated and measured cross-
correlations within the element, shown by process (VII) in
figure 4. In this study, the Levenberg–Marquardt routine
[44, 45] with a Tikhonov regularization method [46] is
used to compute the nonlinear optimizations and is repeated
until local convergence criteria are satisfied (VIII). This
combination of a nonlinear solver with regularization has
been previously applied for least-squares routines [22–24].
The solver is used to minimize the cross-correlations within
all the elements that define the flow. Since the flow should be
continuous through the elements, a regularization method [46]
is implemented during the nonlinear minimization process of
each element. This method relies on adding weightings to
minimize discontinuities in both the velocity components and
their spatial derivatives at element interfaces. If necessary,
with complex flows, this method allows for specific boundary
conditions to be set at element interfaces. For a single element,
there is some ambiguity in the resulting flow polynomials
since the PDF can have the same shape for different flow
fields inside the element (specifically, the direction of any
rotating component is unknown). However, in a practical
circumstance the flow field spans over a number of elements.
As a result of the communication between element boundaries,
this ambiguity is greatly reduced.

As explained above, PEV optimizes for the measured
cross-correlation map over the sampling region (element) to
determine a continuous map for the velocity and its associated
gradients. With image deformation methods, the image
is iteratively deformed using subsequent cross-correlation
analysis and PIV data. These methods offer high spatial
resolution measures while improving the accuracy of PIV
over flows with high gradients. With higher order optical flow
methods such as the CIV method [19] an optimization routine
is performed directly on the image to determine the velocity
and the velocity gradient without the need for added tracer
particles.

To validate the proposed method, PEV is applied to
synthetic flows as well as laboratory flows. PEV is applied to a
single pair of images to obtain instantaneous measurements for
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Figure 5. Graphical representation of the process used to determine an estimate for the cross-correlation map (as depicted by process (VI) in
figure 4). (VI.I) The estimated PDF, P, is determined from flow polynomials and the image intensities within the element. (VI.II) The PDF is
convolved with the measured auto-correlation map, A, to determine an estimate for the cross-correlation map, C. Note: Image data, PIV
data and cross-correlation data shown in the figure are for illustrative purposes and are not a representation of experimental data.

Table 1. Details of flow cases that are used in this report to validate PEV against PIV.

Case Nature Description Flow conditions

A Synthetic Channel flow u = 0 pixels, vmax = 10 pixels, Parabolic flow profile
B Synthetic Flow past a square cylinder Re = 30, D = 512 pixels
C Experimental Channel flow Re = 0.2, Q = 5 ml min−1

D Experimental Flow behind a circular cylinder Re = 30

the velocity and the vorticity and compared to instantaneous
PIV measurements obtained for the same image pair. Similar
to PIV, time-resolved PEV measurements are available by PEV
analysis on subsequent image pairs. Table 1 summarizes the
flow cases that are used to validate the measurement accuracy
of PEV in comparison to that of PIV.

4. Validation using synthetic flows

4.1. Synthetic image generation

To validate its accuracy, the proposed PEV method is applied
to two synthetic flows. As shown in table 1, case A represents
the fully-developed two-dimensional flow between closely-
spaced parallel plates and case B is the flow around square
cylinder at a Reynolds number of 30. With case A, the image
pair generated has a resolution of 64 × 1024 pixels with a
noise ratio of 0.05%. White noise is added to the image by
generating a random number that has a Gaussian distribution
with a standard deviation that is 0.05% of the maximum pixel
intensity. The tracer particles used were assumed to have
a Gaussian shape with a particle diameter of 4 pixels. The
particle image diameter is defined as the full-width-half-max
of the Gaussian function used to generate the particle image.
The image is seeded with tracer particles at a seeding density
of 0.0625 particles per pixel.

For the cylinder flow (case B), a synthetic image pair of
resolution 1920 × 1920 pixels was generated with 0.05%
image noise and a particle seeding density of 0.02 particles

per pixel. In the image sequence, the square cylinder has a
side-length measuring 512 pixels. The particle images have
a diameter of 4 pixels. The flow around a square cylinder at
a Reynolds number of 30 was simulated using in-house CFD
software and the particles were displaced based on the resulting
CFD solution. Figure 6 shows the synthetic image pair used for
this flow case. The top and bottom halves of the image show
a single snapshot and the overlapped snapshots, respectively.
The reader is referred to the papers by Sheard et al [41–43],
for further information on the CFD software and the meshes
used to model the cylinder with square cross-section used in
this study.

