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Abstract

One of the most basic examples of fluid-structure interaction is provided by a tethered body in a fluid flow. The

tendency of a tethered buoy to oscillate when excited by waves is a well-known phenomenon; however, it has only

recently been found that a submerged buoy will act in a similar fashion when exposed to a uniform flow at moderate

Reynolds numbers, with a transverse peak-to-peak amplitude of approximately two diameters over a wide range of

velocities. This paper presents results for the related problem of two-dimensional simulations of the flow past a tethered

cylinder. The coupled Navier–Stokes equations and the equations of motion of the cylinder are solved using a spectral-

element method. The response of the tethered cylinder system was found to be strongly influenced by the mean layover

angle as this parameter determined if the oscillations would be dominated by in-line oscillations, transverse oscillations

or a combination of the two. Three branches of oscillation are noted, an in-line branch, a transition branch and a

transverse branch. Within the transition branch, the cylinder oscillates at the shedding frequency and modulates the

drag force such that the drag signal is dominated by the lift frequency. It is found that the mean amplitude response is

greatest at high reduced velocities, i.e., when the cylinder is oscillating predominantly transverse to the fluid flow.

Furthermore, the oscillation frequency is synchronized to the vortex shedding frequency of a stationary cylinder, except

at very high reduced velocities. Visualizations of the pressure and vorticity in the wake reveal the mechanisms behind

the motion of the cylinder.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

As an extension to the case of the flow-induced vibration of a hydroelastically mounted cylinder in a uniform flow

field, a study has been performed on the flow-induced vibration of a buoyant tethered cylinder. This system geometry

has practical applications in submerged pipelines, ocean spars, and tethered lighter-than-air craft. It is also of interest as

it exhibits flow-induced oscillation where the combined effects of in-line oscillation and transverse oscillation may be

observed. Finally, both numerically and analytically, the tethered cylinder provides a simplification to the fully three-

dimensional problem of a tethered sphere, which has been the subject of recent investigation (Govardhan and

Williamson, 1997; Williamson and Govardhan, 1997; Jauvtis et al., 2001).

Most previous work regarding tethered bodies has focused on the free surface interaction with tethered buoys

(Harlemann and Shapiro, 1961; Shi-Igai and Kono, 1969; Ogihara, 1988). In each of these studies, the tethered bodies
e front matter r 2004 Elsevier Ltd. All rights reserved.
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oscillate due to the combined effect of a uniform (or sheared) free stream and free surface wave effects. This

combination, incorporating the interaction of a free surface, has made interpretation of results complex and conclusions

difficult to draw.

To date, little research has been performed concerning fully submerged tethered bluff bodies and only the related

work of Williamson and Govardhan (1997), Govardhan and Williamson (1997), and Jauvtis et al. (2001) deal purely

with the action of a tethered sphere in a uniform flow. For tethered spheres with low mass ratio (mno1; where mn is the

ratio of the body density to the fluid density), the experimental investigation of Williamson and Govardhan (1997)

found that large amplitude oscillations occurred. They found that the tethered sphere sustained large peak-to-peak

oscillations with amplitudes of the order of two sphere diameters in the transverse direction. They also found smaller

stream-wise oscillations of the order of about 0.4 sphere diameters. Their work was extended by Jauvtis et al. (2001) to

incorporate spheres with higher mass ratios, mn41: In this study, four branches of shedding were observed, two of

which were observed for a sphere with mno1:
The vortex-induced vibration of tethered bodies is a component of the more general area of flow-induced vibration of

bluff bodies. Most work in this area has centered on the flow-induced vibration of a hydroelastically mounted cylinder.

Two critical parameters have been identified in these studies, namely the mass-damping parameter, mnz; and the

reduced velocity, un ¼ u=f nD (where z is the mechanical damping coefficient, f n is the natural frequency of the tethered

body system, and D is a characteristic body length and is generally chosen as the diameter for a circular cylinder).

Traditionally, these studies have focused on high mass ratio, (mn
b1) hydroelastically mounted cylinders with a high

mechanical damping coefficient, z: However, more recent investigations have focused on low mnz; and their findings are

relevant to the present study; the mass ratio investigated in this study is less than unity, and the tether provides

effectively no mechanical damping.

Khalak and Williamson (1999), in their investigation of a low mass-damped cylinder, found a lock-in regime occurred

where the cylinder oscillated transverse to the free-stream at the vortex shedding frequency of the wake. Within this

lock-in regime, three distinct branches of cylinder oscillation were observed as the flow speed was increased: an initial,

upper and lower branch of oscillation. Govardhan and Williamson (2000), Blackburn et al. (2001) and Shiels et al.

(2001) have also found these three branches of oscillation for low mass-damped cylinders. The lock-in regime has been

observed for higher mnz cylinders, however only two of the observed branches appear to exist, namely the initial and

lower branch (Bearman, 1984; Parkinson, 1989).

Govardhan and Williamson (2000) found that the upper branch exhibited significantly higher amplitude oscillations

than either of the other two branches. They also found that the upper and lower branches exhibit a ‘2P’ wake

structure, where two vortex pairs are shed per oscillation cycle. They found that transition from the upper to the

lower branch results in a change of the phase between the total lift force and the cylinder displacement; the

upper branch exhibiting in-phase oscillation, the lower branch of oscillation exhibiting 180� out-of-phase oscillation.

