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The flow past a circular cylinder moving through a fluid at different heights above a

plane no-slip boundary is investigated numerically for Reynolds numbers r200.

The gap height is varied from large values, effectively corresponding to the freestream

case (G=D¼1), down to a small value where the cylinder is just above the wall

(G=D¼ 0:005). The initial transition from steady two-dimensional flow can occur

through either a Hopf bifurcation to unsteady flow or through a regular bifurcation to

steady three-dimensional flow. The critical Reynolds numbers for each case are

determined as a function of gap height. It is found that steady two- to three-

dimensional transition occurs first at gap ratios G=Dt0:25, beyond which the initial

transition is to unsteady flow. At G=D¼ 0:3, a sharp increase in the critical Reynolds

number is observed at which three-dimensionality occurs. On increasing gap height, the

critical Reynolds number initially decreases before again increasing towards the value

observed for an isolated cylinder. The force coefficients and Strouhal numbers are

quantified. Finally, three-dimensional simulations are performed at Re¼ 200 for

the smallest gap ratio, effectively corresponding to a cylinder sliding along a wall,

to examine how the wake evolves as it saturates.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The flow past a circular cylinder has represented a generic fluid flow problem for more than a century, and the
experimental and mathematical details of the transition to three-dimensional flow have been revealed over the last
25 years. The flow undergoes an initial transition from two-dimensional periodic flow to three-dimensional flow via a
sub-critical transition at ReC190 (Barkley and Henderson, 1996; Williamson, 1996a, 1996b), where the Reynolds number
(Re) is based on the free-stream velocity (U) and the cylinder diameter (D). The spanwise modulation of this three-
dimensional flow at onset was found to be approximately four cylinder diameters and the corresponding wake instability
is commonly known as the Mode A instability. Another three-dimensional instability mode, Mode B, becomes unstable at a
higher Reynolds number and the remnants of that mode seem to persist to much higher Reynolds numbers as the wake
undergoes a transition to a chaotic state (Henderson, 1997; Williamson, 1996a, 1996b). The equivalent modes have also
been recognised in the wakes of other two-dimensional cylindrical bodies, such as square cylinders (Robichaux et al., 1999)
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and elongated cylinders (Ryan et al., 2005). Until recently, very few studies have investigated the related problem of flow
past a circular cylinder moving parallel to a wall and the associated wake transitions.

Bearman and Zdravkovich (1978) performed experimental investigations for a cylinder near a fixed wall at Re¼ 4:5�
104 for 0rG=Dr3:5. The cylinder was located 36D from the start of a turbulent boundary layer which developed along
the wall. They observed the suppression of regular vortex shedding for G=Do0:3, with the Strouhal number remaining
almost constant until this gap height was approached.

Price et al. (2002) visualised the flow for a circular cylinder at different gap heights from a fixed wall for Reynolds
number in the range of 1200rRer4960 and identified four different regimes of flow. For the case where the cylinder was
close to the wall (G=Do0:125), vortex shedding was suppressed and the wall boundary layer separation occurred both
upstream and downstream of the cylinder. For 0:25rG=Dr0:375, the flow was qualitatively similar to that for the small
gap ratios, while pairing occurred between the inner shear layer from the cylinder and the wall boundary layer. Vortex
shedding was detected for G=D40:5, and at higher gap heights, the flow resembled that of an isolated cylinder.

Experimental investigations undertaken by Bailey et al. (2002) for a square cylinder near a stationary wall at
Re¼ 1:89� 104 showed the presence of dislocations (which are commonly associated with mode A type instability) for
gap heights greater than G=D¼ 0:7. For 0:53rG=Dr0:7, the spanwise perturbations were suppressed as a result of higher
flow velocities in the gap region, thereby leading to the flow being mainly two-dimensional and a reduction in the
occurrence of dislocations. Below G=Dr0:53, intermittent vortex shedding was observed. Experimental investigations at a
slightly higher Reynolds number of 22 000 by Bosch et al. (1996) showed that the vortex shedding was completely
suppressed at G=D¼ 0:25, while low intensity intermittent shedding occurred at higher gap ratios.

