
J. Fluid Mech. (2018), vol. 847, pp. 786–820. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.309

786

Vortex-induced vibration of a transversely
rotating sphere
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The effects of transverse rotation on the vortex-induced vibration (VIV) of a sphere
in a uniform flow are investigated numerically. The one degree-of-freedom sphere
motion is constrained to the cross-stream direction, with the rotation axis orthogonal
to flow and vibration directions. For the current simulations, the Reynolds number
of the flow, Re = UD/ν, and the mass ratio of the sphere, m∗ = ρs/ρf , were fixed
at 300 and 2.865, respectively, while the reduced velocity of the flow was varied
over the range 3.5 6 U∗ (≡U/( fnD)) 6 11, where, U is the upstream velocity of
the flow, D is the sphere diameter, ν is the fluid viscosity, fn is the system natural
frequency and ρs and ρf are solid and fluid densities, respectively. The effect of
sphere rotation on VIV was studied over a wide range of non-dimensional rotation
rates: 0 6 α (≡ ωD/(2U)) 6 2.5, with ω the angular velocity. The flow satisfied
the incompressible Navier–Stokes equations while the coupled sphere motion was
modelled by a spring–mass–damper system, under zero damping. For zero rotation,
the sphere oscillated symmetrically through its initial position with a maximum
amplitude of approximately 0.4 diameters. Under forced rotation, it oscillated about
a new time-mean position. Rotation also resulted in a decreased oscillation amplitude
and a narrowed synchronisation range. VIV was suppressed completely for α > 1.3.
Within the U∗ synchronisation range for each rotation rate, the drag force coefficient
increased while the lift force coefficient decreased from their respective pre-oscillatory
values. The increment of the drag force coefficient and the decrement of the lift force
coefficient reduced with increasing reduced velocity as well as with increasing rotation
rate. In terms of wake dynamics, in the synchronisation range at zero rotation, two
equal-strength trails of interlaced hairpin-type vortex loops were formed behind
the sphere. Under rotation, the streamwise vorticity trail on the advancing side of
the sphere became stronger than the trail in the retreating side, consistent with
wake deflection due to the Magnus effect. This symmetry breaking appears to be
associated with the reduction in the observed amplitude response and the narrowing
of the synchronisation range. In terms of variation with Reynolds number, the sphere
oscillation amplitude was found to increase over the range Re∈ [300, 1200] at U∗= 6
for each of α= 0.15, 0.75 and 1.5. The VIV response depends strongly on Reynolds
number, with predictions indicating that VIV will persist for higher rotation rates at
higher Reynolds numbers.
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Vortex-induced vibration of a rotating sphere 787

1. Introduction
A vast amount of research has been dedicated to the understanding of fluid–structure

interaction (FSI) because of its practical significance in many fields. For example,
fluid flow can induce structural vibration as a result of the formation of alternately
shedding vortices into the wake, which is known as flow-induced vibration. If the
vibration triggers resonance, then the structure may suffer fatigue or even catastrophic
failure. Vortex-induced vibration or VIV is a periodic flow-induced vibration state.
VIV can be identified with vibrations that occur through the synchronisation of
the structural response with the wake unsteadiness (i.e. vortex shedding) when the
frequency is close to the system’s natural frequency. The occurrence of VIV can
be found for structures such as bridges, chimney stacks, cables, air planes, ground
vehicles, submarines and marine vessels, when there is a relative motion between
the fluid and the solid structure. Therefore, it is important to study the nature of
vortex-induced vibration and its mechanisms as a means for its control.

The fundamentals of VIV have been studied substantially through experimental and
numerical research studies focusing on basic geometries, many of which are discussed
in the comprehensive reviews of Bearman (1984), Parkinson (1989), Sarpkaya (2004),
Williamson & Govardhan (2004, 2008) and Wu, Ge & Hong (2012). Most of
these studies were based on cylindrical structures due to their intrinsic engineering
importance and due to the simplicity of setting up such models, both experimentally
and computationally. For VIV of a cylinder, three distinct branches (initial, upper
and lower) have been observed in the vibration amplitude response curve A∗(U∗),
where A∗ is the non-dimensional vibration amplitude and U∗ is the reduced velocity.
Govardhan & Williamson (2000) revealed that the first transition involved a jump
in the ‘vortex phase’, related to the changing dynamics of vortex forcing in the
transition between 2S and 2P shedding wake modes; the second transition involved a
jump in the ‘total phase’.

Compared to VIV of a cylinder, fewer studies have been devoted to developing
an understanding of VIV of a sphere, despite the fact that there is an abundance of
applications involving spherical bodies. For example, tethered bodies such as buoys,
underwater mines, tethered balloons and towed objects behind vessels. A series of
experimental studies conducted by Govardhan & Williamson (1997), Williamson
& Govardhan (1997), Jauvtis, Govardhan & Williamson (2001) and Govardhan &
Williamson (2005) using tethered spheres subject to one or two degrees of freedom
(DOF) motion revealed that a sphere also showed a VIV behaviour with a large
oscillation amplitude, similar to that of a cylinder. Furthermore, they observed four
different modes of vibrations (named modes I–IV) with varying characteristics in
terms of sphere oscillation amplitude and phase, and wake structures. The first
two modes of oscillation appeared within the reduced-velocity range 5 . U∗ . 10.
For these two modes, the body oscillation frequency, f , was close to the natural
vortex-shedding frequency, fvor, and the system’s natural frequency, fn; this indeed
suggested that these two modes of vibration were vortex-induced vibration. A similar
observation was reported over the reduced velocity range, 3.U∗. 14 by Hout, Katz
& Greenblatt (2013) and Krakovich, Eshbal & Hout (2013) in their investigations of
VIV of a tethered sphere. The sphere response amplitude smoothly transitioned from
mode I to mode II, in contrast to the VIV response of a cylinder, which displays
discontinuous branches in the amplitude response curve. Govardhan & Williamson
(2005) identified that there was a smooth ∼90◦ phase difference in vortex phase (the
phase between the vortex force and the sphere displacement) between mode I and
mode II. In these two modes, they found that two-sided hairpin-type vortex loops
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were shedding into the wake as the sphere vibrated. Moreover, there was a change
in timing of vortex shedding relative to the sphere motion once it passed from mode
I to mode II, which was consistent with their observation of the change in vortex
phase.

Following the mode II vibration as the reduced velocity was increased, Jauvtis
et al. (2001) observed mode III vibration began at a reduced velocity U∗ ∼ 20–40
with heavy spheres of m∗ = 80 and 940. In contrast to modes I and II, the principal
vortex-shedding frequency for mode III vibration was three to eight times higher than
the sphere vibration frequency (Jauvtis et al. 2001). Therefore, mode III vibration was
difficult to explain by classical lock-in theories. However, Govardhan & Williamson
(2005) argued that if the body were to be perturbed, it could generate a self-sustaining
vortex force that could be sustained over multiple shedding cycles, leading to body
vibrations of large amplitudes. They categorised mode III as movement-induced
excitation (Naudascher & Rockwell 2012). In this mode of vibration, Govardhan &
Williamson (2005) observed that there is an underlying streamwise vortex structure,
which is synchronised with the sphere vibration frequency, enabling highly periodic
vibration. Consistently, they observed long vortex-loop structures. Subsequently,
Jauvtis et al. (2001) observed mode IV vibration, at very high reduced velocities
(U∗ > 100). In this mode, the sphere oscillation frequency was not periodic as it was
in the first three modes, but interestingly, the vibration frequency was very close to
the natural frequency of the system.

Apart from those experimental studies, a few numerical studies have also been
reported on VIV of a sphere. Pregnalato (2003) investigated the VIV of a tethered
sphere at the Reynolds number 500 with two different mass ratios (m∗ = 0.8, and
0.082). In that numerical study, he observed modes II–IV vibrations that had been
observed in the experimental studies of Jauvtis et al. (2001). In the higher mass-ratio
case, mode II appeared in the reduced-velocity range, U∗ ≈ 5–10, while modes III
and IV appeared for U∗ > 10. However, for the lower mass-ratio case, mode IV
vibration did not appear in the reduced-velocity range studied (U∗= 0–20). Therefore,
he suspected that there exists a critical mass for mode IV VIV of a sphere to occur.
More recently, Lee, Thompson & Hourigan (2008) and Lee, Hourigan & Thompson
(2013) investigated the VIV of a neutrally buoyant (m∗ = 1) tethered sphere, which
was constrained to move on a spherical surface. This was a combined numerical and
experimental study that covered the Reynolds number range Re = 50–12 000. They
found there to be seven different broad and relatively distinct sphere oscillation and
wake states.

Behara, Borazjani & Sotiropoulos (2011) investigated VIV of a sphere allowing 3
DOF movement at a Reynolds number of 300 and reduced mass of 2, for the reduced-
velocity range 4 6 U∗ 6 9. In their study, the sphere showed two different amplitude
responses, corresponding to two different wake states at the same reduced velocity.
In one case, the sphere moved in a circular orbit with a spiral-type wake shedding
behind the sphere. In the other case, the sphere vibrated in a plane with hairpin-
type vortex loops shedding behind the sphere. They observed two different amplitude
response curves corresponding to each case. The sphere oscillation amplitude was
smaller when it moved in a circular orbit compared to the planar state. In addition,
they observed hysteresis in the response when the sphere was moving in a circular
orbit at the beginning of the synchronisation regime. This study was extended by
Behara & Sotiropoulos (2016) by expanding the reduced-velocity range to 06U∗613,
and by varying the Reynolds number of the flow from Re= 300 to 1000 for one fixed
reduced-velocity case (U∗= 9). It was found that the sphere trajectories were strongly
dependent on the Reynolds number.
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Vortex-induced vibration of a rotating sphere 789

The effect of the rotational motion on bluff bodies has been investigated for
centuries. Early research studies carried out by Robins in the eighteenth century
(Robins 1972) and Magnus in the nineteenth century (Magnus 1853) revealed that
a bluff body experiences a lift force (‘Magnus force’) when it propagates with a
transverse rotation. Later in the twentieth century, researchers investigated the effect
of the rotation rate, α = ωD/2U, of a sphere on the drag and lift forces (Fd and
Fl), where ω is the angular speed of the sphere, D is the diameter of the sphere
and U is the free-stream velocity of the flow. Rubinow & Keller (1961) derived an
expression for the lift force acting on a transversely rotating sphere for the Stokes
regime (Re 6 1 and α 6 0.01). They found that the drag force was independent of
the rotation rate and that the lift coefficient, Cl = Fl/(0.5ρf Uπ(D/2)2), could be
expressed as 2α. Kurose & Komori (1999) considered the flow regimes 16 Re6 500
and 06 α6 0.25, and found that both drag and lift forces increased with the rotation
rate.