Further, they found that when oscillation amplitude was plotted against un; the transition point from the upper

to the lower branch of shedding was inversely proportional to the mass ratio of the cylinder. They postulated that,

for a cylinder mass ratio less than 0.54, the upper branch of shedding, and hence the lock-in regime, continues

indefinitely for increasing reduced velocities. Recent experiments performed by Govardhan and Williamson (2003) have

confirmed this.

Also of note is the dependence of the frequency of vortex-induced oscillation on the mass ratio (mn) of the body. For

cylinders of a high mass ratio, the vibration frequency tends to the natural frequency of the cylinder [for example, Feng

(1968)]. However, experiments by Angrilli et al. (1974) found that for cylinders with a low mass ratio (mn ’ 1:5), the
vibration frequency tended toward the vortex shedding frequency of the flow.

It is anticipated that, at large mean lay-over angles (see Fig. 1 for a definition of the mean layover angle, y),
the tethered cylinder will behave in a fashion similar to the low mass-damped hydroelastically mounted cylinder

and should oscillate in either the upper or lower branch of shedding depending on the reduced velocity and the

mass ratio.

In this study, mn was chosen to be 0.833 and the tether length ratio (the length of the tether normalized against the

cylinder diameter), Ln; was chosen as 5.05. These values were selected to match experiments conducted simultaneously

in the FLAIR water channel. Preliminary results from the water channel experiments were used to validate the present

results describing the cylinder mean layover angle. The reduced velocity was taken as the controlling parameter and was

varied between 1punp22: Two distinct peaks in the oscillation amplitude were observed. A small peak at un ¼ 2:5;
where the cylinder was observed to oscillate predominantly in-line with the flow direction, and a much larger peak at

un ¼ 20; where the cylinder was oscillating primarily transverse to the flow direction.

In Section 2, the equations that are to be solved are presented, and in Section 3 the numerical technique is

described and the results of grid resolution studies are presented. The results of the study are presented and discussed in

Section 4.
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2. Problem formulation

The coordinate system and geometry of the problem are shown in Fig. 1. For the purpose of illustration, a body of

arbitrary geometry is considered without loss of generality. Note that y is the mean layover angle formed by the plane of

the tether to the y-axis and f is the instantaneous angle of oscillation about y: The values of y and f are not known a

priori, however, an initial instantaneous angle (yþ f) is predicted at the start of a given simulation. The forces acting on

the object are composed of hydrodynamic loading (drag and lift) and the tension in the tether. The buoyancy of the

body (B) is combined with the pressure and viscous lift to give a net vertical force, and is denoted by FL þ B in Fig. 1.

We consider the flow of a viscous incompressible fluid past a tethered cylinder. The equations representing this

problem are the coupled system of fluid and bluff body equations. The Navier–Stokes equations governing the fluid

motion in an inertial reference frame are given by

@u0

@t
þ ðu0.=0

Þu0 ¼ �=0p0 þ
1

Re
r02u0; (1)

=0.u0 ¼ 0; (2)

in which u0 is the velocity field normalized by the inlet velocity (U), p0 is the static pressure normalized by (rwU2), where

rw is the fluid density, t is time normalized by the nondimensional time D=U ; where D is the cylinder diameter, and

Re ¼ UDrw=m is the Reynolds number. (Note: the prime indicates variables are taken relative to the inertial reference

frame.)

The tether is assumed to be rigid and inextensible (i.e., no radial or flexure movement). The coefficient of tension per

unit length within the tether is given by

CT ¼ CD sinðyþ fÞ þ ðCL þ að1� mnÞÞ cosðyþ fÞ; (3)

where CD and CL are the drag and lift coefficients and y and f are defined in Fig. 1.

The acceleration of the structure is a result of the forces acting on it and can be calculated from

p
2

mn €x0 ¼ CD � CT sinðyþ fÞ; (4)

p
2

mn €y0 ¼ ðCL þ að1� mnÞÞ � CT cosðyþ fÞ: (5)

Combining Eqs. (3), (4) and (5) results in the following equations for the components of the acceleration of the cylinder

in Cartesian form:

€x0 ¼
1

L
2mn
½CDy02 � ðCL þ ð1� mnÞaÞx0y0�; (6)

€y0 ¼ �
1

L
2mn
½CDy0x0 � ðCL þ að1� mnÞÞx02�; (7)

where a = pgD=2u2 ¼ p=2Fr2; and x0 and y0 are both nondimensional and have been normalized by D.

In general, the vector body force coefficient per unit length Cf (defining the lift and drag coefficients) is computed by

integrating the pressure and viscous stress terms as

Cf ¼ 2

I
�pn þ

1

Re
ð=u þ =uTÞ.n

� �
ds; (8)

where the integration is performed over the entire surface of the cylinder and n is the outward unit normal vector to the

surface. As CD and CL are calculated directly from Eq. (8), they include all the fluid forces acting on the cylinder and no

added mass term is required in Eqs. (4) and (5).
3. Methodology

Solving fluid-structure interaction problems generally involves the use of deforming and/or moving meshes. Fig. 2

shows the transformation used to map the inertial reference frame to the time-independent reference frame. This

mapping is described by

x ¼ x0 � XðtÞ; (9)
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Fig. 2. Schematic of the transformation used to map from inertial to noninertial reference frame. The simulations are conducted with
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Fig. 1. Idealized schematic of the tethered cylinder in fluid flow. The tethered cylinder has a mean layover angle from the vertical, y;
and a oscillation angle about this mean layover angle, f:
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where XðtÞ is the normalized displacement of the cylinder and is described in terms of yþ f as