Using a finite-difference method, Lei et al. (2000) performed numerical simulations for a circular cylinder for G=D

between 0.1 and 3 and for Reynolds numbers 80rRer1000. In their simulations, the lower wall and the cylinder were
fixed and a boundary layer started 16D upstream of the cylinder. They observed that the gap height at which vortex
shedding was suppressed decreased as the Reynolds number was increased up to Re¼ 600. Beyond this value, the critical
gap height remained constant. A similar study was performed by Harichandan and Roy (2012) for a flow starting 10D

upstream of the cylinder at Re¼ 100 and 200. Single sided vortex shedding was observed for G=D¼ 0:2 and Re¼ 200,
and as the gap height was increased, Kármán type shedding was observed.

One of the earliest visualisations of the wake of a circular cylinder moving parallel to a wall was by Taneda (1965), who
visualised the vortex streets for the cylinder moving at gap heights of G=D¼ 0:6 and 0.1 at Re¼ 170. For G=D¼ 0:1, a single
row of vortices formed and these were unstable and dissipated quickly. Furthermore, the wavelength of vortex street
increased as the gap ratio was decreased.

Nishino et al. (2007) performed experimental investigations for a circular cylinder near a moving wall for higher
Reynolds numbers (O(105)). For a cylinder with endplates, they reported that the flow essentially remained two-
dimensional, with Kármán type vortices being shed for gap heights G=D40:5, and an intermediate shedding regime being
observed for 0:35rG=Dr0:5, followed by complete cessation of shedding below G=Do0:35. They further reported that
the drag coefficient was nearly constant when the body was below G=Do0:35. However, for a cylinder without endplates,
they reported that the Kármán type vortices were not being generated and the drag coefficient was nearly constant in this
regime.

Zerihan and Zhang (2000) investigated the variation of lift and drag forces on a single element wing (of chord c) with a
moving ground in a wind tunnel at high Reynolds numbers (O(104)). For the airfoil tested, the (negative) lift coefficient
increased from its value at low gap heights to a maximum value at height h¼ 0:08c, beyond which a decrease in the lift
coefficient was observed. The drag coefficient decreased on increasing gap height. They further varied the incidence angle
of the airfoil and observed that the gap height at which the maximum (negative) lift was generated varied marginally.

Zhang et al. (2005) investigated the ground effect of a half-cylinder using a moving ground in a wind tunnel facility for
Reynolds numbers in the range 6:8� 104rRer1:7� 105. The critical gap height range over which vortex shedding was
suppressed was found to be 0:525rG=Dr0:55. The drag force was nearly constant below this height but a sharp increase
to twice the value was observed around the critical gap height. The lift coefficient decreased as the gap height was
increased. Furthermore, the Strouhal number was found to be insensitive to the gap height.

Bhattacharyya and Maiti (2005) investigated the flow for a square cylinder near a moving wall for a wide range of
Reynolds numbers (below 1400) for 0:1rG=Dr0:5. They observed that the mean lift coefficient decreased gradually as
Reynolds number was increased, while the drag coefficient increased with Reynolds number. The lift and drag coefficients
were higher for lower gap heights. They further observed that the Strouhal number decreased as the gap height was
decreased. They obtained the velocity profiles in the gap between the cylinder and the wall.

Huang and Sung (2007) performed two-dimensional simulations for a circular cylinder moving near a wall for
0:1rG=Dr1 for Rer600. The gap height at which alternate vortex shedding disappeared decreased from 0.28D to 0.25D

as the Reynolds number was increased from 300 to 600. The non-dimensionalised shedding frequency (St) at different
Reynolds numbers increased as the cylinder was brought closer to the wall (C0:5D) followed by a rapid decrease as the
gap height was decreased. They further quantified the lift and drag coefficients, with the lift coefficient showing a linear
increase as the cylinder was brought closer to the wall. They however did not rule out the possibility that three-
dimensional effects would be important for such flows.

Using an immersed boundary technique, Yoon et al. (2010) performed numerical investigations at various gap heights
for a circular cylinder moving parallel to a wall at Rer200. The time-averaged lift and drag coefficients decreased
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exponentially as the gap height was increased. They observed steady flow at higher Reynolds numbers as the gap height
was decreased. Vortex shedding persisted at Re¼ 120 for the cylinder with G=D¼ 0:1.