In more recent studies, the effects of transverse rotation on the forces and wake
structures behind a sphere were investigated by Giacobello, Ooi & Balachandar
(2009) for rotation rates, α 6 1, by Kim (2009) for α 6 1.2 and by Dobson, Ooi &
Poon (2014) for 1.25 6 α 6 3. All three studies were conducted at Re = 100, 250
and 300. At Re = 100, they found that the axisymmetric flow present for no sphere
rotation became planar symmetric with a double-threaded wake in the presence of
rotation up to α = 3. At Re= 250 and 300, the flow underwent a series of different
transitions between ‘steadiness’ and ‘unsteadiness’ as the rotation rate was increased.
Kim (2009) claimed that the unsteady vortex shedding observed at higher rotation
rates (at Re = 250 and α = 1.2, and at Re = 300 and α = 1–1.2) was due to the
shear-layer instability of the flow. Dobson et al. (2014) observed that when α > 2,
the flow entered a regime different to the shear-layer instability regime; this was
named the separatrix regime. Their studies also revealed that the drag force increased
up to α ≈ 2 and then decreased, while the lift coefficient increased up to α ≈ 1.25
and then became constant. Poon et al. (2014) studied the unsteadiness of the flow at
Re= 500 and 1000 for 0 6 α 6 1.2 and revealed a new flow regime, the shear-layer
stable foci regime, at higher values of α.

A recent experimental study on the flow-induced vibration of an elastically mounted
rotating cylinder by Seyed-Aghazadeh & Modarres-Sadeghi (2015) revealed that the
synchronisation regime became narrower at higher rotation rates, and oscillations
ceased beyond α = 2.4. They varied the rotation rate from 0 to 2.6 in the Reynolds
number range 350 6 Re 6 1000. It was observed that cylinder rotation does not
significantly influence the oscillation amplitude. As the rotation rate increased at
a constant reduced velocity, the vortex-shedding pattern changed from 2S to 2P.
Bourguet & Jacono (2014) numerically investigated flow-induced vibration of a
transversely rotating cylinder at Re = 100. They observed that the peak oscillation
amplitude increased with the reduced velocity up to α=3.75. Moreover, the maximum
amplitude response of a rotating cylinder was three times higher than the non-rotating
case. They also observed that the reduced-velocity range over which the cylinder
showed synchronised vibration (synchronisation regime) broadened up to α= 3.5, and
then narrowed. Vibration was completely suppressed for α = 4. They observed two
new vortex-shedding patterns at high rotation rates; a T + S pattern (a triplet with
a single vortex per cycle) and the U pattern (transverse undulation of the spanwise
vorticity layers without vortex detachment).

Despite the fact that rotation greatly influences the oscillatory motion of a sphere,
to the authors’ knowledge, no experimental or numerical studies have been yet
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reported for the flow-induced vibration of a rotating sphere. Therefore, in the present
work, the effects of transverse rotation on the vortex-induced vibration of a sphere
are investigated by examining the sphere displacement, forces exerted on the sphere
and wake structures behind the sphere at Re= 300, for rotation rate 0 6 α 6 2.5 and
reduced-velocity range 3.5 6 U∗ 6 11. In addition to that, the effects of Reynolds
number on VIV of a rotating sphere are investigated over the Reynolds number
range, 300 6 Re 6 1200 at the rotation rates α = 0.15, 0.75 and 1.5 and U∗ = 6. The
structure of this paper is as follows: the next section describes the numerical methods
used; the following section presents validation studies performed; the results section
presents the sphere response to VIV, reports on the forces exerted on the sphere and
documents the wake structures; the effects of Reynolds number on VIV of a rotating
sphere are presented in the next section; followed by concluding remarks.

2. Numerical methods
In this study, the widely used open-source computational fluid dynamics (CFD)

package OpenFOAM was utilised for the numerical simulations. OpenFOAM enables
the solution of a variety of flows including compressible, incompressible, turbulent
and multiphase flows. It also facilitates the solution of FSI problems through dynamic
grid techniques (Jasak & Tukovic 2010). However, those dynamic grid techniques are
highly time consuming due to the deformation of the grid at each time step, which
adds a considerable overhead. Therefore, a non-deformable grid was used in this study
to improve the efficiency of the solution process. Blackburn & Henderson (1996) and
Leontini et al. (2006a) also used a non-deformable grid by modelling fluid flow in a
body-fixed frame. This approach is far more efficient than a dynamic grid technique.
In this section, first, the FSI system and FSI solver are discussed in detail in the
following two subsections; second, the computational details are provided.

2.1. Governing equations
The Newtonian fluid is assumed incompressible and viscous, and modelled in a body-
fixed reference frame that is attached to the centre of the sphere. This is a non-inertial
reference frame, since the sphere is allowed to move according to the fluid forces
acting on it. Therefore, the momentum equation should be corrected to include a
term accounting for the acceleration of the frame, which is just the acceleration of
the sphere as represented by the last term in (2.1) below. The sphere is assumed to
behave as a spring–mass–damper system. Thus, the fluid–solid coupled system can be
described by the Navier–Stokes equations, given in (2.1) and (2.2), with the dynamic
motion of the sphere described by (2.3):

∂u
∂t
=−(u · ∇)u−

1
ρ
∇p+∇ · ν∇u− ÿs, (2.1)

∇ · u= 0, (2.2)
mÿs + cẏs + kys = f l, (2.3)

where u= u (x, y, z, t) is the velocity vector field, p is the scalar pressure field, ρ is
the fluid density, ν is the kinematic viscosity, ys, ẏs and ÿs are the sphere displacement,
velocity and acceleration vectors, respectively, m is the mass of the sphere, c is the
damping constant, k is the structural spring constant and f l is the flow-induced vector
force acting on the sphere due to pressure and viscous shear forces.
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2.2. The fluid–structure solver
Within the OpenFOAM framework, a new solver (named ‘vivicoFoam’) was developed
to solve the fluid–structure coupled system defined by (2.1)–(2.3) for laminar flows.
The details of this solver are provided in Rajamuni, Thompson & Hourigan (2018),
so only brief details are provided here.

The solver is based on the pressure implicit splitting of operators (PISO) algorithm
for solving the unsteady incompressible Navier–Stokes equations (Issa 1986). Within
this framework, the coupled fluid–structure system is treated using a third-order
predictor–corrector method as described in Rajamuni et al. (2018). The flow and
structure equations are thus solved in a strongly coupled manner, with convergence
determined when the magnitudes of the fluid force and solid acceleration converge to
within a prescribed error bound, typically ε = 0.001. Tests were performed to ensure
that the chosen bound was sufficient to provide converged flow solutions. Typically,
the FSI solver required 3 corrector steps. In most cases the number of corrector steps
was less than 10 with the upper limit set to 15.

It should be noted that this FSI solver is overall second order in temporal accuracy,
despite the fact that the above mentioned FSI algorithm is third-order time accurate.
This is because the PISO algorithm itself is of second-order accuracy. It is recalled
that the fluid domain was modelled in a moving frame of reference. The motion of
this reference frame was taken into the account by adjusting the velocity boundary
conditions at the outer domain (except the outlet boundary). In this study, all the
outer boundaries except the outlet are treated as defined velocity boundaries. Once the
predictor–corrector iterative process is completed, the velocity at these inlet boundaries
is updated according to the sphere velocity, before proceeding to the next time step.

2.3. Computational details
A uniform flow past a sphere forced to rotate and mounted with elastic supports in
the transverse direction was investigated using the FSI solver. As shown in figure 1,
the flow is in the x direction, and the sphere is restricted to translate only in the
y direction while it rotates about the −z direction with an angular velocity of ω.
A cube of 100D was chosen for the fluid domain with the sphere at its centre. In
this study, the sphere is assumed to translate as a spring–mass system without any
damping to obtain the highest vibration amplitude. Moreover, in the FSI solver, ys,
ẏs, ÿs and f l are treated as vectors with zero x and z components, since the sphere
translation is restricted to the y direction only. At the inlet boundaries, a Dirichlet
boundary condition was prescribed for the velocity, while a zero-gradient Neumann
boundary condition was prescribed for the pressure, as shown in figure 1. At the
sphere surface, no-slip and no-penetration boundary conditions were applied using a
rotating wall velocity. A Neumann boundary condition was prescribed for the pressure
at the sphere surface. However, the normal pressure gradient at the sphere surface is
in general non-zero due to the rotation of the sphere. Therefore, it was calculated by
taking the inner product of momentum equation (2.1) and the outward unit normal
vector, η, as follows:

∇p · η= (−(u · ∇)u+∇ · ν∇u− ÿs) · η. (2.4)

At the outlet boundary, the pressure was set to zero while the velocity was prescribed
as zero gradient in the normal direction.

Figure 2 displays the unstructured grid used for the fluid domain. To achieve high
concentration near the sphere, a cube of 5D was placed around the sphere. This cube
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x

y

k

k

z

100D

100D

100D

wall velocity,
origin – (0 0 0)
axis – (0 0 –1)

angular
velocity –    ,

U – freestream velocity
u – fluid velocity vector
p – fluid pressure

D – sphere diameter
– outward unit normal vector

– sphere velocity vector
– sphere angular velocity

k – spring constant

FIGURE 1. (Colour online) Schematic of the computational domain and
boundary conditions.

x

y
z

(a) (b)

(c)

FIGURE 2. (Colour online) The unstructured-grid computational domain: (a) isometric
view; (b) the cubic block placed around the sphere, which was decomposed into six square
frustums; (c) grid near the sphere surface at xy plane.

was decomposed into six square frustum-shaped blocks, as shown in figure 2(b). The
grid was compressed near the sphere surface by selecting an exponentially distributed
cell thickness in the radial direction in each square frustum (see figure 2c). A large
number of grid points was assigned in the downstream direction to resolve the wake
structures. Four finer grids were generated to assess the grid independence analysis
(refer to the next section for more details). To optimise the grid generation process,
initially, the number of cells on the surface of the sphere, N, was kept constant
at 7350. This grid (grid 1) comprised '0.79 million cells with a minimum cell
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thickness in the radial direction from the sphere surface, δl, of 0.011D. The second
grid was generated by decreasing δl to 0.004D. This yielded '1.25 million cells,
with approximately 10–16 cells within the boundary layer. This grid is sufficient to
resolve the flow in the near wake. However, two more grids were generated to ensure
that the solution was grid independent. In the third grid, δl was further decreased
to 0.002D by choosing the same number of cells as grid 2. Finally, the fourth grid
was generated by increasing N to 18 150 by choosing the same δl as grid 2 to
observe the effect of cell thickness in the tangential direction on the solution. The
non-dimensional time step, δτ = δtU/D, used with each grid for all the analyses
was 0.005.