XðtÞ ¼ Ln sinðyþ fðtÞÞ; Y ðtÞ ¼ Ln cosðyþ fðtÞÞ: (10)

In the transformed system of coordinates, the center of the cylinder is stationary, although it is free to rotate. Given the

transformation (9), Eqs. (1) and (2) become

@u

@t
þ ðu.=Þu ¼ �=p þ

1

Re
r2u þ An; (11)

=.u ¼ 0; (12)

where the forcing term An is an additional dimensionless acceleration term introduced by the noninertial coordinate

transformation, Eq. (9), and is the acceleration of the cylinder given by Eqs. (6) and (7), normalized by U2=D: Due to
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the attachment of the coordinate system to the cylinder, the cylinder will rotate as it moves about the base pivot. Hence,

the boundary conditions need to be altered in order to account for this effect.

The equations of motion for the fluid and the cylinder are discretized in space using a spectral-element method.

Typically, eighth-order Lagrangian polynomials were used as the tensor-product expansion basis. Eqs. (6) and (7)

governing the body’s motion, are solved using a predictor–corrector technique. The Navier–Stokes and continuity

equations, Eqs. (9) and (10), are discretized in time using a three-step time-splitting approach [see Karniadakis et al.

(1991) for further details]. The acceleration term An is combined with the nonlinear terms and these are treated in the

first substep of the time update.

The coupled fluid/structure equations are solved in three steps. First, an initial angle y is set (corresponding to an

initial displacement x0) and the fluid equations are solved. Next, the drag, lift and side forces are computed using Eq.

(8). Finally, the structural motion is updated using Eqs. (6) and (7) and the process is repeated.

A plot of the two-dimensional mesh is shown in Fig. 3. The mesh consists of k ¼ 518 macro-elements. The inlet

length, defined as the distance between the inlet and the cylinder surface is li ¼ 14:5D: Owing to the mesh geometry, the

cross-flow width is the same as the inlet length. The outlet length is lo ¼ 24:5D:
Detailed resolution tests were performed on a stationary cylinder to verify grid independence. A Reynolds number

value of 500 was chosen for two reasons; first, it represents the highest Reynolds number considered for this (and other)

investigations and therefore represents the most rigorous grid resolution study possible; secondly, the grid resolution

results may be compared against the findings of Blackburn and Henderson (1999) in their numerical study, where their

grid resolution study was conducted at the same Reynolds number. The order of the interpolating polynomials was

increased from N ¼ 5 to 9. Flow quantities such as the Strouhal number, lift and drag coefficients were measured and

compared to previous values published in the literature. The results are summarized in Table 1. For all measures

employed, the variation between the values at N ¼ 7 and 9 is less than 1%. Furthermore, the values of all measures for

N ¼ 8 (used in all subsequent simulations) compare to within 1% of the numerical values of Blackburn and Henderson

(1999), and Henderson (1995). Mesh independence was also verified for the moving cylinder by considering the two

extremes of tether angle; at small angles, motion was predominantly in the cross-flow direction, whereas at large angles,

the motion was largely in the stream-wise direction. For each value of N from 5 to 10, mean tether angles, oscillation

amplitudes, oscillation frequencies, and drag and lift coefficients were measured for these two extreme cases. Again, all

quantities compare to within 1% for the N ¼ 8 case.

Simulation results for the flow past a fixed cylinder at Re ¼ 200 were also compared with the two-dimensional

numerical findings of Zhang and Dalton (1998), and Henderson (1995). In this case, the Strouhal number, mean drag

and peak lift coefficients were compared with previous findings. The results are presented in Table 2. The current results

compare favorably with previous findings. The largest deviation across the three sets of results was for the mean drag

coefficient results, where the present results were found to be 2.9% and 1.5% greater than the results of Zhang and

Dalton (1998) and Henderson (1995), respectively. The present results for both the Strouhal number and peak lift

coefficient were found to vary by less than 2% when compared to the results reported by Zhang and Dalton (1998).

Experimentally, the reduced velocity, un; is altered by changing the inlet velocity, hence Re is linearly dependent on

un: However, for the simulations discussed in this paper the Reynolds number was held fixed at Re ¼ 200: A fixed

Reynolds number allows the study of the effect of the reduced velocity, un; in isolation, without including the effect of

changed flow field diffusion between simulations. Also, if the inlet velocity were the controlling parameter, the linear

dependence of Re with un would reduce the applicability of results from two-dimensional numerical simulations to

model the flow.

The choice of Re ¼ 200 was made as it is the highest Reynolds number that can be justifiably simulated using a two-

dimensional model. Beyond this Reynolds number, experimental and numerical investigations indicate that three-

dimensional structures in the wake of a stationary cylinder act to alter the wake characteristics when compared to the

results obtained from two-dimensional simulations (Williamson, 1996). Large amplitude oscillations act to increase the

correlation length along the span of a cylinder, suggesting that two-dimensional simulations of these systems may be

used to study higher Reynolds number flows [for example, Blackburn and Henderson (1999)]. However, Koopman

(1967), in his investigation of forced cylinder oscillation, found that Re ¼ 200 is the highest Reynolds number with a

two-dimensional field regardless of the amplitude of oscillation.