For a body moving along a wall, Arnal et al. (1991) observed that the presence of a wall had a stabilising effect on the
flow dynamics, delaying the transition to unsteady flow to higher Reynolds numbers. For a square cylinder sliding along a
wall, they observed that the onset of unsteady flow occurred around Re¼ 100, where the vortex pair moved away from the
wall. Instabilities of this nature occurred when vortex cores convected at slower velocities than the mean flow, as shown
by the experimental investigations of Lim et al. (2004) for a flat plate boundary layer. Dipankar and Sengupta (2005)
further showed that the instability occurs in the convecting vortex core shed from the freestream side of the cylinder.

Mahir (2009) investigated the onset of three-dimensional flow for a square cylinder near a fixed wall for Rer250 as the
gap height was increased from 0.1 to 4. At Re¼ 185, mode A type vortex structures of spanwise wavelength 3D were
observed for gap heights greater than G=D¼ 1:2, while at G=D¼ 0:8, mode B type vortex structures with 1D spanwise
wavelength were observed. Below G=D¼ 0:5, neither mode A nor B type vortex structures were observed. At Re¼ 250,
mode B type vortex structures were observed at larger gap heights, while at lower gap heights the vortex structure was
strongly distorted in the vicinity of the cylinder. In the frequency spectra of the streamwise and spanwise velocities for
G=D¼ 0:8 and Re¼ 185, period-doubling was observed.

Stewart et al. (2006, 2010b) performed numerical and experimental investigations for a circular cylinder moving near a
plane wall at a very small gap height (G=D¼ 0:005) for Rer200. They reported that the flow was steady up to Re¼ 165,
beyond which periodic flow was observed, where oppositely signed vortex structures combined and self-propelled away
from the wall. They further performed linear stability analysis and determined the onset of three-dimensional flow. The
flow became three dimensions directly from steady flow at Rec ¼ 70:5, unlike the case for an isolated cylinder, for which
the transition to a three-dimensional state occurs from the unsteady flow. Experimental wake visualisations for the
cylinder near a wall in a water tunnel were in good agreement with the numerical simulations.

In this study, we perform two-dimensional simulations for a circular cylinder moving parallel to a wall at different gap
heights using a spectral-element method. This is coupled with linear stability analysis to investigate the wake transitions
and wake behaviour at different gap heights. The dependence of the force coefficients and the shedding frequency on
Reynolds number and gap height is quantified.
2. Problem definition and methodology

The schematic representation of the cylinder moving parallel to the wall is shown in Fig. 1. A cylinder of diameter D is
moving at a gap height of G from the wall. In the numerical setup, it is convenient to use a uniformly translating frame of
reference centred on the cylinder. Relative to this non-accelerating frame, the fluid and the lower wall move at a uniform
speed and the cylinder remains stationary. There are two controlling non-dimensional parameters: the Reynolds number,
Re¼UD=n, where n is the kinematic viscosity of the fluid, and the gap ratio, G=D. For this study, the Reynolds number lies
in the range 25rRer200. Computational domains were constructed for different gap heights from freestream (G=D¼1,
i.e., no wall) to a minimal gap (G=D¼ 0:005). The small gap was maintained to prevent a singular mesh element between
the bottom of the cylinder and the lower wall. Previous studies (Rao et al., 2011; Stewart et al., 2006, 2010b) have shown
good agreement between the flow structures visualised in the experiments and those observed numerically, even though
the force coefficients are sensitive to gap height for small gaps. As is usual, the lift force (Fl) and drag force (Fd) are
normalised by the dynamic pressure and area (0:5rU2D) to obtain the lift (CL) and drag (CD) coefficients, respectively.
In the unsteady regime of flow, vortex shedding occurs and the force coefficients vary periodically, so time-averaged
quantities are reported. The simulations were performed for t4400, where time, t, is non-dimensionalised
by U=Dðt¼ tU=DÞ. The frequency of shedding, f, is normalised by the cylinder diameter and flow speed to obtain the
non-dimensional Strouhal number, St¼ fD=U.
Fig. 1. Schematic representation of the circular cylinder of diameter D at a distance G from the wall.
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2.1. Numerical formulation