3. Numerical sensitivity and validation studies
This section presents two validation studies. The first study aims to display

the ability of capturing important physics of the flow past a rigidly mounted and
transversely rotating sphere at Reynolds number 300. The second study demonstrates
the validation of the newly built FSI solver for vortex-induced vibration studies.
Finally, grid independence analyses performed for vortex-induced vibration of a
sphere are presented.

3.1. Transversely rotating rigid sphere
Flow past a rigidly mounted and transversely rotating (in the −z direction) sphere was
investigated at Re= 300 for the rotation rates 0 6 α6 3. The computed values of the
time-mean drag coefficient, Cd, and the time-mean lift coefficient, Cl, are compared
with other studies in figures 3(a) and 3(b), respectively. The present results agree well
with the results in the literature (Giacobello et al. 2009; Kim 2009; Poon et al. 2010;
Dobson et al. 2014). The time-mean lift coefficient increased with increasing α but
levelled off at higher rotation rates. The drag coefficient increased with α up to α ≈
1.75 and then decreased.

The flow underwent a series of transitions between ‘steadiness’ and ‘unsteadiness’
as the rotation rate increased from 0, as shown in table 1. From α = 0 to 0.3, the
flow was unsteady with vortex shedding. Moreover, the shedding frequency increased
as the rotation rate increased. For α = 0.4, the flow became steady with a double-
threaded wake structure. As α increased further, the flow remained steady until α= 2
with a double-threaded wake, except for α = 1.25, where the flow was unstable due
to the shear-layer instability, as discussed by Kim (2009). For α ∈ [2.25, 3], the flow
became unstable again, but with an asymmetric wake structure having no symmetry
at all. Figures 4 and 5 show comparisons of wake structures observed in the present
study with Giacobello et al. (2009) and Dobson et al. (2014) at five rotation rates.
The wake structures observed at low rotation rates (α ∈ [0, 0.6]) match well with other
research studies; for example, for α = 0, 0.3 and 0.5. At higher rotation rates, for
example, for α=1 and 1.5, the wake structures observed at the initial stage are similar
to those observed by Giacobello et al. (2009) and Dobson et al. (2014). However, for
very long simulation times, the initially unsteady flow became steady with a double-
threaded wake structure.

3.2. Validation: VIV of a cylinder
A series of simulations was conducted with a rigidly mounted cylinder (non-rotating)
to validate the numerical solver developed for the FSI problems by selecting the
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0.2

0.4

0.6

0.8

Present
Kim (2009) 
Giacobello et al. (2009) 
Poon et al. (2010) 
Dobson et al. (2014) 

(a) (b)

FIGURE 3. (Colour online) Comparison with other numerical studies of computed
time-mean drag coefficient, Cd, and time-mean lift coefficient, Cl, for flow past a rigidly
mounted and transversely rotating sphere at Re= 300 for 0 6 α 6 3.

α Nature of the flow Wake structure

[0, 0.3] Unsteady Vortex shedding
[0.4, 1] Steady Double-threaded wake
1.25 Unsteady Shear-layer instability
[1.5, 2] Steady Double-threaded wake
[2.25, 3] Unsteady Asymmetric

TABLE 1. Comparison of the nature of the flow with the rotation rate of flow past a
transversely rotating sphere.

study by Leontini, Thompson & Hourigan (2006b) as the base case. The mass
ratio, damping constant and the Reynolds number of the flow were fixed at m∗ = 10,
ζ = 0.01 and Re= 200, respectively, while varying the reduced velocity from U∗= 3.5
to 7.1. The oscillation amplitude of the cylinder, A∗, the fluctuation amplitude
of the lift coefficient, C′l, the frequency ratio of cylinder vibration to the natural
frequency of the system, f ∗ = f /fn, and the average phase angle between lift force
and cylinder vibration, φ, were calculated and compared with Leontini et al. (2006b).
The percentage difference calculated for A∗, C′l, f ∗, and φ are −8 %, −8 %, 1.8 %
and 3.6 %, respectively, compared to the results of Leontini et al. This study provides
validation for the new solver.

3.3. Resolution studies
All FSI simulations reported in the next section have been carried out on grid 2. To
verify that this grid is fine enough to resolve the flow for FSI simulations, two grid
sensitivity analyses were performed; one analysis for the vibrating sphere cases for
the parameters, α = 0 and U∗ = 7; a second analysis for the higher rotation rates
for the parameters α = 1.5 and U∗ = 6. Both analyses were performed at Re = 300
and m∗ = 2.865 (or mr = 1.5). For the first analysis, U∗ = 7 was chosen because
the sphere showed a maximum oscillation around this value. Table 2 compares the
effect of grid refinement for both analyses. In the first analysis (α = 0 and U∗ = 7),
the sphere underwent synchronised vibrations. Therefore, the results were tabulated
for the sphere oscillation amplitude, A∗, force coefficients (time-mean drag coefficient,
Cd, root-mean-square (r.m.s.) values of the fluctuation components of drag and lift
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at

at

FIGURE 4. Wake structures of a rigidly mounted and transversely rotating sphere for
α = 0, 0.3, 0.5 and 1. Light grey structures are the results of Giacobello et al. (2009);
dark structures are the results of the present study identified using the method of Jeong
& Hussain (1995) at λ2 =−5× 10−4. For α= 1, the wake structure varied with the time.
Initially, the flow was unsteady as shown at τ = 40, but for longer simulation time, the
flow became stable with a double-threaded wake structure, as shown at τ = 400, where
τ = tU/D is the non-dimensional time.

coefficients, Cd,rms and Cl,rms), and frequency ratio, f ∗ = f /fn. In the second analysis
(α = 1.5 and U∗ = 6), the flow was steady and the sphere moved to a new position
and remained with no vibration. Therefore, the time-mean sphere displacement, Y/D,
time-mean drag and lift coefficients Cd, and Cl were calculated. It is noted that there is
less than 1 % variation in the results between grid 1 and grid 2 for both analyses. The
results obtained for grids 2–4 agree well with each other. Therefore, for the Reynolds
number and rotation rate range of interest, decreasing δl or increasing N further has
a negligible effect on the results. Thus, we can conclude that grid 2 is sufficient
for all VIV simulations at Re = 300, and therefore, this grid was used to obtain all
subsequently presented results. As pointed out above, the non-dimensional time step
used in these resolution studies and all the other simulations is δτ = 0.005. It was
verified that reducing the time step by a factor of two, resulted in a less than 1 %
change to the key convergence measures discussed above.

4. Effects of transverse rotation on VIV of a sphere

This section presents and discusses the results obtained for flow past an elastically
mounted sphere (allowed to translate only in the y direction) forced to rotate about the
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at

at

FIGURE 5. (Colour online) Comparison of wake structures of a rigidly mounted and
transversely rotating sphere for α = 1.5 with Dobson et al. (2014) (the dark structure).
The light structures are the results of the present study.

(α,U∗)= (0, 7) (α,U∗)= (1.5, 6)

Grid δl N A∗ Cd Cd,rms Cl,rms f /fn Y/D Cd Cl

1 0.011D 7 350 0.38 0.81 0.05 0.11 0.93 0.15 1.04 0.61
2 0.004D 7 350 0.37 0.80 0.05 0.11 0.93 0.14 1.04 0.60
3 0.002D 7 350 0.37 0.80 0.05 0.10 0.93 0.14 1.04 0.60
4 0.002D 18 150 0.37 0.80 0.05 0.10 0.93 0.14 1.04 0.60

TABLE 2. The sensitivity of the spatial resolution of the flow parameters of vortex-induced
vibration of a rotating sphere at (α, U∗)= (0, 7) and (1.5, 6), Re= 300 and m∗ = 2.865
(mr = 1.5). δl is the minimum thickness of the cells (in the radial direction) at the sphere
surface in each grid and N is the number of cells on the sphere surface. The oscillation
amplitude of the sphere, A∗, the time-mean sphere displacement, Y/D, the time-mean drag
and lift coefficients, Cd and Cl, the r.m.s. values of fluctuation component of the drag and
lift coefficients, Cd,rms and Cl,rms, and the ratio of vortex-shedding frequency to the natural
frequency, f /fn, are listed.

−z direction at the Reynolds number Re= 300 and the reduced mass mr= 1.5 (which
is equivalent to the mass ratio m∗=2.865) for rotation rates 06α62.5 and a reduced-
velocity range 3.5 6 U∗ 6 11. Non-rotating VIV studies, especially the many studies
of circular cylinders but also spheres, show that the amplitude response is not a very
strong function of mass ratio, but rather a function of the mass-damping ratio (m∗ζ ),
as discussed in the introduction. The choice of a relatively small mass ratio of m∗ '
2.9 was chosen to ensure a strong VIV response at the Reynolds number made for
the first part of this study. While a significantly larger mass ratio may enable modes
III and IV to be investigated, this would increase the computational cost significantly,
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Vortex-induced vibration of a rotating sphere 797

because a sphere with much higher inertia requires considerably more time to reach
an asymptotic oscillatory state. The chosen mass ratio is slightly lower than used
by Behara et al. (2011) of mr = 2 for their 3-DOF non-rotating sphere VIV studies;
however, comparisons of current results with theirs for the same setup (3-DOF VIV)
and parameters (Re= 300, mr= 2), show a comparable amplitude response curve, and
also confirm the relative insensitivity to mass ratio, as discussed in Rajamuni et al.
(2018).