When considering the flow past a fixed cylinder, both the mean drag coefficient and the Strouhal number remain

relatively constant in the range 200pRep10 000: However, within this range, both the formation length and the ratio

of viscous to pressure drag terms vary. Clearly, these discrepancies will lead to differences in the body-fluid interaction

between the numerical results and the experimental results; in particular, the amplitude of cylinder oscillation may be

affected by the ratio of viscous to pressure drag terms.

The numerical results describing the mean layover angle were compared against results from preliminary experiments

conducted in the FLAIR water channel. This facility has a 4m long test section which is 0.6m in width and 0.8m in
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Table 1

Convergence results for a stationary cylinder at Re ¼ 500

N 5 6 7 8 9

CLðPÞ 1.19 1.18 1.18 1.18 1.18

CDðPÞ 1.59 1.58 1.58 1.58 1.58

CDðmÞ 1.46 1.45 1.45 1.45 1.45

St 0.23 0.23 0.23 0.23 0.23

The symbol (p) denotes peak values, (m) denotes mean values.

Table 2

Convergence results for a stationary cylinder at Re ¼ 200

St CLðPÞ CDðmÞ

Current results 0.199 0.69 1.36

Zhang and Dalton (1998) 0.198 0.68 1.32

Henderson (1995) 1.34

The symbol (p) denotes peak values, (m) denotes mean values.

Fig. 3. Macro-element mesh used for the simulations.
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depth measured from the free surface to the channel floor. The cylinder diameter was 25mm and the cylinder span to

diameter ratio was LS : D ¼ 17 : 1: Reynolds numbers in the range Re ¼ 1000–3500 were investigated.
4. Results

The cylinder studied was of fixed mass ratio and tether length. The cylinder response in terms of oscillation

amplitude, fluid dynamic forces and oscillation frequency as a function of un were predicted. In this study, the mass

ratio (mn) was chosen to be 0.833 and the normalized tether length (Ln ¼ L=D) was chosen as 5.05. As mentioned

previously, these values were selected to match preliminary experiments conducted simultaneously in the FLAIR water

channel.

Following the work of Govardhan and Williamson (1997), Williamson and Govardhan (1997), and Jauvtis et al.

(2001), results are presented as a function of reduced velocity (un ¼ u=f nD) which incorporates the inlet velocity,
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cylinder diameter and natural frequency of the system. Note that the natural frequency of the system is a function of the

tension in the tether and varies with the drag, lift and buoyancy, unlike that of a hydroelastically mounted cylinder

which is independent of hydrodynamic forces.

Since the problem is essentially that of a pendulum with external forcing applied, the natural frequency is

given by

f n ¼
1

2p

ffiffiffiffiffiffiffi
T

mL

s
; (13)

where T is the mean tension force acting through the tether averaged across a motion cycle, m is the mass of the

cylinder, and L is the tether length. The mean tension can be decomposed in terms of the drag and buoyancy forces, and

written in nondimensional form as

CT ¼
T

1
2
rwU2D

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD

2
þ ½að1� mnÞ�2

q
: (14)

By substituting Eqs. (13) and (14) into the definition for the reduced velocity, and rewriting in nondimensional form, we

obtain

un ¼
2p

3
2ffiffiffi
2

p
ðmn þ CaÞL

n

CD
2
þ ½að1� mnÞ�2

� �1=2

0
B@

1
CA

1=2

; (15)

where Ca is the added mass coefficient [see Govardhan and Williamson (2000) for details], and is equal to 1 for a

circular cylinder. The parameter a was varied between 0:8pap1500 (corresponding to normalized velocities of

1punp22).

For mean layover angles, y; less than approximately 30�; Eq. (15) may be simplified by neglecting the mean drag

coefficient, as the buoyancy force dominates drag force in this layover range. If this simplification is made, Eq. (15)

reduces to the same form as that found by Williamson and Govardhan (1997) describing the reduced velocity for the

flow past a tethered sphere.

4.1. Mean layover angle results

Fig. 4 shows the mean layover angle obtained through the numerical simulations, as well as results from

the water channel experiments, both as a function of reduced velocity. The numerical simulations are found to

closely match the experimental values for uno12: Valid results from the experimental rig were limited to this

reduced velocity range [corresponding to a Reynolds number range of (Re ¼ 1000–3500)]; for un412; the mean layover

angle was such that the boundary layer on the channel base interfered with both the cylinder motion and the

hydrodynamic forces acting on the cylinder. The mean drag acting on cylinder was not measured directly in

experiments. Instead, by assuming the mean lift tended to zero, the drag may be determined from the mean layover

angle from

y ¼ tan�1 CD

ð1� mnÞa

� �
: (16)

An analytical estimate of the mean lay-over angle was also made from Eq. (16) and is plotted in Fig. 4 as a

solid line. Here, the drag coefficient was held constant (CD ¼ 1:34), and was equal to the drag coefficient

for a stationary cylinder at the corresponding Reynolds number of Re ¼ 200 (Henderson, 1995). For uno5; the
predicted response using Eq. (16) describes both the numerical and experimental values of y accurately. In the reduced

velocity range, 5ounp18:5; the rate of increase of y with respect to un gradually deviates away from the predicted

curve. Beyond un ¼ 18:5 this rate of increase rapidly diminishes and crosses the predicted curve at un ’ 20: Beyond
un ¼ 20; the curve overpredicts y: Eq. (16) is essentially the ratio of drag to buoyancy force. Assuming constant

buoyancy for a given mass ratio, any deviation in y away from that predicted from Eq. (16) implies a variation in the

drag force away from that found for a fixed circular cylinder. For a given un; ynumerical4ypredicted implies that the mean

drag is greater than that of a fixed cylinder and ynumericaloypredicted implies that the mean drag is less than that of a fixed

cylinder.