The incompressible Navier–Stokes equations are solved using a spectral-element method. The computational domain is
constructed from quadrilateral elements, mainly rectangular, while some have curved boundaries to accurately treat the
curved surface of the cylinder. These elements are further subdivided into internal node points which are distributed
according to the Gauss–Legendre–Lobatto quadrature points, with the velocity and pressure fields represented by tensor
products of Lagrangian polynomial interpolants within the elements. Such methods are known to provide spectral
convergence as the polynomial order of the interpolants is increased (Karniadakis and Sherwin, 2005). The number of node
points (N� N) is specified at runtime, with the interpolant polynomial order being N�1. A fractional time-stepping
technique is used to integrate the advection, pressure and diffusion terms of the Navier–Stokes equation forward in time.
The unsteady solver is used to investigate the parameter range covering both the steady and unsteady regimes of flow.
More details on this method can be found in Thompson et al. (2006a) and has previously been used in studies of bluff
bodies in freestream (Leontini et al., 2007; Thompson et al., 1996, 2006b), for bodies near a wall (Rao et al., 2011; Stewart
et al., 2006, 2010a, 2010b; Thompson et al., 2007) and for bodies in a confined flow (Griffith et al., 2007, 2011).

2.2. Linear stability analysis

For an isolated cylinder, three-dimensional flow occurs for Re\190 (Barkley and Henderson, 1996; Williamson, 1996a,
1996b) in the unsteady regime, while for bodies close to a wall the flow becomes three-dimensional directly from a steady
base flow (Rao et al., 2011; Stewart et al., 2010b). We here investigate the variation between these two extremes mapping
the transition for different gap heights. The bifurcation to three-dimensional flow is determined using linear stability
analysis. Numerically, the Navier–Stokes equations are linearised and the spanwise perturbations are constructed as a set
of Fourier modes. The resulting equations are marched forward in time, and after several periods, the fastest growing or
slowest decaying modes dominate the system. For unsteady (periodic) flows, the analysis is based on the growth over a
base flow period (T) and is known as Floquet analysis. In that case, the ratio of the amplitudes of the perturbation field for
consecutive periods is denoted by m¼ esT , where m is the Floquet multiplier or the amplification factor and s is the growth
rate. For exponentially growing modes, the Floquet multiplier returns a value of 9m941, or a positive growth rate
(ReðsÞ40). For a circular cylinder, the fastest growing modes at the onset of three-dimensionality have a purely real
Floquet multiplier, i.e., the periodicity of the three-dimensional perturbations is the same as the base flow period.
However, other unstable modes which are incommensurate with the base flow also occur, e.g., for a circular cylinder
(Blackburn and Lopez, 2003), square cylinder (Robichaux et al., 1999) or flat plate (Thompson et al., 2006b). In addition,
it is also possible for the perturbation modes to have twice the period of the base flow such as for the wake behind rings
Sheard et al. (2003, 2004) and inclined square cylinders in freestream (Sheard, 2011; Sheard et al., 2009). These are termed
sub-harmonic modes.

Details of the approach can be found in, e.g., Ryan et al. (2005) and Leontini et al. (2007).

2.3. Resolution studies

The domain used for the two-dimensional flow computations had boundaries positioned at large distances from the
cylinder-wall system to minimise blockage. The inlet and outlet boundaries were placed 100D from the cylinder, while the
transverse boundary was located 150D from the lower wall. Studies conducted by Rao et al. (2011) showed negligible
changes to the force coefficients and Strouhal number if larger domains were used. Furthermore, spatial resolution studies
were conducted for G=D¼ 0:01 at Re¼ 200 by varying the number on internal nodes within each element (N�N), between
N2
¼42 and 102. For N2

¼72, maximum variation in the force coefficients and Strouhal number from the most highly
resolved case was less than 0.1%. However, because the macro-element mesh resolution is considerably lower away from
the solid surfaces, to ensure adequate resolution of the flow structures in the far wake the internal resolution was set to
N2
¼ 92. Further, to ensure stability of the solver at these resolutions, which is governed by a Courant condition for the

explicit non-linear sub-step, the time-step used was 0.001.

