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a b s t r a c t

Tethered cylinder systems constitute a natural extension of the lightly damped, hydro-

elastically mounted cylinder. In this case, the cylinder is constrained to travel along an

arc prescribed by the tether length. The analysis of the tethered cylinder system is

hampered by the dependence of the natural frequency of the system on both the fluid

forces acting on the system and the curved motion (which in turn alters the added mass

coefficient away from unity). These difficulties have precluded prior studies considering

the natural frequency or reduced velocity as a controlling parameter, making direct

comparison with the hydro-elastically mounted cylinder system difficult.

This investigation considers the case of a tethered cylinder at low Reynolds number

(Re¼200) for a mass ratio mn
¼0.2. It notes a local maximum in the amplitude of

oscillation when the normalized tether length L�C2:0, in agreement with prior studies.

By instead considering the amplitude of oscillation in a rotational framework, we are

able to explain the existence of this peak, and identify two regions of amplitude

response, the first region exists for very small tether lengths (L�t0:3), while the second

exists for larger tether lengths. The transition from small tether lengths to large tether

lengths exhibits the highest amplitude angular oscillations.

Several wake states are also considered for a tethered cylinder which is oscillating

about a horizontal mean layover angle. By considering these wake states, coupled with

the definition of the natural frequency, an estimate of the added mass coefficient is

made. Here we predict that CAC0:5 for a tether length of Ln
¼1.5. This prediction is

based not only on the tether length, but also on the amplitude of oscillation, and hence

is Reynolds number dependent.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex-induced vibration of cylindrical structures remains as a key engineering challenge worldwide, with particular
application in the oil, gas, and electrical transmission industries. The synchronization of the vortex shedding to the natural
frequency of the oscillating structure (referred to commonly as ‘lock-in’) typically enhances the amplitude of oscillation,
and may result in structural failure (see for example Sarpkaya, 2004).

Research into this phenomenon is generally classified into two broad categories based on the model under investigation.
The first category has considered the flexibility of the oscillating cylinder as a key parameter—which may allow for the
transmission of oscillation along the cylinder itself (see for example the work of Vandiver et al. (2009)). The second category
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has instead considered the oscillation of a rigid cylinder. This second category, while simpler than the first, allows for an in-
depth understanding of the direct relationship between the Strouhal shedding cycle and the cylinder oscillation (Williamson
and Govardhan, 2004).

The tethered cylinder may be considered as an extension of the more familiar (and widely studied) freely oscillating
rigid cylinder. In particular, assuming that the tether does not provide significant mechanical damping it directly extends
the work of Govardhan and Williamson (2000, 2003). In particular, as with a lightly damped oscillating cylinder, the
tethered cylinder system exhibits a critical mass ratio, below which large amplitude oscillations are observed for a wide
range of inflow conditions (Ryan et al., 2007). This critical mass ratio is observed to vary as a function of tether length.

As a part of their work, Ryan et al. (2007) observed a peak in maximum oscillation amplitude (for the particular case
of m� ¼ 0:2) at a tether length ratio of L�C2:0. However, no explanation for this local maximum was presented therein.

Additionally, Ryan et al. (2007) noted that, unlike the freely oscillating cylinder, the equation for the natural frequency
of the tethered cylinder was non-linear and may be directly related to the instantaneous fluid forces acting on the cylinder.
For this reason a clear definition of the reduced velocity was impractical, and Ryan et al. (2007) introduced a modified
Froude number to model the ratio of inertial to buoyancy forces.

This paper explores the reasons for the local peak observed at L�C2:0 by Ryan et al. (2007), in addition to describing
the structures in the wake of the cylinder as a function of tether length. By comparing these wake structures to those
observed in the wake of a freely oscillating cylinder, it is possible to estimate the natural frequency of the system.