The drag coefficient is presented in Fig. 5 as a function of un: As anticipated from the previous discussion, the drag

coefficient gradually increases from that of a fixed cylinder in the range 5ouno18:5 before rapidly decreasing below



ARTICLE IN PRESS

u*

M
ea

n 
dr

ag
 c

oe
ff

ic
ie

nt
, C

D
(m

n)

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

Fig. 5. Mean drag coefficient,CD; as a function of reduced velocity, un: �; numerical simulation of tethered cylinder; ��; for the flow
past a fixed cylinder at a Reynolds number of 200.

u*

M
ea

n 
L

ay
ov

er
 A

ng
le

, θ

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Fig. 4. Mean layover angle, y; as a function of reduced velocity, un: �; numerical simulation; E; experimental results; �; analytical
estimate (note the analytical estimate assumes a fixed CD = 1.34, which is equivalent to the drag coefficient for the flow past a fixed

cylinder at a Reynolds number of 200).

K. Ryan et al. / Journal of Fluids and Structures 19 (2004) 1085–11021092
that of a fixed cylinder for un419: A small peak is observed at un ¼ 2:5: At these low layover angles, the buoyancy force

dominates the drag force and predictions using Eq. (16) accurately estimate y: Any variation in the drag may be

associated with an increased amplitude in the oscillation of the tethered cylinder. Fig. 5 indicates that two local maxima

in the oscillation amplitude should be observed at un ¼ 2:5 and 19. The small deviation in the mean drag as a function

of reduced velocity indicates that the cylinder oscillations should be small for the entire range of reduced velocity

investigated.
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4.2. Amplitude of oscillation

The normalized amplitude of oscillation in the direction of cylinder motion (An ¼ A=D) is presented in Fig. 6 along

with the in-line (xn ¼ x=D) and transverse (yn ¼ y=D) components, each as a function of the reduced velocity. As

anticipated, two distinct peaks are observed in An; the first, occurring at un ¼ 2:5; is very small in amplitude and is

dominated almost entirely by the in-line component. This dominance implies that the forcing is comprised almost

entirely of the drag force component. It appears that the peak is due to a resonance between the natural frequency, f n;
of the system and the drag signal, f D; which (at this reduced velocity) is twice the lift frequency, f L: Assuming the

Strouhal number is St ’ 0:2; the natural frequency and the drag signal are equivalent at un ’ 2:5; in agreement with the

assumption of a resonance between the two frequencies.

The peak amplitude of the oscillations at un ¼ 2:5 (dominated by an in-line component) is far lower than the second

peak found at un ¼ 19 (dominated by a transverse component). The relative amplitudes of the in-line and transverse

branches is in agreement with King (1974), who studied the in-line vortex-induced oscillation of a hydroelastically

mounted cylinder. He found two in-line branches of oscillation in the reduced velocity range, un ’ 1–3 with a maximum

in-line oscillations peaking at An ¼ 0:12D: He found that the first branch has a symmetric shedding wake, while the

wake structure of the second branch resembles a Karman vortex street.

At a reduced velocity, un ¼ 17; corresponding to a mean lay-over angle, y ¼ 45�; the transverse component of

oscillation, yn; begins to dominate the in-line component. The in-line component of oscillation peaks at un ¼ 17:5 prior

to decreasing rapidly. Throughout the reduced velocity range, un ¼ 5–19, An continues to increase and is increasingly

dominated by the transverse component.

A second peak in An is observed at a reduced velocity of un ’ 20: At this reduced velocity, the mean lay-over angle is

y ’ 70�; and the oscillations are dominated by the transverse component (yn), which accounts for 93% of the oscillation

amplitude in the direction of motion. For reduced velocities greater than 20, both An and yn decrease rapidly with un: At

these high layover angles, the cylinder behaves in a fashion similar to a low mass-damped, hydroelastically mounted

cylinder undergoing transverse vortex-induced vibration as described by Khalak and Williamson (1999) and

Govardhan and Williamson (2000). The high value of un; combined with mn ¼ 0:833; implies that the oscillations occur

on the lower branch of oscillation and that the cylinder oscillations become desynchronized from the vortex shedding

frequency. At un ¼ 22; this phenomenon is observed, the oscillation time series is chaotic and appears uncorrelated to

the vortex shedding frequency. The cylinder oscillation at these high reduced velocities (un420) is therefore in

agreement with the findings of Govardhan and Williamson (2000).