The non-dimensional rotation rate, α, was prescribed through setting the angular
velocity of the sphere, ω, so that (α = ωD/(2U)). This prescribed the velocity
boundary condition on the sphere surface, while the reduced velocity was prescribed
through setting the spring constant in the solid motion equation by k= 4mπ2/U∗2.

The results are presented in the following three subsections. Initially, the sphere
response is discussed with its time-mean position, oscillation amplitude and the
frequency of oscillation. Then, the forces exerted on the sphere are given in terms
of time-mean values and fluctuation amplitudes. Finally, the behaviour of the flow is
analysed through the wake structures observed behind the sphere.

4.1. Sphere response

Figure 6 shows the variation of time-mean position of the sphere, Y/D, with the
reduced velocity at each rotation rate, where Y = ys · (0 1 0) is the displacement
of the sphere in the y direction. As can be seen, Y increased monotonically with
increasing reduced velocity for each α, except α = 0. This is because of the lower
effective stiffness of springs at higher reduced velocities. At each reduced velocity, the
time-mean position of the sphere, Y , increased with the rotation rate up to α = 1, as
expected from the Magnus force applied on the sphere, and this was more prominent
as the reduced velocity increased. However, as α increased from 1 to 2.5, Y did not
increase further; instead it slightly decreased (see the curves with hollow symbols for
α= 1.5, 2 and 2.5 in figure 6). At a fixed reduced velocity, the variation of Y with α
agrees well with the trend of the lift coefficient calculated for the transversely rotating
and rigidly mounted sphere (see figure 3b). The time-mean position of the sphere
can be estimated as Y/D = 3ClU∗2/(16m∗π2) from the time-mean lift coefficient,
Cl, calculated for the transversely rotating and rigidly mounted sphere at each α by
considering the time-mean form of the solid motion equation (2.3). The dotted lines
in figure 6 represent the estimated Y/D at each α. However, the actual values of
Y/D slightly differ from the estimated values for some ranges of U∗ at some rotation
rates, especially for α = 0. The reason for this deviation is explained later in § 4.2.

Figure 7 displays the effects of transverse rotation on the characteristics of the
vortex-induced vibration of a sphere with the oscillation amplitude, A∗ =

√
2Yrms/D,

and the frequency ratio, f ∗ = f /fn, over the reduced-velocity range 3.5 6 U∗ 6 11 for
α = 0–2.5, where f is the frequency of the sphere vibration and fn is the mechanical
natural frequency of the system in the medium without the added-mass contribution.
For the non-rotating case (α = 0), the sphere showed a relatively large oscillation
amplitude (A∗'0.4D) from U∗=5.5 to 10 (see the curve with black dots in figure 7a).
In this case, at these reduced velocities, the time-mean position of the sphere deviated
from the estimated values calculated with the lift force of a rigidly mounted sphere,
and remained at its initial position (Y = 0 for α = 0 and U∗ ∈ [5.5, 10], see figure 6).
Thus, those oscillations were symmetric through the initial position of the sphere.
Furthermore, as can been seen from figure 7(b), at those reduced velocities, the
frequencies of the sphere displacement and vortex shedding were synchronised and
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2 3 4 5 6 7 8 9 10 11 12

0.1

0.2

0.3

0.4

0

0.5

FIGURE 6. (Colour online) Variation of the time-mean position of the sphere, Y/D, with
the reduced velocity, U∗, at each rotation rate: the dotted lines represent the estimated
time-mean position of the sphere according to the time-mean lift force, Cl, calculated for
a rigidly mounted sphere at each rotation rate (Y/D= 3ClU∗2/(16m∗π2)).

close to the natural frequency of the system ( f ∗ ' 1), indicating that these are
vortex-induced vibration responses.

For α = 0, the sphere began to show large amplitude vibrations suddenly as the
reduced velocity increased from 5 to 5.5. A similar observation was reported by
Behara et al. (2011) and Behara & Sotiropoulos (2016) in their studies on the
vortex-induced vibration of a sphere with 3 DOF. The shape of the response curve
for α = 0 strongly resembles the response curves that they observed. In addition, the
response curve for α = 0 shows similarities to modes I and II vibration observed by
experimental studies on tethered spheres by Govardhan & Williamson (1997), Jauvtis
et al. (2001) and Govardhan & Williamson (2005). This will be further discussed in
the force measurements section.

Interestingly, the sphere response was modified greatly when subjected to a forced
rotation. Similar to the non-rotating case, significant vibrations were observed for
the rotating cases up to the rotation rate α = 1. Importantly, the response amplitude
decreased with the increasing rotation rate up to α = 1, and it was suppressed
for α > 1.5, as shown in figure 7(a). Figure 7(b) shows that for all the cases for
which the sphere vibrated significantly, the vibration frequency was locked in to the
vortex-shedding frequency and was close to the system’s natural frequency; this again
confirms that all of these responses are vortex-induced vibration responses.

The sphere response was further investigated in the range, α = [1, 1.5] at the
reduced velocity, U∗ = 6 which is close to the maximum response. As can be seen
from figure 8, the sphere showed synchronised vibrations up to α = 1.3. The sphere
response amplitude decreased rapidly for small α but was nearly flat in the range,
α ∈ [1, 1.3] and VIV was completely suppressed for α > 1.4. The time-mean position
of the sphere, Y/D, shifted away from its initial position with increasing rotation
rate up to α = 1.3, and for α > 1.4 the time-mean position of the sphere returned
back towards the initial position of the sphere for increasing α. The cutoff α for the
occurrence of VIV is likely to depend on the Reynolds number, so this cutoff was
not further refined over a range of U∗.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

11
 A

ug
 2

01
8 

at
 0

1:
49

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
30

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.309


Vortex-induced vibration of a rotating sphere 799
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FIGURE 7. (Colour online) The sphere response: (a) the variation of the maximum
oscillation amplitude, A∗, with the reduced velocity, U∗, at each rotation rate; and (b) the
frequency ratio f ∗ = f /fn for rotation rates and reduced velocities at which the sphere
showed a vibrational response.

The amplitude responses appear as approximately bell-shaped curves for each α for
α 6 1 (see figure 7a). Similar to the non-rotating case, the synchronised vibrations
began suddenly for α6 0.2. Moreover, the synchronised vibrations ended suddenly for
α= 0.15 and 0.2. In contrast to lower rotation rates, for higher rotation rates (α> 0.3),
the synchronised vibrations appeared and disappeared more gradually at both ends of
the synchronised U∗ range. The synchronisation regime, which is the reduced-velocity
range over which the sphere showed synchronised vibrations, varied with rotation rate.
For α= 0.1, the synchronisation regime widened to U∗= 5–11. However, it generally
narrowed as α increased from 0.1, and yielded a narrow synchronisation regime of
U∗ = 5–6.5 for α = 1. In addition, the synchronisation regime mostly shifted to the
left (to lower reduced velocities) as the rotation rate increased.

Panels 9(a) and 9(b) show the variation of the maximum oscillation amplitude of
the sphere, A∗max, and of the reduced velocity, U∗, at which the maximum oscillation
amplitude was observed with the rotation rate, respectively. As can be seen, the
maximum oscillation amplitude decreased gradually with increasing rotation rate.
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FIGURE 8. Variation of the oscillation amplitude, A∗, and the time-mean position, Y/D,
of the sphere with the rotation rate, α, at the reduced velocity U∗ = 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.4

0 5.5
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6.5

7.0
(a) (b)

FIGURE 9. Variations of (a) the maximum oscillation amplitude of the sphere, A∗max, and
(b) the reduced velocity at which the sphere showed a maximum oscillation amplitude
with the rotation rate, α.

The reduced velocity at which the sphere showed a maximum oscillation amplitude
shifted to lower values as α increased from 0 to 0.3. However, it increased and then
decreased, as α increased from 0.3 to 1 (see figure 9b).

The time history of the sphere displacement is shown in figure 10(a) for α = 0.15
and in figure 10(b) for α= 0.5, for five different reduced velocities. At each rotation
rate, the sphere vibrated (approximately) sinusoidally in the asymptotic state when
in the synchronisation regime. Beyond the synchronisation regime at higher reduced
velocities, the sphere initially vibrated significantly, but later, the vibration amplitude
decreased substantially (see the time history at U∗ = 8.5 and 9.5 in figure 10a).
Moreover, in some cases, the sphere response just beyond the synchronisation regime
consisted of two frequencies, as shown in figure 10(a) for α = 0.15 and U∗ = 8.5.
In this case, the dominant frequency is the natural frequency of the system and the
secondary frequency corresponds to the vortex-shedding frequency.
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FIGURE 10. (Colour online) Time history of the sphere response (a) for α = 0.15 and
U∗ = 3.5, 5, 7.5, 8.5 and 9.5; (b) for α = 0.5 and U∗ = 3.5, 5, 6, 7.5 and 10.

For α 6 0.3, small-scale vibrations were observed outside the synchronisation
regimes, as shown in figure 10(a) for α = 0.15. Interestingly, for α = 0.4, 0.5 and
0.75, the vibrations were suppressed outside the synchronisation regime, as shown
in figure 10(b) for α = 0.5. However, for α = 1, outside the synchronisation regime,
the sphere vibrated with a very small amplitude (� 0.001D) and a high frequency
(see figure 7b). In this case, the wake frequency for a non-VIV rotating sphere is
approximately a factor of three higher than at lower rotation rates, because the rapid
rotation leads to a shear-layer shedding mode. The sphere responses were flat without
any oscillations in the steady state for α = 1.5 and 2 for all the reduced velocities
considered. However, for α = 2.5, the sphere oscillated with a small amplitude for
all the reduced velocities. As discussed in § 3.1, when the sphere is rigidly mounted
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FIGURE 11. (Colour online) The variation sphere response amplitude with reduced
velocity at each rotation rate: (a) present results of this numerical study at Re = 300,
(b) results of the experimental study of Sareen et al. (2018) over the Reynolds number
range, Re= 5000–30 000.

and with a forced transverse rotation, the flow was unsteady with vortex shedding
behind the sphere for α 6 0.3; was steady for 0.4 6 α 6 2, and was unsteady with
an irregular wake for α = 2.5. Therefore, our observation of the sphere response
outside the synchronisation regimes for α6 0.75, and the sphere response for α> 1.4
are consistent with the observation of flow past a rigidly mounted and transversely
rotating sphere.