4.2. Channel flow

PEV is applied to a synthetic flow in a channel and
its performance compared to measurements obtained with
standard PIV on the same flow. The particle images are
displaced vertically with a parabolic profile with a maximum
displacement of 10 pixels in a channel that has a radius, R =
32 pixels. Further details of the image generation process can
be found under section 4.1. For this case the particles have no
horizontal displacement (�x = 0). The vertical displacement
(�y) and the vorticity (ωz) are given by

�y = 10

(
1 − (x − r)2

R2

)
, (7)

ωz =
(−20

R2

)
(x − r), (8)

7



Meas. Sci. Technol. 23 (2012) 105304 C R Samarage et al

Figure 6. The synthetic image pair utilized for case B (table 1).
The top half of the image shows a single snapshot of the image pair,
while the bottom half of the image shows the two snapshots
overlapped to help visualize the displacement of the particle images.
Tracer particle images, assumed of Gaussian shape, are displaced
based on a CFD solution for the flow past a square cylinder
at Re = 30.

where R is the radius of the channel, and r is the distance from
the center of the channel.

Figure 7(a) shows a single snapshot of the synthetic
image pair utilized for this case. Figures 7(b) and (c) show
the in-plane vorticity contours and displacement vectors
calculated using standard PIV (7b) and PEV (7c). The standard
PIV interrogation involves performing a multi-grid recursive
scheme from 64 × 64 pixel sampling windows down to
32 × 32 pixel sampling windows. A window of overlap ratio
of 75% (sampling distance of 8 pixels) is used. As discussed
earlier, the error in estimating velocity gradients, and in turn,
estimating the vorticity is dependent on the window size and
sampling distance. Therefore, the settings used here were
determined to be the most optimal PIV interrogation settings
based on the study discussed in section 2. Image deformation
is implemented with bilinear velocity interpolation and bi-
cubic image interpolation as carried out by Fouras et al [47].
The image deformation process is iterated for two passes.
The in-plane vorticity is estimated using the least-squares
method described by Fouras and Soria [8]. The flow is
discretized to 1 × 3 elements, i.e. a sampling window size of
64 × 64 pixels. PEV is applied using a bi-cubic set of
flow polynomials. The in-plane vorticity within an element
is estimated directly using the derivatives of the flow
polynomials.

Comparisons between the measured displacement and the
estimated vorticity using the two methods, are conducted at
y = 192 pixels, illustrated in figures 7(d) and (e). The PIV
interrogation process yields five displacement measurements
across the channel width. For clarity, only every second
displacement measurement in the streamwise direction is
shown in figure 7(b). For ease of comparison with figure 7(b),

the continuous PEV field shown in figure 7(c) is sampled at
the same locations as the PIV measurements. Random noise is
present in the measurements obtained from PIV (figures 7(b),
(d)). These measurements are instantaneous and extracted at a
single slice across the channel at y = 192 pixels.

With standard PIV, the closest velocity measurement to the
channel wall that can be obtained is within half of the sampling
window size of the wall. However, for improved measurements
in the wall-normal direction and for fair comparison, the
PIV displacement measurements (�) are linearly extrapolated
to the channel boundaries based on the no-slip boundary
condition. The extrapolated measurements are depicted with
open symbols (♦). Within the PEV solver, zero Dirichlet
boundary conditions are imposed at the edges of the channel
to restrict the solver from overfitting the underlying velocity
profile. This is implemented using the regularization procedure
explained in section 3. PEV analysis yields measurements
(blue line) that are continuous across the channel width in
comparison to the discrete PIV measurements. However, the
PEV method overestimates the velocity near the channel
wall and underestimates the velocity at the center of the
channel. While this is expected of PIV analysis with large
sampling windows, no such bias exists with PEV. The RMS
error between the measured displacement using PIV and
the theoretical flow profile is 0.532 pixels, while the RMS
error between the displacements measured using PEV and the
theoretical flow profile is 0.475 pixels. This accounts for an
error reduction of 11% in measuring the displacement using
PEV over PIV. On estimating the in-plane vorticity, the RMS
error obtained with PIV is 0.115 s−1, while the RMS error with
PEV is 0.026 s−1 resulting in a reduction of 77% in the RMS
error with PEV over PIV. As evident in figure 7(c), for this
first flow case, PEV produces a measurable improvement over
PIV for the velocity measurement; however, PEV produces a
significant improvement over PIV in estimating the vorticity,
especially near the channel walls.