Three force coefficients can be identified that describe the transient forces acting on the cylinder to induce motion; the

drag coefficient, CD; the lift coefficient, CL; and the force coefficient acting in the direction of motion, CTan: The
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Fig. 6. Normalized amplitude of oscillation as a function of reduced velocity: E; in-line component of normalized oscillation
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instantaneous value of CTan is defined by

CTan ¼ CD cosðyþ fÞ � ðCL þ að1� mnÞÞ sinðyþ fÞ: (17)

A plot of the r.m.s. values of the amplitudes of each of these coefficients is presented in Fig. 7, as a function of the

reduced velocity. In the reduced velocity range, un ¼ 1–4, all three r.m.s. force coefficients exhibit significant

fluctuations. As anticipated, both CD;rms and CTan;rms exhibit a local peak at un ¼ 2:5: Of interest is CD;rms; whose peak
value at un ¼ 2:5 is larger in amplitude than r.m.s. CTan: By considering the mean layover angle at this reduced velocity

ðy ¼ 0:875�Þ; it would be assumed that the cylinder oscillates in the in-line direction, and the oscillations are almost

entirely independent of the fluctuating lift force. This is clearly not the case, and Eq. (17) indicates that the

instantaneous amplitude of the lift force is considerably greater than the instantaneous amplitude of the drag force, and

acts to reduce the total force contribution in the direction of motion. From Fig. 7, this is indeed the case; CL;rms is over

five times that of the CD;rms: As with the in-line amplitude of motion, CD;rms peaks at un ’ 17:5 before decaying. The

value of CTan;rms peaks at un ’ 19 before decaying, its maximum value barely exceeds the maximum drag value. For

un420; the CL;rms dominates the CTan;rms and both decay up to the highest reduced velocity investigated.
4.3. Frequency of oscillation

Fig. 8 shows the fundamental frequency of oscillation, normalized against the natural frequency of the tethered

cylinder system, as a function of the reduced velocity. In this figure, the solid line is the Strouhal number for a fixed

cylinder (St1), corresponding to the fixed cylinder lift frequency, and the dashed line is twice the Strouhal number of the

shedding frequency for a fixed cylinder (St2), corresponding to the fixed cylinder drag signal.

For uno5; the principal frequency of oscillation is synchronized with St2; i.e., the in-line force frequency for a fixed

cylinder. This is anticipated as the cylinder is restricted to oscillate in the in-line direction. At un ’ 2:5; St2 is

synchronized with the natural frequency of the tethered body system, accounting for the peak in both the oscillation

amplitude and the r.m.s. in-line force at this reduced velocity (Figs. 6 and 7).

In the reduced velocity range, un ¼ 2:5–3.5, there is a reduction in the oscillation amplitude and r.m.s. fluid forces (see

Figs. 6 and 7). This is due to the oscillation frequency no longer being synchronized with the natural frequency of the

tethered cylinder system. From Fig. 6, the oscillation amplitude increases rapidly with increasing reduced velocity in the

range un ¼ 3:5–5. At un ¼ 5; St1 is synchronous with the natural frequency of the system and the dominant oscillation

frequency switches to St1: Beyond un ¼ 5; as the oscillation frequency departs from f n; there is a sudden decrease in the

gradient of oscillation amplitude as a function of reduced velocity (as shown in Fig. 6), however the dominant

oscillation frequency remains close to St1:
Only two regions of synchronization or ‘‘lock-in’’ are found when one considers the classical definition of lock-in, i.e.,

a synchronization of the vortex shedding frequency (f V ) and body oscillation frequency (f) with the natural frequency

of the system (f n), so that f n
¼ f =f n is close to unity, which is valid for hydroelastically mounted cylinders of large

mn ¼ Oð100Þ: The first, at un ¼ 2:5; results in a local peak of the oscillation amplitude, the second at un ¼ 5 results in a

change in gradient in the oscillation amplitude vs un: If the ratio between the fluid forcing frequency and the shedding

frequency from a fixed cylinder is considered (Govardhan and Williamson, 2000), a lock-in regime clearly exists for a

much broader range of un ¼ 1–19. This form of lock-in behavior is similar to the response of a freely vibrating cylinder

at very low mass-damping (Khalak and Williamson, 1999). This is in contrast with a low mass-ratio tethered sphere in

which the oscillation frequency has been found not to correspond to either the vortex shedding frequency or natural

frequency within the same reduced velocity range (Govardhan and Williamson, 1997).

The transition in the principal frequency from synchronization with St2 to synchronization with St1 would, at first

glance, imply a transition in the dominant force component from drag to lift. However, this transition occurs at a

surprisingly low reduced velocity when the mean layover angle is considered. At un ¼ 5; the mean layover angle,

y ¼ 4:2�; and it would be assumed that the drag force would continue to dominate the oscillations in preference to the

lift force. Analysis of Fig. 6 also implies that CTan is dominated by drag up to un ’ 17; well beyond the point of

frequency transition, and analysis of Fig. 7 clearly confirms this assumption. This leads to the conclusion that the drag

signal is dominated by the same frequency as the lift for un44: As the reduced velocity increases beyond 17, the

dominant driving force switches to the lift force; however, the frequency of oscillation does not change as the principal

frequency of the lift remains equivalent to the principal frequency of the drag force.

The abrupt switch in dominant frequency at un ¼ 5 is apparent in Fig. 9. For uno5; the dominant normalized

frequency, f 1; is 0.4 (or the drag signal) and the secondary normalized frequency, f 2; is 0.2 (the lift frequency). At

un ¼ 5; f 1 and f 2 switch values, such that for un45; f 1 is 0.2 and f 2 is 0.4. A decrease in both f 1 and f 2 of the cylinder

oscillation is observed for un419 as the oscillations become desynchronized with the wake flow field.
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4.4. Time history of oscillation

Three branches of oscillation have so far been discussed and are clearly visible in Figs. 6 and 7. The first branch

(un ’ 2:5) is due to a resonance between the drag signal and the natural frequency of the system. The second branch

occurs in the reduced velocity range, un ¼ 5–19, peaking at un ¼ 19: In the previous section, it was hypothesized that the
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change in the oscillation frequency is due to a resonance between the natural frequency of the tethered body system and

the subharmonic of the drag signal. For un419; the oscillations are dominated by the lift force, and the tethered

cylinder appears to behave as a hydroelastically mounted cylinder.