2. Model definition

Fig. 1 describes the geometry of the problem. A cylinder is attached to a massless, inflexible tether whose length may be
described as the length ratio, Ln¼L/D, where L is the length of the tether, and D is the diameter of the cylinder. An
additional controlling parameter is the cylinder mass ratio, mn, defined as the ratio of the density of the cylinder to that of
the working fluid. The equation of motion for the system may be written as

J €fþTL�Df¼ FoscL�D, ð1Þ

where J is the moment of inertia of the tethered body system, T is the tension within the tether, Fosc describes the fluid
force acting to oscillate the body (that is the component of fluid forces in the direction tangent to the tether direction) and
f describes the angular position of the cylinder about the mean layover angle y. Details of the system may be found in
Ryan (2004). In particular, the moment of inertia is defined exactly as

J¼mD2 L�
2

þ
1

8

� �
, ð2Þ

with m representing the mass of the cylinder per unit span.

3. Numerical techniques employed

The algorithm employed considers a two-dimensional domain such that effects of side-forces acting in the span-wise
direction are neglected. In the present numerical study the restraining tether is assumed massless, in-elastic and is
Fig. 1. Tethered cylinder geometry and coordinate system.
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assumed to have a diameter significantly smaller than the cylinder, such that any fluid loading forces acting directly on the
tether may be ignored. The cylinder is attached to the tether such that its motion remains attached to the arc defined by
the tether radius (that is the cylinder does not ‘‘nod’’ about the point which it is attached to the cylinder). Wall and floor
effects are neglected. This point is especially important as a nearby surface would invariably influence the fluid forces
acting on the cylinder, and the response of the system in its entirety.

The numerical technique solves the two-dimensional form of the Navier–Stokes equations, expressed in primitive
variable form:

@u

@t
þu � ru¼�rpþnr2uþA, ð3Þ

r � u¼ 0, ð4Þ

where p is the kinematic pressure, n is the kinematic viscosity, u¼ ðuðt,x,yÞ,vðt,x,yÞÞ is the two-dimensional velocity vector,
and A is an additional acceleration term due to the solution being conducted in an inertial reference frame. Spatial
derivatives are evaluated using spectral-element discretizations as described by Karniadakis and Henderson (1998), and
employed in similar studies by Ryan et al. (2004, 2005). Temporal derivatives are evaluated using a third-order time-
splitting technique following the work of Karniadakis et al. (1991).

The Navier–Stokes equations are coupled with the kinematic equations describing the motion of the tethered cylinder,
these equations may be written as:

m €x ¼ FD�TsinðyþfÞ, ð5Þ

m €y ¼ ðFLþBÞ�TcosðyþfÞ, ð6Þ

where FD is the measured drag force, FL is the measured lift force, and B is the force due to buoyancy effects. Note that drag
and lift forces are measured directly and consist of both viscous and pressure contributions. The motion of the cylinder is
calculated within an inertial reference frame (with acceleration A) attached to the cylinder. Having the reference frame of
the computational grid attached to the cylinder greatly simplifies the problem, and allows for rigorous domain and
resolution analysis studies to take place.

Eqs. (5) and (6) are coupled with the Navier–Stokes equations through a third-order Adams–Bashforth/Adams–Moulton
method, described in detail in Ryan (2004). Each time step requires a series of sub-steps to be conducted such that the fluid
velocity, and the forces acting on the cylinder reach satisfactory convergence prior to the calculation of the next time step.
4. Computational details

To agree with the prior work of Ryan et al. (2007), we restrict our attention to Re¼200 (where the Reynolds number is
based on the cylinder diameter and the inlet velocity, U). It was decided that this was the highest Reynolds number which
could be considered using a two-dimensional domain. In addition, we consider only one mass ratio, mn

¼0.2 and a wide
range of tether length ratios, Ln¼[0.1, 10]. Note that the tether length is measured from the center of the cylinder, such
that for Ln¼0.5, the cylinder is oscillating about a pivot point attached to its surface.

Following a domain analysis study, a mesh with an inlet 15 diameters upstream of the leading edge of the cylinder, and the
outlet 23 diameters downstream of the trailing edge of the cylinder was chosen. Domain side-walls are 30 diameters apart. In all,
the computational grid consisted of 518 macro-elements. Simulations conducted on larger domains had a less than 1% difference
on peak fluid forces and shedding Strouhal number, measured across several cycles of saturated motion, when compared to the
current mesh; indicating that the boundaries on the current domain do not interfere with the flow around the cylinder.