3. Results

3.1. Flow structures

The parameter investigation was carried out between G=D¼ 0:005 and G=D-1 for Reynolds numbers 25rRer200.
The flow for all cases investigated is steady at low Reynolds numbers and is characterised by the formation of recirculation
zones behind the cylinder. For small gap heights, a single recirculation zone forms in the wake away from the wall, and as
the gap height is increased, the formation of a secondary recirculation can be observed as the wake becomes more
symmetrical. In line with the isolated cylinder case, the length of these recirculation zones increases as the Reynolds
number is increased. At still higher Reynolds numbers, the flow undergoes transition to an unsteady state, with the wake
state is characterised by the periodic shedding of vortices. For bodies close to the wall (G=Dr0:1), the critical Reynolds
number for transition to an unsteady state was higher than Re¼ 165, and as the gap height was increased, the unsteady
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transition occurred at lower Reynolds numbers. Recall that for bodies near a wall, three-dimensional flow occurs in the
steady regime of flow (Stewart et al., 2010b). For bodies close to a wall, vortex shedding occurs when the negatively signed
separating shear layer from the top of the cylinder combines with oppositely signed vorticity from the boundary layer at
the wall to form vortex pairs, which self-propel away from the wall. However, for the cylinder moving at larger gap
heights, the unsteady wake is characterised by the formation of the classical von Kármán vortex street. Shown in Fig. 2 are
the coloured vorticity contour plots for the cylinder moving at different gap heights above the wall at Re¼200. The images
shown are at instant of maximum lift coefficient in the shedding cycle.

The variation of the time-averaged drag and lift coefficients is shown in Fig. 3 in the steady regime of flow. Studies by
Stewart et al. (2010b) show that the drag coefficient obeys a power law relationship with Reynolds number. Shown here
on a log–log plot, the drag coefficient varies approximately linearly in the steady regime. There is a difference in the drag
coefficient of approximately 2 between the smallest and largest gap cases. The mean lift coefficient varies substantially
more since the mean lift approaches zero as G=D-1.

The variation of the time-averaged drag and lift coefficients together with the standard deviations is shown in Fig. 4 for
the unsteady regime of flow. Over this Reynolds number range the mean drag coefficient changes only by approximately
10% or less as the gap ratio or Reynolds number is varied.
(a) G/D = 0.01 (b) G/D = 0.1

(c) G/D = 0.25 (d) G/D = 0.4

(e) G/D = 0.5 (f) G/D = 0.75

(g) G/D = 1 (h) G/D = 2

Fig. 2. Flow structures at Re¼ 200 for the circular cylinder moving from right to left at the specified gap heights. Vorticity contour levels are between

75D=U. The wake is visualised for a streamwise distance in excess of 25D downstream of the cylinder. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Force coefficient phase trajectories at different gap heights for periodic flow at Re¼200.

Fig. 6. Variation of Strouhal number with gap height for different Reynolds numbers.
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Phase diagrams for various gap heights are provided in Fig. 5 at Re¼200. Cl is plotted against Cd at each gap height.
The curves show the phase relationship between the force coefficients and the variation of the amplitude over one period
of the lift coefficient. For G=D¼1, the phase relationship is symmetric between two halves of the cycle, and an apparent
loss in symmetry is observed for G=Dr1. For very small gaps (G=Dr0:1), the shedding becomes substantially one-sided,
as shown in Fig. 2, where the lift and drag signals are out of phase by approximately 1801.

The variation of the shedding frequency (St) with gap height for various Reynolds numbers is shown in Fig. 6. The Strouhal
number drops substantially as the cylinder is positioned closer to the wall, approaching a value of approximately 0.1 as the
gap approaches zero. As the gap height is increased, the Strouhal number increases almost linearly initially before reaching
a maximum for 0:5rG=Dr0:75, above which it decreases slightly as it asymptotes to the value for an isolated cylinder in
freestream. Predictions from Huang and Sung (2007) and an independent immersed boundary code (J.S. Leontini, private
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communication) are in good agreement with the current Strouhal number predictions. It is also interesting that a similar decrease
in Strouhal number is found when a cylinder approaches a free surface (Reichl et al., 2005).

3.2. Stability analysis

The stability of the flow to spanwise perturbations is investigated for cylinders moving at different gap heights above
the wall. Two-dimensional steady or unsteady flow solutions are used to provide base flows to investigate the stability to
three-dimensional perturbations.