Time histories of the fluid forces and cylinder motion for un ¼ 2:5; 3:5 and 5.5 are presented in Figs. 10a, 10b and 10c,

respectively. At un ¼ 2:5; the drag signal clearly has twice the frequency of the lift signal, suggesting a Karman type

wake shedding and indicating that the local peak in An observed at this reduced velocity compares with the second

instability region of in-line oscillation observed by King (1974). Both CTan and An exhibit the same frequency as the

drag force term with a slight modulation in amplitude due to the lift term.

As the reduced velocity is increased to 3.5, a significant alteration is observed. As anticipated, the drag force

diminishes markedly in amplitude as the drag force is no longer synchronized with the natural frequency of the tethered

cylinder system. However, every second peak of the drag signal is substantially greater in amplitude than the

neighboring peaks. The normalized amplitude of oscillation (An) shows the same behavior, indicating that the natural

frequency of the system is indeed influencing the subharmonic of the drag force.

As the reduced velocity is further increased to un ¼ 5:5; the drag is clearly dominated by St1 and is in phase

with the lift. This may explain the increase in the amplitude of oscillation as both the r.m.s. lift and drag forces act in

unison to drive the cylinder oscillations. Both An and CTan are also dominated by the St1 frequency lending support to

this theory.

Beyond un ¼ 19; the drag signal remains dominated by St1; however the St2 component is more noticeable

when compared to lower reduced velocities. The time history for un ¼ 22 is presented in Fig. 10d. Every second drag

peak has a higher amplitude then its neighboring peak indicating that a significant component of the St1 frequency still

exists in the drag signal. At this reduced velocity, the cylinder behaves similarly to a low mass-damped cylinder

oscillating transverse to the flow field. The phase angle between the cylinder motion and CTan is 180�: For a very low

mass-damped freely oscillating cylinder (Govardhan and Williamson, 2000), the phase angle between the displacement

and forcing was 180� only for the lower branch of amplitude response. This similarity provides an explanation for the

reduction in An and the de-synchronization from the vortex shedding frequency for un419; as the cylinder is now

oscillating in the lower branch of shedding as described by Govardhan and Williamson (2000) for a hydroelastically

mounted cylinder.

Fig. 11 depicts the spectral density of the cylinder oscillation as a function of the reduced velocity. For unp5; no peak

is apparent for the St1 frequency, and the St2 frequency dominates the cylinder oscillations. For un45; a local peak in

the frequency synchronous with the St1 frequency is apparent. A local peak in the frequency synchronous with the St2
frequency is observed for all reduced velocities studied.
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4.5. Flow field analysis

The transition from an St2 to an St1 dominated drag cycle may be better described by the analysis of pressure plots of

the flow field over one period of the cylinder shedding cycle. Contour plots of the pressure fields are presented in

Figs. 12a and 12b.

Fig. 12a shows the pressure field for a cylinder at the top of the cylinder cycle, defined as the uppermost

position of the cylinder counter clockwise from the mean layover angle. The image on the left and right

correspond to un ¼ 2:5 and 5.5, respectively. The wake flow field is seen to be in-phase by comparing the two images.
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For both reduced velocities, the wake flow field is of the von Karman type. At this phase of the oscillation cycle,

the drag coefficient is at its lowest point for both reduced velocities, and there are few differences between the two

pressure fields.
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Fig. 12b depicts the pressure flow field taken one-quarter of a shedding cycle later. In this case, the cylinder

oscillating at un ¼ 2:5 has reached the bottom of its cycle (i.e., it is halfway through its oscillation cycle)

and is essentially stationary with respect to the pivot point. However, the cylinder oscillating at un ¼ 5:5 is only

one-quarter through its oscillation cycle and is moving in the flow field direction with a maximum velocity with

respect to the pivot point. As with Fig. 12a, the wake pressure fields for both the reduced velocities are remarkably

similar, however the stagnation pressure acting at the front of the cylinder for un ¼ 2:5 is significantly greater than for

un ¼ 5:5: It would appear that the motion of the cylinder, oscillating at its natural frequency at un ¼ 5:5; reduces the
intensity of the stagnation pressure point over half of its cycle providing a drag signal component at the cylinder

oscillation frequency (St1). The drag cycle retains a component of the St2 frequency due to the Karman type shedding

wake for the entire range of reduced velocities investigated. The St1 frequency is simply superimposed over this for

un43:5:
Time histories of the base pressure coefficient (CPB) and the leading-edge pressure coefficient (CPLE) for un ¼ 2:5 and

un ¼ 5:5 are shown in Figs. 13a and 13b. As may be observed in Fig. 13a, both CPB and CPLE are synchronized with the

St2 frequency. As the reduced velocity is increased to un ¼ 5:5 (Fig. 13b), CPB remains dominated by the St2 frequency,

however the St1 frequency is also apparent. By contrast, CPLE is dominated by the St1 frequency, in a fashion similar to

the drag signal at this reduced velocity.