As can be seen from figure 7(b), for the cases where the sphere showed small-
scale vibrations outside the synchronisation regime (α= 0, 0.1, 0.15, 0.2, 0.3 and 1),
the vibration frequency of the sphere linearly increased with the reduced velocity.
Moreover, the frequency increased with increasing rotation rate. This is consistent with
the observation of an increasing vortex-shedding frequency with the rotation rate when
the flow is unsteady for a rigidly mounted sphere (Kim 2009).

Bourguet & Jacono (2014) studied the effects of transverse rotation on flow-induced
vibration of a cylinder at Re = 100 for the rotation rates α ∈ [0, 4] in the
reduced-velocity range 0 6 U∗ 6 32. They observed that when the cylinder was
subjected to a forced rotation, it moved to a new position and showed synchronised
vibration through this new position for a range of reduced velocities, similar to our
observation with a rotating sphere. However, contrary to the decrease in the vibration
amplitude we observed for a sphere, they observed an increase in the vibration
amplitude for a cylinder with increasing rotation rate, which is also seen in much
higher Reynolds number experiments (Wong et al. 2017). Moreover, for a rotating
cylinder, the synchronisation regime expanded for higher reduced velocities up to
α = 3.5, and then narrowed, whereas for a rotating sphere it was wider for α = 0.1
and then mostly narrowed as α increased. Interestingly, synchronised vibrations were
suppressed for higher rotation rates for both the sphere (for α > 1.3) and the cylinder
(for α = 4).

More recently, Sareen et al. (2018) investigated the effect of transverse rotation
on vortex-induced vibration of a sphere experimentally. They varied the rotation rate
over α ∈ [0, 7.5] and the reduced velocity over U∗ ∈ [3, 18], which corresponds to the
Reynolds number range, Re ∈ [5000, 30 000]. Figure 11 compares our observations
of the sphere response amplitude with their observations. Despite the significant
difference in Reynolds number, consistent with our predictions, they observed
a decrease in the maximum sphere response amplitude and a narrowing of the
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FIGURE 12. (Colour online) Variation of the time-mean (a) drag force coefficient, Cd,
and (b) lift force coefficient in the y direction, Cly, with the reduced velocity, U∗, at each
rotation rate.

synchronisation regime as the rotation rate increased. However, vortex-induced
vibration persisted until α= 4 at the higher Reynolds numbers. At the lower Reynolds
number (Re= 300), the highest rotation rate that showed synchronised vibration was
α = 1.3.

4.2. Force measurements

Figure 12 shows plots of the variation of the time-mean drag and lift coefficients, Cd

and Cl, respectively, as functions of the reduced velocity at each rotation rate. The lift
coefficient in the z direction was negligible compared to the lift coefficient in the y
direction, Cly, for all the cases except α = 0 and U∗ ∈ [10.5, 11]. Therefore, Cl = Cly

except for α=0 and U∗ ∈ [10.5,11]. Outside the synchronisation regimes, both Cd and
Cl were constant, having the values calculated for a rigidly mounted sphere at each α.
However, both Cd and Cl varied significantly from the values for a rigidly mounted
sphere at the reduced velocities for which the sphere showed synchronised vibrations.
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FIGURE 13. (Colour online) Variation of the r.m.s. value of the time-mean lift force
coefficient in the y direction over the reduced velocity, U∗, at each rotation rate.

This is consistent with the fact that the time-mean sphere displacement differed from
the estimated values based on the lift force of a rigidly mounted rotating sphere in the
synchronisation regimes as shown in figure 6 (see § 4.1). At a given reduced velocity,
the lift force increased with increasing rotation rate up to α = 1, and then decreased,
similar to the variation of Y/D with α.

For the non-rotating case (α = 0), the time-mean lift coefficient dropped down to
zero during the synchronisation regime (see the curve with black dots in figure 12b).
This is consistent with the synchronised vibrations of the sphere being symmetric
about the initial position of the sphere for α = 0. For the rotating cases, in the
synchronisation regimes, Cl decreased from the non-oscillatory value, and the
decrement reduced, with the increasing α. A similar trend was observed in Cl

by Bourguet & Jacono (2014) for a rotating cylinder as well.
In the synchronisation regimes, the time-mean drag force, Cd, increased from its

pre-oscillatory value at each rotation rate. There was a sudden increment at the
beginning of the synchronisation regime up to α = 0.2. For α = 0, Cd decreased
throughout the synchronisation range, asymptoting to its pre-oscillatory value at the
end of the range. For α = 0.1, 0.15 and 0.2, Cd increased slightly, then decreased
during the synchronisation regimes and reached the pre-oscillatory value at the end
of the regimes. For 0.3 6 α 6 1, Cd increased and decreased gradually, similar to
the gradual increase and decrease of the vibration amplitude of the sphere at these
rotation rates.

Figure 13 shows the variation of the r.m.s. value of the fluctuation component
of the lift force coefficient, C′l, with the reduced velocity, at each rotation rate.
Similar to the time-mean components of the forces, the fluctuation components of
the forces were also modified in the synchronisation regime at each rotation rate. For
α 6 0.2, C′l increased suddenly from 0 to a value of '0.22 at the beginning of the
synchronisation regime. Thereafter, C′l decreased within the synchronisation range and
returned to its original value at the end of the range. For 0.3 6 α 6 1, C′l increased
and then decreased gradually over the synchronisation range. The pattern of variation
of C′l closely matches the pattern of amplitude response (both C′l and A∗ increased
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Vortex-induced vibration of a rotating sphere 805

suddenly for α 6 0.2 and increased gradually for 0.3 6 α 6 1). Also, C′l decreased as
the rotation rate increased, similar to the trend of A∗ with α.

As discussed by Govardhan & Williamson (2005), the fluid force in the y direction,
Ftotal, can be split into a potential force component, Fpotential =−mAÿ(t), which arises
due to the potential added-mass force, and a vortex force component, Fvortex, from the
presence and dynamics of vorticity. This recognises the fact that a flow solution can
be constructed as a sum of a potential flow field plus a velocity field associated with
vorticity in the flow (e.g. see Lighthill 1986). Here, mA is the added mass due to the
acceleration of the sphere. Therefore, the vortex force can be computed from

Fvortex = Ftotal − Fpotential. (4.1)

Normalising all forces by 0.5ρU2πD2/4 gives,

Cvortex =Ctotal −Cpotential. (4.2)

The phase between the sphere displacement and Ctotal is defined as the total phase,
φtotal, while the phase between sphere displacement and Cvortex is defined as the vortex
phase, φvortex.

Govardhan & Williamson (2005) observed two distinct modes of vibration (modes
I and II) for a non-rotating sphere in the reduced-velocity range U∗ ∼ 5–10. In their
study, mode I occurred at the beginning of the synchronisation regime and it smoothly
transitioned into mode II as the reduced velocity was increased. They observed that
φvortex increased by ∼90◦ as the sphere vibration transitioned from mode I to mode II.
Moreover, they observed little variation in φtotal as the mode transitioned from mode I
to mode II. Under sphere rotation, a similar behaviour might be expected. Figure 14
shows a comparison of sphere displacement, Y/D, Ctotal and Cvortex for two cycles of
sphere oscillation for α = 0, 0.3 and 0.75 at the beginning of the synchronisation
regime (a,c,e) and towards the end of the synchronisation regime (b,d, f ). The sphere
vibration frequency was locked in to both Ctotal and Cvortex, and was phase aligned
with Ctotal throughout the synchronisation regime at each α. Moreover, at the beginning
of the synchronisation regime, the sphere vibration frequency was phase aligned with
Cvortex. However, it showed a 180◦ phase difference with Cvortex towards the end of
the regime. Nonetheless, under the conditions of zero damping and near sinusoidal
forcing, it is not clear this can be taken as an indication of an analogous transition
from mode I to mode II.

4.3. Wake structures
Vortical structures in the wake are depicted using iso-surfaces of the second invariant
of the velocity field (known as the Q-criterion, see Hunt, Wray & Moin (1988) for
more details). Figure 15 displays the wake structure observed in the synchronisation
regime of the non-rotating case (at U∗= 6). As can be seen, two regular symmetrical
streets of hairpin vortices form the wake, consistent with the mode I and II wake
structure observed by Govardhan & Williamson (2005) in their experimental study of
vortex-induced vibration of a tethered sphere. This wake structure was also observed
by Behara et al. (2011) for VIV of a sphere with 3 DOF at Re = 300, when the
sphere was undergoing planar oscillations. The vortex streets in the advancing and
the retreating sides of the sphere were equal in strength, and the sphere oscillation is
symmetric through its initial position.
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FIGURE 14. (Colour online) Relationship between the time-mean displacement of the
sphere, Y/D, the total force in the y direction, Ctotal, and the vortex force in the y direction,
Cvortex, at α = 0, 0.3 and 0.75: (a,c,e) at mode I, and (b,d,f ) at mode II.

(a)

(b)

x

x

y

z

FIGURE 15. (Colour online) Instantaneous wake structures visualised by the Q criterion
(Q= 0.001) in the synchronisation regime of the non-rotating case at U∗ = 6.

As discussed in § 3.1, the wake structure of a flow past a rigidly mounted sphere
was modified when a rotation was imposed on the sphere. Similarly, various wake
structures were observed for an elastically mounted sphere at different rotation rates
and at different reduced velocities. Figure 16 shows the wake structures observed at
the reduced velocity, U∗ = 6, at each rotation rate. As a rotation was imposed on
the sphere, the wake was deflected to the advancing side (the negative y direction).
Moreover, this deflection was more prominent as the rotation rate increased (see
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Vortex-induced vibration of a rotating sphere 807

x

y

FIGURE 16. (Colour online) Instantaneous wake structures of vortex-induced vibration
of a transversely rotating sphere at reduced velocity U∗ = 6 at each rotation rate. The
sphere showed synchronised vibrations up to α = 1, and all the synchronisation regimes
contained U∗ = 6. Therefore, the wake structures given for 0 6 α 6 1 are those in the
synchronisation regimes at those rotation rates. The Reynolds number of the flow is
Re= 300.

figure 16). This is consistent with the lift force applied on the sphere on the retreating
side (the positive y direction) due to the Magnus effect.