For G=D¼1, Barkley and Henderson (1996) showed that the flow became linearly unstable to three-dimensional
perturbations at Rec ¼ 188:5 for lc=D¼ 3:96. Our stability analysis performed on the unsteady base flow showed that for
this case the flow becomes unstable at Rec ¼ 190:5 for the same spanwise wavelength. The marginal variation in the
critical Reynolds number between these two predictions (O(1%)) can be attributed to the considerably larger domain size
used here, which also leads to a slightly different Strouhal number to that found by Barkley and Henderson (1996).
Stability analysis performed on the steady base flow at G=D¼ 0:005 (Rao et al., 2011) is in agreement with the previous
studies of Stewart et al. (2010b). The current investigation was carried out to quantify the variation with gap height,
mapping the boundary between the two- and three-dimensional regimes.

The variation of the critical spanwise wavelength and critical Reynolds number with gap height is shown in Fig. 7 for
gap heights G=Dr1:2. In Fig. 7(a), the approximate demarcation between the steady and unsteady regimes is shown by
the dotted line.

For G=Dr0:22, stability analysis was performed on a steady base flow, where the power method was used to resolve the
dominant growing mode. However, for gap heights greater than G=D¼ 0:22, stability analysis was performed on an unsteady
base flow using the Arnoldi method to resolve the dominant Floquet modes based on Krylov subspace iterates. This method can
resolve both the real and imaginary components of the Floquet multiplier of the first few most-dominant modes. Domains used
for the computations of the steady base flow were used for the stability analysis for the steady regime, while the computational
domain had to be resized for the analysis in the unsteady regime. In that case, the perturbation fields were not adequately
resolved in the far wake (x=D430), where the macro-elements are large. Since the modes are global modes (with the same
growth rate everywhere), inadequate resolution, such as in the far wake, can lead to spurious growth rate predictions if
unphysical large mode amplitudes occur there. To combat this problem, new computational domains were constructed with
boundaries closer to the cylinder. The Strouhal numbers for the smaller domains were computed. The variation in the Strouhal
number values between the larger and smaller sized domains was C15%. Although this will affect the accuracy of critical
Reynolds numbers and growth rates by a similar percentage, it is unlikely to affect the underlying physics.

Fig. 8 shows the computed spanwise perturbation vorticity contours for the most unstable wavelengths near the critical
Reynolds numbers for onset of the instability. Spanwise vorticity contours of the base flow are overlaid to highlight the
relative position of high mode amplitudes. This instability contours resemble those for a backward-facing step (Blackburn
et al., 2008), flow downstream of a blockage or sudden expansion (Griffith et al., 2007, 2008; Marquet et al., 2008) or even
the instability in the flow over a forward-facing blunt plate (Thompson, 2012). Those cases have in common an attached
downstream recirculation zone, and lead to a large spanwise-wavelength steady three-dimensional instability, which
generates recirculating flows in the horizontal (x–y) plane.

At G=D¼ 0:28, the flow remained two-dimensional for Rer200. For larger gap ratios (G=D\0:3), the three-
dimensional instability first manifests after the flow has already become unsteady. This case is analogous to Mode A for
an isolated circular cylinder, with the critical Reynolds number and wavelength curves shown in Fig. 7 indicating a
continuous transition towards the corresponding Mode A values. The mode structures for different gap heights are shown
Fig. 7. Variation of critical values for the onset of three-dimensional flow with gap height. (a) Variation of the critical Reynolds number with G=D.

The boundary of the transition between the steady and unsteady regimes obtained using a two-dimensional base flow is shown by the dotted line.

(b) Variation of the critical spanwise wavelength with G=D. The three-dimensional modes which grow on the steady base flow are marked by open circles

(J) and those on the unsteady base flow by filled circles (�). In each diagram, the gap height at which the flow is stable to three-dimensional

perturbations for Rer200 is shown by the vertical grey line.