Obtaining unbiased, highly resolved flow measurements
using PIV is difficult since the channel is only 64 pixels wide
in the wall-normal direction. While PIV has been applied to
flows similar to this [7], PIV is not ideal in similar harsh
conditions where there are insufficient pixels to obtain a
sufficient number of measurements to resolve structures in
the flow. PEV, however, is well suited for this application
as it optimizes for the shape of the cross-correlation map
to yield a map for the local velocity and its associated
gradients.

Figure 8 shows the comparison between the cross-
correlation maps obtained for the region in the channel,
denoted by B in figure 7. The 2D contour map of the
measured cross-correlation map is compared against the cross-
correlation map derived using the estimated flow polynomials
from PIV data, and the final cross-correlation map from the
PEV solver after convergence.

Distortion of the cross-correlation peak due to flow
gradients in the underlying flow is evident on the 2D contour
map in figure 8(a). To reduce the convergence time of the
PEV solver, a series of polynomial functions are fitted to the
PIV data to determine an initial starting point for the solver.
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Figure 7. (a) Snapshot of the raw synthetic image of the channel used for Case A. Contours of the in-plane vorticity for the flow in a long
vertical channel (entire flow not shown) obtained using (b) standard PIV and (c) PEV. Comparisons between the accuracies of the two
methods are conducted for a slice (A–A) at y = 192 pixels. (d, e) Plots comparing the accuracy of the measured displacement and the
vorticity for PIV (�, ♦), PEV (blue line) against the theoretical flow (red line) used to displace the particle images. Filled symbols show the
measurements as obtained by PIV. Due to the flow boundaries at either side of the channel, the PIV measurements (�) are linearly
extrapolated to 0, shown here by the open symbols (♦). PEV yields displacement measurements that are 10.71% more accurate over PIV,
and vorticity measurements that are 77% more accurate over PIV.

Figure 8(b) shows the 2D contour map of the cross-correlation
reconstructed using these estimated polynomials. While this
step reduces correlation noise in the cross-correlation map,
much of the peak definition, i.e. information on the underlying
flow, is lost. Figure 8(c) shows the contour map of the cross-
correlation map after the PEV solver has converged. The
estimated cross-correlation map has reduced levels of noise
and closely resembles the measured cross-correlation map.
In contrast to PIV where a single window yields a single
measurement, upon convergence, PEV yields a detailed map
of the local velocity.

4.3. Flow past a square cylinder

The proposed PEV method is applied to a more complex
flow, namely the flow past a square cylinder at a Reynolds
number of 30. The images are generated using the methods
described in section 4.1. Figures 9(a) and (b) show contours
for the in-plane vorticity and vectors for the displacement
as measured by standard PIV with image deformation and
PEV. For the purpose of clarity, only every 16th vector in
x and every 4th vector in y are shown in figure 9(a). With
the plot in figure 9(b), the PEV measurements are sampled at
the same locations as the PIV measurements to be consistent

9
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(c) Calculated cross-correlation map using PEV

Figure 8. 2D contour map comparisons between the measured
cross-correlation map (a), the cross-correlation map reconstructed
using estimated flow polynomials from PIV data (b), and the final
cross-correlation map from the PEV algorithm (c) for the location in
the channel denoted by B in figure 7.

with the plot in figure 9(a). The PIV interrogation scheme
utilized for this flow case is the same as that for case A since
it is the set of parameters that optimize the accuracy of the

estimated velocity gradient as described in sections 2 and 4.2.
The PEV analysis is conducted over 15 × 15 elements (i.e.
128 × 128 pixel sampling windows). Comparison line plots
for the displacement and vorticity at x/D = 0 are shown in
figures 9(c) and (d), respectively.

PIV and PEV both estimate the flow displacement well
in the flow regions further from the cylinder walls. However,
there are some slight discrepancies with the PIV measurements
nearer the wall. The RMS error in measuring the horizontal
displacement with PIV is 0.305 pixels while the proposed
PEV method reduces this measurement accuracy by 45%
to 0.169 pixels. As evident in figure 9(d), the estimates for
vorticity using PIV yields measurements that are noisy. The
RMS error between the estimated vorticity using PIV and the
theoretical vorticity from the CFD package is 0.009 73 s−1.
PEV yields an estimate for the vorticity field with an RMS
error of 0.008 22 s−1 resulting in a 15.5% reduction in the
RMS error. With both methods, there exist discontinuities in
the velocity gradient measurements that are visible on the
2D contour plots in figures 9(a) and (b). In the case of PIV,
reducing the spatial resolution of the velocity measurements
would greatly reduce the random noise in the estimated
vorticity measurements. However, as discussed in section 2, the
accuracy of the vorticity estimate is reduced due to bias errors.
With PEV, the elements can be overlapped in a similar method
to window overlapping in PIV, to reduce the discontinuities in
the estimated velocity gradient (refer figure 14). In the instance
that time-averaged results are required, random fluctuations in
the measurements can be reduced with temporal averaging
processes [48].