A rigorous p-type grid resolution study was conducted. Based on this investigation, ninth-order polynomials were used
as interpolating polynomials within each macro-element. Peak fluid forces and Strouhal number measured about a fixed
cylinder at Re¼200 varied by less than 1% for p¼9, when compared to higher order interpolation polynomials.

Typically, the controlling parameter considered for freely oscillating bodies is the reduced velocity U� ¼U=fnD, where fn

is the natural frequency of the system. However, the natural frequency cannot be determined a-priori for the tethered body
system, as it is dependent on the tension acting through the tether, and hence on the fluid forces acting on the system,
with the definition

fn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � L�

ðmþmAÞD L�2
þ

1

8

� �
vuuut : ð7Þ

Here, mA is the added mass of the system. It is noted that the incorporation of the added mass implies that the natural
frequency is defined for the system immersed within the working fluid. As noted by Newman (1977), the rotational motion
of the cylinder precludes an analytical estimate of the added mass (unlike the case of the freely oscillating cylinder where
we may assume that mACrwV; where rw is the density of the working fluid and V is the volume of the cylinder). Instead,
we follow the work of Ryan et al. (2007) and Carberry and Sheridan (2007) by employing the reduced Froude number as
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the controlling parameter, where

Fr0 ¼
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgDÞð1�m�Þ
p : ð8Þ

Here g is the acceleration due to gravity. The reduced Froude number may be defined as the ratio of inertial to buoyancy
forces acting on the cylinder. High values of Fr0 correspond to y-903.

5. Results and discussion

Ryan (2004) found that, for all cases, the peak amplitude of oscillation of the tethered cylinder occurred at high Froude
numbers (that is where the inertial forces dominate the buoyancy forces). For this reason, a Froude number of Fr0 ¼ 50 was
considered in this investigation. At this value of Fr0, the cylinder’s mean layover angle is yC903. This choice of Fr0 means
that the system most closely resembles that of the freely oscillating cylinder considered by (for example) Govardhan and
Williamson (2000, 2003). By considering this Froude number, the cylinder oscillates predominantly transverse to the free-
stream, and the effect of induced curvature of motion may be considered directly.

Results at higher Froude numbers were not found to deviate significantly from those obtained at Fr0 ¼ 50, while the
peak forces, and amplitude of oscillation was found to decrease as the reduced Froude number decreased.

5.1. The effect of tether length on the peak amplitude of oscillation

Fig. 2(a) shows the peak amplitude of oscillation of the cylinder for Fr0 ¼ 50 for all tether lengths considered. In this figure
the amplitude is defined as the peak displacement of the cylinder away from its mean position normalized by the cylinder
diameter. Here, we define Â

�

as the peak oscillation amplitude for a given simulation, normalized by the cylinder diameter. A
peak in oscillation amplitude at Ln¼2.0 is observed in agreement with the findings of Ryan et al. (2007). The oscillations at this
tether length are noteworthy with amplitudes greater than 0.5D, quite significant considering the relatively low Reynolds
number considered. Fig. 2(b) again shows the variation of oscillation amplitude; however, this time defined as the angular
amplitude of oscillation about the pivot point. The two definitions are related through

Â
�
¼ L�sinðf̂Þ: ð9Þ

From Eq. (9), our observation in Fig. 2 that f̂-0 as L�-1, and , Â
�
-0 as L�-0, is not surprising. However, we note two

distinct trends in f̂ as a function of Ln. For L�o0:3, a linear increase in f̂ is noted; while for L�Z0:3 a decay in f̂ is noted.
For L�o0:3, the linear increase in f̂ may be understood by assuming that the fluid forces acting on the cylinder do not alter

appreciably across the range Ln¼[0,0.3]. With this assumption, the amplitude of the moment acting to oscillate the body
(FoscL�D) varies linearly with Ln. In addition, the moment of inertia of the system (Eq. (2)) does not change appreciably across
this range; indeed for tether lengths below L�

2
C1=8, the moment of inertia is virtually independent of any variation in tether

length. Thus it is the linear increase in the amplitude of the moment acting on the body which results in the linear increase in
oscillation amplitude. This assumes that the shedding frequency is far from the natural frequency of the system.