Fig. 8. Spanwise perturbation vorticity colour contours (between levels 70:1D=U) for the cylinder moving at different gap heights at the specified

Reynolds number and spanwise wavelength. Base flow vorticity contours between levels 71D=U are overlaid. The cylinder is moving from right to left in

each image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in Fig. 9, highlighting the broad similarities in the perturbation fields. In particular, the near wake shows high perturbation
amplitude in the forming vortex cores as well as in the sheared region between the cores, and further downstream the
perturbation is high in the vortex cores and drops to zero at the edge, reminiscent of the perturbation field structure for an
elliptic instability as found for mode A, e.g., Thompson et al. (2001) and Leweke and Williamson (1998). Although for small
gap heights there is some interaction with the no-slip wall contributing to the mode structure, this does not dominate the
evolving perturbation field.

Table 1 provides the critical values of Reynolds number and spanwise wavelength for the three-dimensional transition
as a function of the gap height.

3.3. Stability analysis at higher Reynolds numbers for bodies near a wall

Previous studies by Rao et al. (2011) and Stewart et al. (2010b) reported three-dimensional flow in the steady regime at
low Reynolds numbers prior to the onset of unsteady flow for a circular cylinder near a wall. Barkley and Henderson (1996)
performed stability analysis at Re¼ 280 for an isolated cylinder and observed a short wavelength instability, commonly
known as mode B. Here, we perform a similar analysis to predict all the amplified growing modes at a higher Reynolds
numbers well past the transition value, and then we use three-dimensional direct numerical simulations to further
investigate the nature of the saturated wake state.

For a cylinder (effectively) sliding along a wall (G=D¼ 0:005), the two-dimensional flow undergoes transition to an
unsteady wake state at ReC160. Stability analysis was performed on the unsteady base flow at Re¼ 200 to obtain the
fastest growing modes. The growth rate curves are shown in Fig. 10. Four distinct modes are observed for l=Dr25, with
the shortest wavelength mode at l=D¼ 2:4 (termed mode I) being the fastest growing. Three other modes whose
maximum growth rate peaks are at l=D¼ 4:55,5:35 and 11 and are termed mode II, mode III and mode IV, respectively.
The corresponding spanwise perturbation vorticity fields at these preferred spanwise wavelengths are shown in Fig. 11.

To further investigate the nature of these modes, the real and imaginary components of the resulting Floquet
multipliers are resolved. These are plotted in the complex plane for each of the four modes in Fig. 12. The horizontal and
the vertical axis correspond to the real and imaginary components of the Floquet multipliers, respectively. The unit circle
(9m9¼1) is shown by the solid line. This separates the region where perturbations decay (inside the circle) from where
perturbations grow (outside the circle). Modes I, III and IV were found to be quasi-periodic, i.e., the period of the mode is
not commensurate with that of the base flow. Mode II, on the other hand, as a purely real and negative Floquet multiplier,
which indicates that it is subharmonic.

To validate the results of the stability analysis and to investigate the evolution towards a saturated wake state,
we performed a three-dimensional direct numerical simulation. This was initialised from the two-dimensional periodic
flow for Re¼ 200, using a three-dimensional version of the computational code employing a Fourier expansion in the
spanwise direction (Karniadakis and Triantafyllou, 1992; Leontini et al., 2007; Ryan et al., 2005; Thompson et al., 1996).
Low intensity white noise (O(10�4)) was added to trigger the development of three-dimensional flow. The selection of the



Fig. 9. Spanwise perturbation vorticity contours at the specified gap heights. The contour shading is as per Fig. 8.
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spanwise domain size restricts the number of wavelengths of each of the modes that can fit into the domain to discrete
values. Here, this length was chosen as 12D, sufficient to contain 5, 3, 2 and 1 modes I, II, III and IV wavelengths,
respectively. In addition, 64 Fourier planes were used for this simulation. While this is clearly a compromise, it is
sufficient to verify the initial linear evolution of the fastest growing perturbation mode, and it likely to give an idea of the
complex evolution towards the asymptotic wake state as the different modes grow towards saturation and interact non-
linearly.