The wake deflection was quantified by observing the change of the shear strain rate
along the sphere surface based on the time-mean velocity field. The wake deflection
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TABLE 3. Comparison of the phase-averaged wake deflection angle, Dθ , with the
rotation rate, α.

angle, Dθ , was defined as the angle at which the shear strain rate in the tangential
direction, εθ , on the sphere surface at the xy plane was zero (Dθ = θ |εθ=0). This
parameter (εθ ) can be calculated by taking the derivative of tangential velocity, uθ ,
in the radial direction, d(uθ)/dr. Therefore, the wake deflection angle, Dθ , was the
angle, θ , at which d(uθ)/dr= 0. The variation of the phase-averaged wake deflection
angle, Dθ , with the rotation rate is tabulated in table 3. As can be seen, Dθ increased
with the rotation rate. This quantifies the observations from visualisations that the
deflection was more prominent at higher rotation rates.

The equal strength vortex streets at zero rotation, became unequal as the sphere
rotation rate was increased (see figure 16). The vortex street on the advancing side
became stronger than the one in the retreating side with increasing rotation rate. The
vortex street on the retreating side was greatly weakened for α= 0.75, and had largely
disappeared for α ∈ [1, 1.3]. This difference in the strength of the vortex streets, which
affects the oscillatory forces on the sphere, is consistent with the decrease in the
oscillation amplitude as the sphere rotation rate increased.

When the sphere was subjected to a rotation, there was a significant variation in
the structure of the wake in the synchronisation regime. The vortex loops on the
advancing side were closely spaced hairpin loops. However, the vortex loops on the
retreating side deviated from the hairpin type as the rotation rate increased. Moreover,
for 0.3 6 α 6 1.3, the vortex loops on the retreating side near the sphere were
attached to the vortex loops on the advancing side that were shed in the previous
cycle. However, they separated later as they moved further downstream.

Figures 17 and 18 show the evolution of wakes in the synchronisation regimes (at
U∗=6) over a cycle of sphere oscillation for the rotation rates α=0, 0.2, 0.5 and 1. A
vortex loop is shed from the retreating side of the sphere as the sphere moved from its
apex to its nadir at both α= 0 and 0.2 (see figure 17). Another loop is shed from the
advancing side half a cycle later. For α= 0, the vortex loops were disconnected from
each other and formed with a tail. The tail was co-directional with the streamlines
upstream. As the loops moved away from the sphere, their shapes changed from a
hairpin to a ring shape. In addition to that, the vortex loops on the advancing and
the retreating sides are mirror images (with a 180◦ phase delay) consistent with the
symmetric sphere oscillation. However, for α = 0.2, in line with the non-zero time-
mean lift force applied on the sphere on the retreating side (y direction), a vortex
loop on the retreating side is shed weakly compared to the one on the advancing side.
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(a) (b) (c)Position of
the sphere

x

y

FIGURE 17. (Colour online) Evolution of wake structures for one cycle of sphere
oscillation in the synchronisation regimes (at U∗= 6) for the rotation rates α= 0 and 0.2.
The first column displays the position of the sphere by a red ‘bullseye’ on a cosine wave
for one period, while the second and third columns show the instantaneous wake structures
observed at each of these positions of the sphere for α = 0 and 0.2, respectively.

Moreover, the wake was deflected to the advancing side, and the vortex street on the
advancing side was stronger. For α=0.5, a vortex loop on the retreating side was shed
far more weakly and appeared only when the sphere was near its nadir (see figure 18).
A vortex loop on the advancing side was also modified compared to that at α= 0 and
its tail had almost disappeared.

On increasing α toward one, vortex loops shed from the retreating side were
weak, with the standard sphere wake with long interlacing vortex loops replaced by
a different wake structure, with closely spaced loops originating from the boundary
layer/shear layer separating from the sphere. This wake structure resembled the wake
structure observed by Giacobello et al. (2009) and Kim (2009) for the flow past
a transversely rotating sphere at Re = 300 and α = 1. Kim (2009) argued that this
unsteadiness was due to the instability of the shear layer caused by rapid rotation. For
flow past a transversely rotating rigid sphere at these parameters, we also observed
a similar wake structure but only in the initial stage of the simulation as discussed
in § 3.1; however, the shedding faded away for long simulation times, and the flow
became steady asymptotically. Despite this, when the sphere was allowed to translate
in the y direction, the sphere maintained a small amplitude vibration over a narrow
reduced velocity range, even after long integration times.

The wake at α = 1 and U∗ = 6 shows vortex loops or hairpins, but the wake
frequency is approximately a factor of three higher. Thus at U∗ = 6, approximately
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x

y

(a) (b) (c)Position of
the sphere

FIGURE 18. (Colour online) Evolution of the wake structures for one cycle of the sphere
oscillation in the synchronisation regimes (at U∗= 6) for the rotation rates α= 0.5 and 1.
The first column displays the position of the sphere by a red ‘bullseye’ on a cosine wave
for one period, while the second and third columns show the instantaneous wake structures
observed at each of these positions of the sphere for α = 0.5 and 1 respectively.

three vortex loops are shed per system oscillation period. However, the shed loops
are not identical in the size, nor are they exactly locked to have three shedding
periods per vibration period. In this case, the near wake oscillates with the body
oscillation at a frequency close to that of a non-vibrating sphere at a lower rotation
rate. One possible interpretation is that the natural vortex-shedding instability of the
wake, which is suppressed by the development of the shear-layer instability, is still
receptive, so that if the sphere is allowed to oscillate at that frequency, that shedding
mode can reappear and sustain the oscillation. This study at α = 1 was expanded
to lower reduced velocities. At U∗ = 2, where the system frequency matches the
shear-layer mode shedding frequency, the body vibration is minimal even through the
wake is strongly periodic. In this case, it appears that the timing of the formation
and shedding of shear-layer vortices does not lead to positive energy transfer from
the fluid to the body, so that large amplitude oscillations do not occur.

A steady wake was observed at the rotation rates α= 1.5 and 2 for all the reduced
velocities considered, as shown in figure 16 at U∗ = 6. This confirms that the sphere
vibrations were completely suppressed for α > 1.3. For α = 2.5, an unsteady and
asymmetric wake was observed for all the reduced velocities considered, with a
structure shown in figure 16 at U∗ = 6. Even though the flow was unsteady with
vortex shedding at this rotation rate, no significant sphere vibration was observed.
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Vortex-induced vibration of a rotating sphere 811

x

y

FIGURE 19. (Colour online) Instantaneous wake structures in the xz plane for a
transversely rotating sphere at U∗ = 6 for the rotation rates α = 0, 0.3, 0.5, 1 and 2.

Figure 19 shows the wake structures in the xz plane at U∗= 6 for the rotation rates
α= 0.1, 0.3, 1, 2 and 2.5. As can be seen, all the structures observed for α6 2 were
mirror symmetric about the xy plane, except the wake at α = 2.5.

As discussed in § 3.1, the flow past a transversely rotating rigid sphere showed
unsteady vortex shedding for α ∈ [0, 0.3], and a double-threaded wake for α ∈ [0.4, 2].
When the sphere was allowed to oscillate in the y direction, the sphere showed
synchronised vibrations for α61.3. At these rotation rates, outside the synchronisation
regimes, a few different wake structures were observed, depending on the rotation rate.
These different wake states are depicted in figure 20, together with a contour map
summarising the oscillation amplitude as a function of U∗ and α. The contour map
shows the reduction of the oscillation amplitude and narrowing of the synchronisation
regime as the rotation rate is increased. Outside the synchronisation regime, for
α ∈ [0, 0.3], unsteady vortex shedding was observed, while for α ∈ [0.4, 0.75], a
steady and a double-threaded wake was found to occur; both states are consistent
with rigid sphere wakes at the same rotation rates. However, for α = 1, outside the
synchronisation regime, an unsteady wake was observed (see figure 20). This wake
resembled the wake observed in the initial evolution stage for a rigidly mounted
sphere at the same rotation rate, for which the unsteady wake observed in the initial
stage transformed into a steady wake in the asymptotic stage. However, given the
possibility to oscillate, albeit at very small amplitude, the unsteadiness of the wake
persisted.

5. The effect of Reynolds number on VIV of a rotating sphere
The effect of Reynolds number on vortex-induced vibration of a rotating sphere

was investigated at three rotation rates, α= 0.15, 0.75 and 1.5, by fixing the reduced
velocity at U∗ = 6. These three rotation rates were chosen because at α = 0.15 and
0.75, the sphere showed synchronised vibration, whilst at α= 1.5, the flow was steady
and no sphere vibration was found, but noting that this was not the case in higher
Reynolds number experiments (Sareen et al. 2018). In addition to that, for flow past
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FIGURE 20. (Colour online) Contour plot of the sphere oscillation amplitude, A∗, as a
function of the reduced velocity, U∗, and rotation rate, α. The non-synchronisation regime
is divided into five regimes according to wake structures.

a rotating sphere, at Re=300, the wake was unsteady with vortex shedding at α=0.15
while the flow was steady at α = 0.75. In this investigation, the Reynolds number of
the flow was varied from 300 to 1200 while keeping the mass ratio of the sphere
fixed at m∗ = 2.865.

5.1. Mean displacement, amplitude and forces
Figure 21 shows the variation of the sphere response amplitude with Reynolds number
for α= 0.15, 0.75 and 1.5 at U∗ = 6. At α= 0.15 and Re= 300, the sphere vibrated
synchronously with the vortex-shedding frequency with an amplitude of ≈ 0.3D. As
can be seen from figure 21, at α= 0.15, the sphere response amplitude increased with
increasing Reynolds number and reached a value of ≈ 0.5D at Re = 1200. At each
of these Reynolds numbers, the sphere vibration was highly sinusoidal. This suggests
that even for the non-rotating case, the sphere response amplitude will increase with
increasing Reynolds number, which is consistent with the large amplitude response
observed in non-rotating sphere VIV experiments (e.g. Govardhan & Williamson 1997,
2005, Jauvtis et al. 2001).