For L�40:3 a decay in f̂ is noted, which in general is found to found to fit

f̂ ¼
a

L�
: ð10Þ
Fig. 2. Amplitude of oscillation results as a function of Ln for mn
¼0.2 and Fr0 ¼ 50F representing the highest amplitude response for all Fr0 considered.

Left hand side: response plot as the translation of the cylinder centre of mass. Right hand side: response plot as angular rotation (measured in degrees) of

the cylinder centre of mass.
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Here, the coefficient a is dependent on the cylinder mass ratio and Reynolds number. For our case, an excellent fit is
observed when a¼28.12.

The form of Eq. (10) may be derived through inspection of the equations of motion in a manner similar to that described
by Govardhan and Williamson (2003). Here, we assume a sinuous oscillation (restricted to considering only one temporal
frequency of oscillation), such that the equation of motion (Eq. (1)) may be rewritten as

�4p2f 2Jf̂þT L�Df̂ ¼ F̂ oscL�DcosðylagÞ: ð11Þ

Here, f is the temporal frequency of oscillation of the tethered cylinder system, F̂ osc is the peak oscillation force, and ylag

is the phase angle between the force signal and the cylinders motion. In addition, Eq. (11) assumes that the tension in the
tether throughout the oscillation cycle can be well approximated by the mean tension T .

Eq. (11) may be rewritten such that f̂ is the subject of the equation to form

f̂ ¼
F̂ osccosðylagÞ

T�4p2f 2mD L�þ
1

8L�

� � : ð12Þ

For the fluid forces to drive the motion of the cylinder, cosðylagÞo0. Assuming that F̂ osccosðylagÞ does not vary
appreciably for L�40:3, and that 4p2f 2mDðL�þð1=8L�ÞÞbT for L�40:3 then the form of Eq. (12) reverts to that of Eq. (10).
Small errors in the trend-line, when compared to measured data, can be attributed to the stated two assumptions that are
essentially stating that the physics underpinning the fluid-structure interaction does not change appreciably for the fully
laid over cylinder with L�40:3. While this is the case for the current simulations (being conducted at a low Reynolds
number), these assumptions may not hold for higher Reynolds number flows (with potentially large changes in the
maximum force acting on the cylinder across a range of Ln).

The peak in Â
�

observed by Ryan (2004) is therefore due to the variation in f̂, coupled with the definition of Â
�

(Eq. (9)).
Considering the system in a rotational framework allows us to clearly elucidate why this increase in Â

�
occurs.
5.2. The effect of tether length on wake response

Snapshots of the vortex structures in the wake of the tethered cylinder are shown in Fig. 3 for all tether lengths
considered. In each case Fr0 ¼ 50 corresponding to yC903. This value was chosen such that the effect of varying Ln could be
Fig. 3. Instantaneous snapshots of the span-wise vorticity field, oz , as a function of tether length. Contours are evenly spaced over the range (blue)

�1roz r1 (red). All images are at the instant where the cylinder reaches the top of the oscillating cycle; (a) Ln¼0.1, (b) Ln¼0.3, (c) Ln¼0.5, (d) Ln¼1.0,

(e) Ln¼1.5, (f) Ln¼2.0, (g) Ln¼5.0, (h) Ln¼10.0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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observed without the complications induced by a finite mean lift coefficient and the accompanying vortex pairing in the
wake and mean angle at which the wake is shed (see Ryan et al. (2007) for more details).

For Ln¼0.1, the vortex structures are not dissimilar to the Kármán vortex street observed from a stationary cylinder,
which is anticipated given the very low Â

�

observed. As Ln is increased to 0.3 (Fig. 3(b)), a significantly different wake is
observed. Here Â

�
40:3, and this has proved sufficient to alter the wake to form a double shear layer similar to that

observed by Dusek et al. (1994) for a fixed cylinder. The double shear layer is observed to become unstable approximately
15 diameters downstream and forms a Kármán wake thereafter. This double shear layer wake is observed for the range
Ln¼[0.3,1.0], corresponding to cylinder oscillation amplitudes less than 0.5D. The width of the double shear layer increases
with increasing tether length.