Figure 10 shows the effect of smoothing the measurements
obtained from PIV at x/D = −0.25 where the vorticity is
stronger than at x/D = 0. A moving-average filter is applied to
the PIV velocity measurements, denoted by , using a 5 × 5
kernel to greatly reduce the random noise fluctuations in the
PIV velocity measurements. The smoothed PIV measurements
are denoted by � in figure 10(a). For the PIV and the
smoothed PIV velocity measurements, the in-plane vorticity
is calculated using the method proposed by Fouras et al [8]
and is presented in figure 10(b). While smoothing reduces
random errors in the velocity measurements, bias errors are
still present in the estimated PIV velocity gradient. This is
evident in the vorticity measurements near the cylinder wall
in figure 10(b). The PIV data could be further smoothed with
multiple passes but introduces additional bias errors to the
PIV measurements. PEV estimates the in-plane vorticity with
reduced random errors, which is inferred by the smooth, noise
free measurements as evident on the line plot. The vorticity
estimates from PEV also have minimal bias errors in contrast
to PIV and its smoothed counterpart.

5. Application to laboratory flows

5.1. Channel flow

To be consistent with the synthetic experiments, PEV is
applied to two similar laboratory flows: a simple flow through
a circular channel and the flow behind a circular cylinder.
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Figure 9. Contour plots of the estimated in-plane vorticity using standard PIV (a) and PEV (b). The vectors show the displacement and have
been skipped for clarity. (c, d) Comparisons of the measured displacement (c) and the in-plane vorticity (d) profiles for PIV ( ), PEV (blue
line) and the theoretical flow (red line) are shown for slice A–A at x/D = 0. PEV yields displacement measurements that are 45% more
accurate over PIV, and vorticity measurements that are 15.5% more accurate over PIV.

Δx (px)

y/
D

0 5 10 15
-2

-1.5

-1

-0.5

0
Theoretical
PEV solution curve, RMS = 0.224 px
PIV data points, RMS = 0.233 px
Smoothed PIV data points, RMS = 0.158 px

(a)

ωz (s
-1)

y/
D

-0.05 0 0.05 0.1 0.15 0.2
-2

-1.5

-1

-0.5

0
Theoretical
PEV solution curve, RMS = 0.003 s-1

PIV data points, RMS = 0.012 s-1

Smoothed PIV data points, RMS = 0.005 s-1

(b)

Figure 10. Plots of the measured horizontal displacement (a) as measured using PIV ( ), PEV (blue line) and the theoretical flow (red line)
are shown for a slice at x/D = −0.25. A moving average filter is applied to smooth the PIV displacement measurements (�). The in-plane
vorticity is calculated using the method outlined in Fouras and Soria [8] for the PIV data ( ) and the smoothed PIV data (�). In the case of
PEV, the in-plane vorticity is determined directly from the polynomials that describe the local displacement.

The channel flow is generated using a Perspex model of a
circular channel with a 9.25 mm inner diameter. To match
the refractive indices between water and the Perspex material,
glycerine is mixed with the water. The flow is seeded with a

glycerol solution (75% glycerol, 25% water) with 35 micron
hollow glass spheres and illumination is achieved through a
continuous Nd:YAG laser (Melles Griot). The flow is imaged
with a PCO2000 (PCO AG) with a 105 mm lens (Nikon) at
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Figure 11. (a) Post-processed image (average image subtraction) of the flow through a 9.25 mm wide channel. The Reynolds number of the
flow is approximately 0.2. (b, c) Contour plots of the in-plane vorticity estimated using standard PIV (b) and PEV (c). Comparisons between
the measured displacement and vorticity from PIV (�,♦) and PEV (blue line) are conducted at y = 480 pixels (A–A) and y = 96 pixels
(B–B). Filled symbols (�) show the measurements as obtained by PIV. Due to the flow boundaries at either side of the channel, the PIV
measurements are linearly extrapolated to 0, shown here by the open symbols (♦).
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14.7 frames per second (full frame) with an exposure time of
20 ms. The solution is pumped using a Harvard Apparatus
syringe pump generating a flow rate of 5 ml min−1. The flow
in the channel has a Reynolds number of approximately 0.2.