Similar to the case of α= 0.15, at α= 0.75, the sphere vibration amplitude showed
an increasing trend with increasing Reynolds number. However, a slight decrement in
A∗ was observed from Re = 550 to 600. The sphere vibration was purely sinusoidal
up to Re= 500. For Re > 550, even though the sphere response was periodic, it was
less sinusoidal. The periodicity of a signal was defined as λA =

√
2Yrms/Ymax (Jauvtis

et al. 2001), where Ymax is the highest sphere amplitude recorded. According to this
definition, λA can take values from 0 to 1, with λA= 1 for a purely sinusoidal signal.
Figure 22 shows the variation of periodicity of the sphere response with Reynolds
number for α = 0.15, 0.75 and 1.5. As can be seen, at α = 0.75, the periodicity of
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300 400 500 600 700 800 900 1000 1100 1200
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Re

FIGURE 21. (Colour online) Effect of Reynolds number on the sphere response amplitude
at the rotation rates, α = 0.15, 0.75 and 1.5 at U∗ = 6.

0

0.2

0.4

0.6

0.8

1.0

400 600 800

Re
1000 1200

FIGURE 22. (Colour online) Variation of the periodicity of sphere response, λA, with
Reynolds number at α = 0.15, 0.75 and 1.5 for U∗ = 6.

the signal starts to drop for Re greater than 550. Moreover, λA drops to ≈ 0.85 and
remains there for Re > 600.

At α = 1.5 and Re = 300, the flow was steady with no sphere vibration. This
behaviour continued at Re = 350, as well. However, as the Reynolds number was
increased from 400, the sphere started to show synchronised vibration again. The
sphere response amplitude increased with the increasing Reynolds number and reached
a value of ≈ 0.25D at Re = 1200. The sphere response was periodic, but was less
sinusoidal. The periodicity of the sphere response showed a slight increasing trend
with Reynolds number, with values around 0.8 (see figure 22).
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FIGURE 23. (Colour online) Effect of Reynolds number on (a) time-mean position of
the sphere, (b) time-mean lift coefficient, (c) frequency ratio and (d) time-mean drag
coefficient, at the rotation rates α = 0.15, 0.75 and 1.5.

At each of the rotation rates and Reynolds numbers considered, the sphere vibration
frequency was locked in with the frequency of the lift force (reflecting the vortex
shedding). Moreover, the sphere vibration frequency was close to the system’s natural
frequency ( f ∗≈ 1, see figure 23c). Therefore, these vibration states are vortex-induced
vibration. From these observations, we can expect that the VIV will occur for even
higher rotation rates for higher Reynolds number flows.

Figure 23 shows the variation of the time-mean sphere displacement, the time-mean
drag and lift coefficients, and the frequency ratio with Reynolds number for α= 0.15,
0.75 and 1.5. As can be seen, at α= 0.15, the time-mean position of the sphere, Y/D,
remained almost fixed for all Reynolds numbers considered. However, at α= 0.75 and
1.5, Y/D decreased with increasing Reynolds number. The time-mean lift coefficient
showed an identical trend with the time-mean sphere displacement for all three
rotation rates (see figure 23b). At α= 0.15, the time-mean drag coefficient decreased
up to Re= 600, and for higher Reynolds numbers it was almost flat (see figure 23d).
For both α = 0.75 and 1.5, Cd decreased with increasing Reynolds number.

5.2. Effect on wake structures
The vortical structure of the wake was observed using the Q-criterion with a value of
Q= 0.01. Figure 24 shows the wake structures observed at α= 0.15 for Re= 700 and
1200; at α= 0.75 for Re= 500, 900 and 1200; and at α= 1.5 for Re= 900 and 1200.
At α= 0.15, two streets of hairpin-type vortex loops were observed at each Reynolds
number. However, as the Reynolds number increased, the shape of the vortex loops
were modified slightly (e.g. see the difference between the wakes at Re = 700 and
1200 in figure 24 at α = 0.15). The vortex-shedding frequencies were locked in with
the sphere vibrations.
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Vortex-induced vibration of a rotating sphere 815

x

y

FIGURE 24. (Colour online) Effect of Reynolds number on the wake structures (depicted
with Q= 0.01) at the rotation rates α = 0.15, 0.75 and 1.5. The reduced velocity of the
flow is U∗ = 6 for each case.

As a general comment on these simulations, we would certainly not claim that
for the higher Reynolds number cases the chaotic wake structures are fully resolved
downstream from the near wake. The main aim of this set of simulations was to
properly resolve the near wake through increased spatial resolution, which, together
with the larger-scale wake structures, should mainly control the VIV response of
the sphere. Further spatial resolution studies were undertaken to confirm that the
VIV response was well converged at the highest Reynolds number (Re = 1200) and
highest rotation rate (α = 1.5) considered (see the table 4). As can be seen, there is

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

11
 A

ug
 2

01
8 

at
 0

1:
49

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
30

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.309


816 M. M. Rajamuni, M. C. Thompson and K. Hourigan

Grid A∗ Cd Cd,rms Cl,rms f /fn

1 0.26 0.85 0.28 0.30 0.94
2 0.26 0.86 0.27 0.31 0.93
3 0.26 0.85 0.28 0.32 0.93
4 0.26 0.85 0.27 0.31 0.93

TABLE 4. The sensitivity of the spatial resolution of the flow parameters of vortex-induced
vibration of a rotating sphere at (α, U∗)= (1.5, 6) and Re= 1200 and m∗ = 2.865 (mr =

1.5). The oscillation amplitude of the sphere, A∗, the time-mean drag coefficient, Cd, the
r.m.s. values of fluctuation component of the drag and lift coefficients, Cd,rms and Cl,rms,
and the ratio of vortex-shedding frequency to the natural frequency, f /fn, are listed.

less than 2 % variation in the amplitude, drag and frequency ratio for the different
grids. Thus, grid 2 could be used; however, it was decided to use grid 3 for the
higher Reynolds number simulations presented in this section since this grid is more
compressed toward the sphere surface.

As discussed above, at α = 0.75, the sphere vibration was purely sinusoidal for
Re ∈ [300, 500]. In this Reynolds number range, two-sided hairpin-type vortex loops
were observed, as shown at Re= 500. Compared to the wake at Re= 300 shown in
figure 16, the wake deflection is smaller and the vortex loops on the retreating side are
comparatively stronger at Re=500. This can be attributed to the reduction of the mean
lift force at higher Reynolds numbers. In the Reynolds number range, Re∈ [550,1200],
the sphere vibration was less sinusoidal (λA ≈ 0.8). Indeed, in this range, the wake
showed a more turbulent behaviour with shedding of multiple vortex structures per
sphere oscillation cycle. However, the dominant vortex-shedding frequency was still
synchronised with the sphere vibration frequency (see figure 24 wake for Re = 900
and 1200 at α = 0.75).

At α= 1.5, the sphere showed synchronised vibrations for Re∈ [400, 1200]. In this
Reynolds number range, the sphere vibrations were less sinusoidal. Therefore, similar
to α = 0.75 at higher Reynolds numbers, multiple vortical structures were shed over
a sphere vibration cycle, showing chaotic behaviour. Figure 25 shows the evolution
of wake structures over a cycle of sphere vibration in five steps for α = 1.5 and
Re= 1200. Even though multiple vortical structures were shed per sphere oscillation
cycle, vortex loops were two sided. In particular, vortex loops were shed from the
positive y direction as the sphere moved from its apex to its nadir, and vortex loops
were shed from the negative y direction as the sphere moved from its nadir to its apex.
Therefore, the dominant vortex shedding frequency was locked in with the sphere
vibration frequency.

6. Conclusions
The effects of forced rotation on transverse vortex-induced vibration of a sphere was

investigated numerically at Reynolds number 300 with a sphere of mass ratio 2.865
(corresponding to a reduced mass of 1.5). The correlation between the Magnus effect
caused by the sphere rotation and the vortex-induced vibration has been analysed over
the reduced-velocity range U∗ ∈ [3.5, 11] and rotation rates α ∈ [0, 2.5]. The principal
findings of this work can be summarised as follows.

Reduction of the sphere response amplitude with forced rotation. The sphere was
found to vibrate, synchronising with the vortex-shedding frequency even subject
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x
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Position of the sphere Wake at(a) (b)
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(e) ( f )
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FIGURE 25. (Colour online) Evolution of the wake at α = 1.5, Re = 1200 and U∗ = 6
for a cycle of sphere vibration. The left column shows the sphere position in the cycle
with a red ‘bullseye’ on a cosine wave and the right column shows the wake structures
observed at corresponding sphere positions.

to an imposed forced rotation. However, the sphere shifted to a new time-mean
position for all rotation cases due to the Magnus force generated by the rotation. The
sphere showed highly periodic VIV, not only for α < 0.4, but also for 0.4 6 α 6 1.3,
i.e. over a range of rotation rates where no vortex shedding was found for a rigidly
mounted rotating sphere (at this Reynolds number). Interestingly, the sphere response
amplitude, which was ≈ 0.4D for the zero rotation case, decreased as the rotation
rate increased, and VIV was completely suppressed beyond α = 1.3. Simultaneously,
the synchronisation range narrowed and moved mostly towards lower values of U∗
with increasing rotation rate.

Force coefficients highly modulated in the synchronisation regime. The time-mean lift
and drag coefficients were highly modulated as the sphere experienced synchronised
vibration. In particular, the time-mean drag force increased while the time-mean
lift force decreased from its pre-oscillatory value in the synchronisation regime at
each rotation rate. The analysis of phases between sphere displacement and vortex
force revealed that, regardless of the rotation rate, the sphere showed similarities to
mode I initially and then mode II vibrations identified through total and vortex phase
variations.

Symmetry breaking of the wake under forced rotation. In the synchronisation regime
of the zero rotation case, two trails of two-sided hairpin loops formed in the wake.
Moreover, the vortex trails on the advancing and retreating sides were equal in
strength as the sphere oscillation was symmetric about its initial position. These
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wake states strongly resemble those of a tethered sphere observed experimentally
by Govardhan & Williamson (2005) at much higher Re, for both modes I and II.
As a rotation was imposed on the sphere, the wake deflected to the advancing side
(−y direction); this was more prominent as the rotation rate increased. With the
symmetry breaking of the wake introduced by the Magnus effect, the vortex loops
in the vorticity trail from the advancing side became stronger than the vortex loops
in the trail from the retreating side. This unevenness of the wake, which affects the
oscillatory forces on the sphere, is consistent with the reduction in the amplitude
response and narrowing of the synchronisation range at higher rotation rates.