As the tether length is increased to Ln¼1.5, the double shear layer wake is replaced with a ‘‘PþS’’ structure described
experimentally by Williamson and Roshko (1988) and observed by Blackburn and Henderson (1999) for the case of an
oscillating cylinder at low Reynolds number. In agreement with the current findings, Blackburn and Henderson (1999)
report a very small mean positive lift for this wake structure. For Ln¼2.0, the near-wake is similar to the Kármán vortex
street, however, instabilities in the wake cause the formation of a double shear layer approximately seven diameters
downstream of the cylinder prior to a further instability of the double shear layer further downstream. For Ln¼5.0 and
10.0, the formation length is considerably longer and appears to increase with tether length.
5.3. Calculation of a natural frequency within the working fluid

The natural frequency of the system is dependent on the fluid forces acting on the cylinder, and cannot be predicted
accurately a-priori. However, an estimate of the natural frequency can be made by assuming that the tension in the tether
remains relatively constant throughout the oscillation cycle, and incorporating the measured lift and drag coefficients.
Eq. (7) may be rewritten, such that the natural frequency of the system, immersed within the working fluid, may be
explicitly calculated as

fn ¼
U

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CT

pðm�þCAÞL�

s
, ð13Þ

CT ¼
T

1

2
rwU2D

, ð14Þ

where CT is the tension coefficient per unit span of the cylinder, rw is the density of the working fluid, and CA is the added
mass coefficient. When y is large, the drag forces dominate the tension in the tether, and we may assume that CT CCD,
where CD is the drag coefficient.

The key impediment to determining the natural frequency of the system in the working fluid is that the added mass
coefficient cannot be assumed to be unity (as is the case for the freely oscillating cylinder) due to the curvature of the
cylinder path. However, we may write that as L�-1, CA-1, and as L�-0, CA-0. Hence, for sufficiently large tether
lengths we can approximate CAC1.

Fig. 4 shows the ratio of the oscillation frequency f with the natural frequency of the system, incorporating the added
mass of the system, as a function of Ln. Throughout the range of tether lengths considered, a wide range of f/fn is noted as a
function of the assumed values of CA considered. In particular, at Ln¼1.5, the range of f=fnC ½0:8,1:6�. This agrees closely
with the range of values that Govardhan and Williamson (2000) predict that a freely oscillating cylinder will switch
oscillation branches from the ‘initial’ branch to the ‘upper’ branch. Considering Fig. 3(e), we note that the PþS shedding
mode for the tethered cylinder, would be anticipated for a freely oscillating cylinder oscillating in the ‘upper’ branch at low
Reynolds numbers. Analysis of Fig. 3(e) allows us to predict that CAo1 for Ln¼1.5, this is not surprising given the high
L*

f/f
n

0 2 4 6 8 10

0.5

1

1.5

Fig. 4. Estimates of the frequency ratio f/fn. Solid line, CA¼1.0; dash-dot line, CA¼0.75; dashed line, CA¼0.25.
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value of f̂ observed at this tether length. The author tentatively predicts that CAC0:5 for this tether length and Reynolds
number.

Thus direct comparison of the wake structures found for the tethered cylinder with that of the freely oscillating cylinder
(at a similar Reynolds number) allows for a direct comparison of the mechanisms governing oscillation to be made. The
strong similarity in the response of both systems makes this possible.

6. Conclusions

While the translational oscillation of a tethered cylinder is undoubtedly of great interest, the analysis of motion should
be conducted in a rotational framework, as this provides a clearer description of the physics underpinning the cylinder
motion. In addition, by carefully analyzing the wake states for various tether lengths, and comparing these to that obtained
for a hydro-elastically mounted cylinder, a prediction of the added mass coefficient can be made for the tethered cylinder
system. This analysis is restricted to the case of a tethered cylinder system oscillating about a horizontal mean layover
angle, as the focus of prior hydro-elastically mounted cylinder studies have dominantly considered this case.
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