At higher reduced velocities, the cylinder oscillation remains synchronized with the lift frequency (St1) and sufficient

horizontal motion is retained to reduce the pressure at the leading edge stagnation point over half the oscillation cycle

up to a reduced velocity of un ¼ 19: Beyond un ¼ 19; the cylinder’s horizontal motion is less dominant as the cylinder

oscillates principally in the transverse direction, and the dominant drag signal reverts to St2 for these high reduced

velocities.

Fig. 14 depicts the vorticity field for a cylinder oscillating at a reduced velocity un ¼ 22 at the top of its oscillation

cycle. Here, the cylinder is oscillating principally in the transverse direction (y ¼ 79�) and is behaving as a low mass-

damped hydroelastically mounted cylinder oscillating in the lower branch.

Of interest is that the shedding into the wake is clearly a 2S branch of shedding, as is the shedding for all reduced

velocities investigated. This finding is especially relevant at this high reduced velocity as it is in contrast with the

experimental findings of Govardhan and Williamson (2000), who found 2P shedding for a low mass-damped

hydroelastically mounted cylinder allowed to oscillate in the transverse direction. However the research of Blackburn et

al. (2001) reveal that two-dimensional low Reynolds number simulations are insufficient to capture 2P shedding

branches as these shedding modes appear to be strongly influenced by three-dimensional effects.
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4.6. Predictions of the St1 component in the drag response

The influence of the cylinder velocity on the calculated drag force over one cycle of oscillation was determined for

un ¼ 5:5; where the cylinder oscillations may be considered in-line with the flow direction.

In the reduced velocity range un ¼ 5:5–19, the cylinder oscillation provides a variation in the flow field velocity with

respect to the cylinder and hence an effective change in the local Reynolds number, that is, the Reynolds number based

on the flow relative to the cylinder. The maximum local Reynolds number occurs at the point in the oscillation cycle

where the cylinder is moving upstream with the greatest velocity. The minimum local Reynolds number occurs when the

cylinder is moving downstream with the greatest velocity. The calculated maximum and minimum local Reynolds

numbers at un ¼ 5:5 were found to be Remax ¼ 205:4 and Remin ¼ 194:7; respectively. From the relationship between

the Reynolds number and the drag coefficient, CD; determined by Henderson (1995), this implies a maximum variation

in the drag coefficient of 0.003 over one cycle. Therefore the drag coefficient may be considered effectively constant over

a cycle of oscillation for un ¼ 5:5: However, even though the drag coefficient is approximately constant, the drag force

may vary substantially. The maximum drag force corresponds to the maximum local Reynolds number and the

minimum drag force corresponds to the minimum local Reynolds number.

For all the reduced velocities considered in this study, the drag force acting on the cylinder is 180� out-of-phase with

the cylinder velocity. Combining this with the definition of the drag coefficient, the ratio of maximum drag coefficient to

minimum drag coefficient may be written as

CDmax

CDmin

¼
Re2max

Re2min

" #
FDratio

’ 1: (18)
Fig. 15. Spectral density of the drag force for un ¼ 5:5:
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Fig. 14. Typical snapshot of the vorticity flow field for a tethered cylinder oscillating at a reduced velocity un ¼ 22 at the top of its

oscillation cycle.
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Here FDratio
¼ FDmax

=FDmin
is the ratio of maximum to minimum drag force acting on the cylinder. Since the drag

coefficient varies little over this Reynolds number range, Eq. (18) can be rearranged as

FDratio
¼

Re2min

Re2max

: (19)

For un ¼ 5:5; the drag ratio was FDratio
¼ 1:107: By substituting this, and the values for the maximum and minimum

Reynolds number quoted earlier into Eq. (19), we see that the variation in effective Reynolds number accounts for 81%

of the observed variation in the drag ratio. The remainder is due to nonlinear effects including the Karman type wake

shedding. To confirm this result, the spectral density of the drag is presented in Fig. 15. Two peaks are observed,

occurring at St1 and St2: The larger of the two peaks, St1; is due to the cylinder oscillation, and accounts for 82% of the

energy in the drag trace, in close agreement with the predictions made above.
5. Conclusions

Two-dimensional simulations of the flow past a tethered cylinder have been performed for the reduced velocity range,

un ¼ 1–22, for a cylinder mass ratio mn ¼ 0:833: In this range of un; three distinct branches have been identified. The

first branch, peaking at un ¼ 2:5; is essentially an in-line branch and is driven by a resonance between the in-line forces

and the natural frequency of the cylinder system. The second branch, occurring over the range un ¼ 5–19, is initiated in

the range un ¼ 3:5–5 by resonance between the natural frequency of the tethered body system and the subharmonic of

the drag force which peaks at un ¼ 5: At higher reduced velocities, the motion of the cylinder modifies the drag

response, such that the drag and lift have the same dominant frequency and are in-phase. The cylinder oscillates at the

drag/lift frequency over the extent of the second branch. The motion of the cylinder alters the frequency of the leading-

edge stagnation pressure, and as a result, alters the drag signal, such that the drag signal is dominated by the lift

frequency, and both the drag and lift are in-phase. The third branch occurs for un419 and is dominated by transverse

oscillations. The cylinder response for this branch is similar to that observed by Govardhan and Williamson (2000) for a

low mass-damped hydroelastically mounted cylinder oscillating transverse to the flow field, as the cylinder oscillations

reduce dramatically with increasing un; and the oscillations are no longer synchronized at the vortex shedding frequency

from a fixed cylinder.
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