The response amplitude increased significantly as Reynolds number was increased.
The effect of Reynolds number on VIV of a rotating sphere was investigated at
U∗ = 6, by increasing Reynolds number incrementally up to Re = 1200. As the
Reynolds number was increased, the sphere started to show synchronised vibration
at higher rotation rates even when there was no VIV at Re = 300. In addition, the
sphere response amplitude increased generally with the increasing Reynolds number.
Therefore, at higher Reynolds numbers, VIV persists for even higher rotation rates
and displays a large amplitude response, consistent with experimental studies by
Sareen et al. (2018).

Based on the above observations, we can draw the following conclusions:
vortex-induced vibration persists for a sphere at small rotation rates, but the
mitigation/suppression of vortex shedding caused by the Magnus effect as the rotation
rate is increased does in fact lead to increased suppression of VIV at higher rotation
rates. Moreover, spanning the laminar regime and beyond, the effect of Reynolds
number on the VIV response of a rotating sphere is significant.

In terms of future work, it seems worth expanding this study further into the fully
turbulent regime where most experiments are conducted. It would also be interesting
to examine the response of a heavier sphere at higher reduced velocities, where modes
III and IV are observed to occur.

Acknowledgements
The support from Australian Research Council Discovery grants DP130100822,

DP150102879 and DP170100275, computing time available through Merit Project
grants n67 and d71 through the National Computational Infrastructure (NCI), and the
Pawsey Supercomputing Centre are gratefully acknowledged.

REFERENCES

BEARMAN, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16
(1), 195–222.

BEHARA, S., BORAZJANI, I. & SOTIROPOULOS, F. 2011 Vortex-induced vibrations of an elastically
mounted sphere with three degrees of freedom at Re= 300: hysteresis and vortex shedding
modes. J. Fluid Mech. 686, 426–450.

BEHARA, S. & SOTIROPOULOS, F. 2016 Vortex-induced vibrations of an elastically mounted sphere:
the effects of Reynolds number and reduced velocity. J. Fluids Struct. 66, 54–68.

BLACKBURN, H. & HENDERSON, R. 1996 Lock-in behavior in simulated vortex-induced vibration.
Exp. Therm. Fluid Sci. 12 (2), 184–189.

BOURGUET, R. & JACONO, D. L. 2014 Flow-induced vibrations of a rotating cylinder. J. Fluid
Mech. 740, 342–380.

DOBSON, J., OOI, A. & POON, E. K. W. 2014 The flow structures of a transversely rotating sphere
at high rotation rates. Comput. Fluids 102, 170–181.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

11
 A

ug
 2

01
8 

at
 0

1:
49

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
30

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.309


Vortex-induced vibration of a rotating sphere 819

GIACOBELLO, M., OOI, A. & BALACHANDAR, S. 2009 Wake structure of a transversely rotating
sphere at moderate Reynolds numbers. J. Fluid Mech. 621, 103–130.

GOVARDHAN, R. & WILLIAMSON, C. H. K. 1997 Vortex-induced motions of a tethered sphere.
J. Wind Engng Ind. Aerodyn. 69, 375–385.

GOVARDHAN, R. & WILLIAMSON, C. H. K. 2000 Modes of vortex formation and frequency response
of a freely vibrating cylinder. J. Fluid Mech. 420, 85–130.

GOVARDHAN, R. N. & WILLIAMSON, C. H. K. 2005 Vortex-induced vibrations of a sphere.
J. Fluid Mech. 531, 11–47.

HOUT, R. V., KATZ, A. & GREENBLATT, D. 2013 Time-resolved particle image velocimetry
measurements of vortex and shear layer dynamics in the near wake of a tethered sphere. Phys.
Fluids 25 (7), 077102.

HUNT, J. C. R., WRAY, A. A. & MOIN, P. 1988 Eddies, streams, and convergence zones in turbulent
flows. In Studying Turbulence Using Numerical Simulation Databases, vol. 2, pp. 193–208.
Stanford University.

ISSA, R. I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting.
J. Comput. Phys. 62 (1), 40–65.

JASAK, H. & TUKOVIC, Z. 2010 Dynamic mesh handling in Openfoam applied to fluid-structure
interaction simulations. In Proceedings of the V European Conference on Computational Fluid
Dynamics: ECCOMAS CFD 2010, Lisbon, Portugal (ed. J. C. F. Pereira, A. Sequeira &
J. M. C. Pereira), ECCOMAS.

JAUVTIS, N., GOVARDHAN, R. & WILLIAMSON, C. H. K. 2001 Multiple modes of vortex-induced
vibration of a sphere. J. Fluids Struct. 15 (3), 555–563.

JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
KIM, D. 2009 Laminar flow past a sphere rotating in the transverse direction. J. Mech. Sci. Technol.

23 (2), 578–589.
KRAKOVICH, A., ESHBAL, L. & HOUT, R. V. 2013 Vortex dynamics and associated fluid forcing in

the near wake of a light and heavy tethered sphere in uniform flow. Exp. Fluids 54 (11),
1615.

KUROSE, R. & KOMORI, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow.
J. Fluid Mech. 384, 183–206.

LEE, H., HOURIGAN, K. & THOMPSON, M. C. 2013 Vortex-induced vibration of a neutrally buoyant
tethered sphere. J. Fluid Mech. 719, 97–128.

LEE, H., THOMPSON, M. C. & HOURIGAN, K. 2008 Flow around a tethered neutrally-buoyant sphere.
In Proceedings of the XXII International Congress of Theoretical and Applied Mechanics,
Adelaide Convention Centre, Adelaide, Australia (ed. J. Denier, M. Finn & T. Mattner),
International Union of Theoretical and Applied Mechanics.

LEONTINI, J. S., STEWART, B. E., THOMPSON, M. C. & HOURIGAN, K. 2006a Predicting vortex-
induced vibration from driven oscillation results. Appl. Math. Model. 30 (10), 1096–1102.

LEONTINI, J. S., THOMPSON, M. C. & HOURIGAN, K. 2006b The beginning of branching behaviour
of vortex-induced vibration during two-dimensional flow. J. Fluids Struct. 22 (6), 857–864.

LIGHTHILL, J. 1986 Wave loading on offshore structures. J. Fluid Mech. 173, 667–681.
MAGNUS, G. 1853 Über die Abweichung der Geschosse, und: Über eine abfallende Erscheinung bei

rotierenden Körpern, vol. 164. Annalen der Physik.
NAUDASCHER, E. & ROCKWELL, D. 2012 Flow-induced Vibrations: an Engineering Guide. Courier

Corporation.
PARKINSON, G. 1989 Phenomena and modelling of flow-induced vibrations of bluff bodies. Prog.

Aerosp. Sci. 26 (2), 169–224.
POON, E. K. W., OOI, A. S. H., GIACOBELLO, M. & COHEN, R. C. Z. 2010 Laminar flow

structures from a rotating sphere: effect of rotating axis angle. Intl J. Heat Fluid Flow 31
(5), 961–972.

POON, E. K. W., OOI, A. S. H., GIACOBELLO, M., IACCARINO, G. & CHUNG, D. 2014 Flow
past a transversely rotating sphere at Reynolds numbers above the laminar regime. J. Fluid
Mech. 759, 751–781.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

11
 A

ug
 2

01
8 

at
 0

1:
49

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
30

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.309


820 M. M. Rajamuni, M. C. Thompson and K. Hourigan

PREGNALATO, C. J. 2003 Flow-induced vibrations of a tethered sphere. PhD, Monash University.
RAJAMUNI, M. M., THOMPSON, M. C. & HOURIGAN, K. 2018 Transverse flow-induced vibrations

of a sphere. J. Fluid Mech. 837, 931–966.
ROBINS, B. 1972 New Principle of Gunnery (of 1742). Republished by Richmond Publishing.
RUBINOW, S. I. & KELLER, J. B. 1961 The transverse force on a spinning sphere moving in a

viscous fluid. J. Fluid Mech. 11 (03), 447–459.
SAREEN, A., ZHAO, J., LO JACONO, D., SHERIDAN, J., HOURIGAN, K. & THOMPSON, M. C. 2018

Vortex-induced vibration of a rotating sphere. J. Fluid Mech. 837, 258–292.
SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids

Struct. 19 (4), 389–447.
SEYED-AGHAZADEH, B. & MODARRES-SADEGHI, Y. 2015 An experimental investigation of vortex-

induced vibration of a rotating circular cylinder in the crossflow direction. Phys. Fluids 27
(6), 067101.

WILLIAMSON, C. H. K. & GOVARDHAN, R. 1997 Dynamics and forcing of a tethered sphere in a
fluid flow. J. Fluids Struct. 11 (3), 293–305.

WILLIAMSON, C. H. K. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech.
36, 413–455.

WILLIAMSON, C. H. K. & GOVARDHAN, R. 2008 A brief review of recent results in vortex-induced
vibrations. J. Wind Engng Ind. Aerodyn. 96 (6), 713–735.

WONG, K. W., ZHAO, J., LO JACONO, D., THOMPSON, M. C. & SHERIDAN, J. 2017 Experimental
investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 829,
486–511.

WU, X., GE, F. & HONG, Y. 2012 A review of recent studies on vortex-induced vibrations of long
slender cylinders. J. Fluids Struct. 28, 292–308.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

11
 A

ug
 2

01
8 

at
 0

1:
49

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
30

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.309

	Vortex-induced vibration of a transversely rotating sphere
	Introduction
	Numerical methods
	Governing equations
	The fluid–structure solver
	Computational details

	Numerical sensitivity and validation studies
	Transversely rotating rigid sphere
	Validation: VIV of a cylinder
	Resolution studies

	Effects of transverse rotation on VIV of a sphere
	Sphere response
	Force measurements
	Wake structures

	The effect of Reynolds number on VIV of a rotating sphere
	Mean displacement, amplitude and forces
	Effect on wake structures

	Conclusions
	Acknowledgements
	References