Figure 11(a) shows a single image of the channel after
average image subtraction to remove reflections. The top half
of the image has relatively good image signal to noise ratio in
comparison to the bottom half of the image, making it easier
to compare the performance of both PIV and PEV methods
in harsh imaging conditions. A standard PIV interrogation
scheme uses an iterative scheme with 64 × 64 pixels sampling
windows to 32 × 32 pixels sampling windows with 75%
window overlap (i.e. a sampling distance of 8 pixels). A 2-
pass image deformation process involving a bilinear velocity
interpolation and a bi-cubic image interpolation is applied
during interrogation. PEV is conducted with 1 × 3 elements
(each 192 × 192 pixels) with a 2D bi-cubic polynomial
describing the flow in each element.

Figures 11(b) and (c) show contours for the in-plane
vorticity and displacement vectors, as estimated by PIV and
PEV, respectively. For the purpose of clarity, only every fourth
vector in y is shown in figure 11(b). For comparison, only
the PEV measurements sampled at the same locations as the
PIV measurements are shown in figure 11(c). Comparisons
between the measurements using PIV and PEV are made at
y = 96 pixels (figures 11(d) and (e)) and at y = 480 pixels
(figures 11( f ) and (g)). The two locations were chosen to be
studied due to the large variation in the image signal to noise
ratios between the two halves of the image.

As in section 4.2, the number of PIV displacement
measurements in the wall-normal direction is increased
by extrapolating the actual measurements, depicted here
by filled symbols (�), to 0 at the channel wall. The
extrapolated measurements are depicted by open symbols
(♦). The displacement measured by PIV is noisy at y =
96 pixels (figure 11( f )) with poor image signal-to-noise
ratio and poor seeding reducing the signal-to-noise ratio
of the cross-correlation map. This random noise in the
displacement measurements contributes to erroneous vorticity
measurements (figure 11(g)), especially near the channel
wall. However with PEV (blue line), as the element size
is 192 × 192 pixels, the measured cross-correlation map
captures more information within the image leading to a cross-
correlation with an adequate signal-to-noise ratio as shown by
2D contour map in figure 12(a). The 2D contour map of the
final cross-correlation map from PEV evaluation is shown in
figure 12(b). PEV yields a more accurate measurement for
the displacement and estimates the vorticity with dramatically
reduced measurement noise, which we can infer to be a greatly
reduced random error transmission. The expected distortion
of the peak is captured well and has reduced levels of noise
in contrast to the measured cross-correlation map thereby
contributing to PEV’s low-pass filter like feature.

At higher image signal-to-noise ratios and higher seeding
densities, as is the case at y = 480 pixels (figure 11(d)), PIV
yields improved displacement measurements. As evident in
figure 11(d), the particle seeding density limits the amount of
oversampling that can be done before PIV yields adjacent
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Figure 12. (a) 2D contour map of the measured cross-correlation
map at the base of the channel flow in figure 11(a). Although the
image quality in this region is poor, the cross-correlation map
captures underlying flow features, which is evident by the peak’s
distortion. The 2D contour map of the estimated cross-correlation
map following PEV evaluation is shown in (b).

displacement measurements that are similar. PIV yields
estimates for the vorticity that are dramatically improved over
that in figure 11( f ). Both PIV and PEV yield similar estimates
for the vorticity at the channel walls (figure 11(e)).

5.2. Flow behind a circular cylinder

PEV is applied to a steady wake behind a circular cylinder.
The circular cylinder was placed in a shallow water table and
simultaneous measurement of the velocity field and the surface
topography were made as described in Fouras et al [34]. The
wake is steady with a Reynolds number of 30. Due to the depth
of the water table, the flow is not directly comparable to the
flow behind a fully submerged cylinder. Further details of the
experimental procedure can be found in Fouras et al [34].
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Figure 13. Contours plots showing the in-plane vorticity obtained with standard PIV using the optimal interrogation settings (a); PEV (b);
and PIV using equivalent sampling window sizes as PEV (c). Comparisons between the measurements from PIV ( ) and PEV (blue line)
are made at two slices: A–A at x/D = 1 (d, e) and B–B at x/D = 5 ( f , g).