Fig. 13(a) and (b) shows time traces of the u and w velocity components at a point in the wake as the perturbed two-
dimensional flow evolves towards a three-dimensional state. These plots show that the two-dimensional state is
maintained for more than 100 non-dimensional time units. Beyond approximately 160 time units, the periodicity in the
u trace effectively disappears as strong spanwise flow develops. Fig. 13(c) is a depiction of mode I from the linear stability
analysis using isosurfaces of positive and negative streamwise vorticity to indicate the wake structure. This should be
compared with the DNS isosurfaces shown in Fig. 13(d), which correspond to t¼95, while mode I is still undergoing
exponential amplification. This relative time is shown by the first filled circles in Fig. 13(a) and (b). Fig. 13(e) shows the
complex nature of the wake at a later time (t¼ 240) after the wake has become highly non-linear. As indicated above, in
this state even the remnants of periodicity in the u velocity component are lost. Also, there does not appear to be a clearly



Table 1

Variation of lc=D and Rec with G=D. For G/Dr0.22,

stability analysis was performed on the steady base

flow and for G/DZ0.25, the linear stability analysis

was performed on the periodic base flow.

G=D lc=D Rec

0.005 5.48 70.91

0.05 5.86 78.07

0.1 6.77 92.85

0.15 7.27 109.55

0.2 6.34 127.20

0.22 5.81 128.23

0.25 5.24 128.11

0.3 4.17 185.90

0.32 4.04 172.30

0.35 3.96 152.45

0.4 3.85 136.68

0.5 3.65 144.39

0.6 3.65 153.45

0.75 3.66 162.16

1 3.73 168.75

2 3.98 177.48

4 4.03 181.22

1 3.96 190.5

Fig. 10. Growth of the linear wake modes for the circular cylinder sliding along a wall at Re¼ 200. The inset shows the two modes between 4rl=Dr6.
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dominant spanwise wavelength. In any case, the two-dimensional base flow is clearly no longer an adequate model of the
real flow in this regime.
4. Conclusions

We have investigated the flow past a circular cylinder translating parallel to a no-slip wall at different gap heights.
Two-dimensional simulations show the onset of unsteady flow is delayed to much higher Reynolds numbers relative to the
isolated cylinder as the gap height is decreased. For a given gap height, the Strouhal number increased with Reynolds
number. The force coefficients at various gap heights have been computed. The critical Reynolds numbers and spanwise
wavelengths for the onset of three-dimensional flow are established as the gap height is varied. For G=Dr0:22, the onset
of three-dimensional flow occurs in the steady flow regime. Beyond this, three-dimensional flow develops from unsteady



Fig. 11. Spanwise perturbation vorticity contours for the cylinder sliding along a wall (G=D¼ 0:005) at Re¼ 200. The cylinder is travelling from right to

left in each image. The contour shading is as per Fig. 8.

Fig. 12. The Floquet multipliers for each of the four unstable modes at Re¼ 200. The modes and their conjugate pairs (if they exist) are shown along with

the unit circle (9m9¼ 1). Mode I is shown by open circles (l=D¼ 2:4), mode II is shown by quarter filled circles (l=D¼ 4:55), mode III is shown by half filled

circles (l=D¼ 5:35) and mode IV is shown by fully filled circles (l=D¼ 11).
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two-dimensional flow at considerably higher Reynolds numbers (e.g., Rec ¼ 185 at G=D¼ 0:3; Rec C137 at G=D¼ 0:4),
before moving towards values approaching those observed for an isolated cylinder (Rec ¼ 190:5 and l=D¼ 3:96). The wake
development for a Reynolds number well in excess of the initial critical value was also investigated for the lowest gap



Fig. 13. Direct numerical simulation (DNS) results for a circular cylinder sliding along a wall at Re¼ 200. Left: The time histories of the streamwise and

spanwise velocity components for a location in the wake downstream of the cylinder. Right: Visualisations using streamwise vorticity isosurfaces viewed

from above. Here (c) shows isosurfaces for l=D¼ 2:4 from linear stability analysis, which can be compared with the perturbation field obtained from DNS

at t¼ 95 in image (d). The final image (e) shows perturbation isosurfaces at t¼ 240 after the wake has become chaotic.
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height case, G=D¼ 0:005, effectively a cylinder sliding along a wall. At Re¼ 200, Floquet analysis shows that the two-
dimensional periodic wake is unstable to four different instability modes. The evolution of the wake was followed
using DNS for this case as the initially two-dimensional weakly perturbed flow evolves towards its asymptotic state.
This simulation shows that initial development of the fastest growing mode, in agreement with the stability analysis,
and subsequent rapid transition to a chaotic wake state, for which even quasi-periodic shedding of two-dimensional
rollers into the wake seems to be suppressed.
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