Figures 13(a) and (b) show the contours for the vorticity
as estimated by PIV and PEV. The vectors, showing
displacement, have been skipped for the purpose of clarity.
For the PIV measurements in figure 13(a), only every 21st
vector in x and every third vector in y is shown, while only
every PEV measurement sampled at the same locations as the
PIV measurements is shown for the PEV measurements in
figure 13(b). PIV interrogation is carried out using the same
scheme used on the synthetic flow past a square cylinder,
as described in detail in section 4.3. PEV analysis is carried
out over 16 × 16 elements (i.e. 128 × 128 pixel sampling
windows) spanning the 2048 × 2048 pixels image. For
comparative purposes, PIV was conducted using equivalent
sampling windows to PEV (i.e. 128 × 128 pixel sampling
windows) with a sampling distance of 8 pixels.

Measurements of the flow displacement and the estimates
of in-plane vorticity using standard PIV and the proposed PEV
method are compared at two locations in the wake of the
cylinder. Section A–A (figures 13(c) and (d)) is the location
just behind the circular cylinder where there are high velocity
gradients, and section B–B (figures 13(e) and ( f )) is a location
downstream in the wake with weaker velocity gradients. These
regions were chosen to allow comparison of the performance
of PIV and PEV with different levels of velocity gradients (due
to the different velocity gradients that both methods need to
compensate for in order to determine accurate measurements).
The results shown in figure 13(c) demonstrate that both PIV
and PEV are capable of capturing the sharp flow gradients in
the cylinder wake. However, the vorticity estimates from PIV
are noisy due to higher random error transmission from the
displacement measurements as evident in figures 13(d) and
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Figure 14. Line plot of the estimated vorticity, at x/D = 5 (see
figure 13), for different levels of element overlap. The blue line
depicts the standard PEV solution, while the green and red lines
depict the PEV solution curves with element overlapping of 50%
and 75%, respectively.

( f ). The random error transmission could be greatly reduced
by using larger sampling windows for PIV interrogation.
However, there would be insufficient resolution to fully capture
structures in the flow. While reducing the sampling distance
increases the number of velocity measures, the estimated
vorticity field is far from ideal (figure 13(c)). While the
measurements are smoother, i.e. reduced random error in
the measurements, the vorticity measures have bias errors as
evident in figures 13(e) and (g).

PEV yields a continuous estimate of the vorticity at both
locations downstream of the wake with slight discontinuities
at the element interfaces. These discontinuities arise from the
regularization procedure that ensures global continuity across
the entire solution. The elements in PEV can be overlapped in
a similar fashion to that done as standard with PIV. Figure 14
shows how the initial PEV estimate from figure 13( f ) can
be improved greatly by conducting PEV with 50% element
overlap.

6. Conclusions

A technique to determine continuous velocity and velocity
gradient measurements with low noise is presented. This
process, PEV, optimizes for the measured cross-correlation
map obtained from image data to determine a series of
polynomial functions that describe the underlying flow.

With the general PIV technique, the velocity measurement
is obtained from the signal peak in the cross-correlation map
that represents the modal velocity. Estimated flow gradients
using PIV velocity measurements are affected by random
errors and bias errors. The error in estimating the flow gradient
is dependent on the spatial resolution of flow measurements
considered for calculation and the accuracy of the flow
measurement itself. A Monte Carlo simulation was conducted
in silico to study the effect of the PIV sampling distance
(resolution of measurements) and the sampling window size
(accuracy of the velocity measurement) on the accuracy in

estimating flow gradients. The errors are coupled and therefore
cannot be minimized simultaneously resulting in a single
optimal combination.

The PEV method has been applied to a single
instantaneous measurement of four sets of flows; two sets of
laboratory flows and two sets of computer generated synthetic
flows. Time-resolved PEV measurements are available by
applying the proposed method to subsequent image pairs in the
image sequence. The proposed method has been shown to yield
continuous measurements with low levels of measurement
noise for the velocity and vorticity in comparison to PIV. In
the cases presented in this study, the PEV method was shown
to reduce the velocity measurement error by up to 45% and
the vorticity estimation error by up to 77%.

The random errors that arise in the estimated flow gradient
measure due to increased amounts of oversampling of PIV data
are dramatically reduced with the proposed PEV method due
to the use of continuous polynomial functions to represent the
flow. Bias errors in the estimated flow gradients are reduced as
PEV optimizes for the entire cross-correlation map, taking into
account the shape or distortion of the peak due to underlying
flow gradients.
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