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a b s t r a c t

The effect of structural nonlinearity on vortex-induced vibration of a rigid circular
cylinder has been studied computationally for a fixed mass ratio of m∗

= 2.546 at
Re = 150. The arrangement of the springs and damper is similar to setup for the Standard
Linear Solid (SLS) model used to model a viscoelastic material. One linear spring is in
series with the damper and another nonlinear spring is parallel with the damper. The
nonlinear structural system is governed by the following three parameters: (a) the ratio
of the linear spring constants (R), (b) damping ratio (ζ ), and (c) nonlinearity strength
(λ). The focus of the present study is to examine the response of the cylinder to VIV by
changing ζ and λ. The peak amplitude decreases in comparison with a linear spring,
as spring softening (λ < 0) is increased; in contrast, the peak amplitude increases
for a hardening spring (λ > 0). The equivalent reduced velocity (Ueq

r ), a measure of
nonlinearity, is affected by damping, showing the non-monotonic variation with ζ . There
exists a critical value ζ ≈ 1 below which the equivalent reduced velocity decreases and
beyond which Ueq

r increases. We also observed at high values of λ (e.g. λ = 4), the peak
lift force coefficient is almost constant over a wide range of reduced velocity, with the
absence of the lower branch for a very low (ζ = 0.001) and high (ζ = 10) values of
damping. This near constant amplitude range suggests a hardening spring may be useful
for extending the operational range for energy extraction applications. Finally, increased
system nonlinearity leads to considerably richer spectral content in the displacement
and force signals, reflected in the wake development.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Vortex-induced vibration (VIV) occurs when the shedding of vortices (generally in the form of a von Kármán vortex
treet) exerts an oscillatory cross-stream force on a cylinder. In particular, elastic structures with a natural structural
requency close to the forcing frequency may develop large-amplitude flow-induced oscillations by extracting energy
rom the flow. The VIV response of a circular cylinder in uniform flow is determined by the Reynolds number, the mass
atio, the damping ratio, and the reduced velocity. The Reynolds number is defined as Re = U∞Dν, where U∞ is the
ree stream velocity, D is the cylinder diameter and ν is the kinematic viscosity of the fluid. The mass ratio is defined as
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Nomenclature

λ Nonlinearity strength (= D/
√
k/a for hardening spring) and (= −D/

√
−k/a for softening spring)

ν Kinematic viscosity of the fluid
ρ Fluid density
ζ Damping ratio
a Strength of the cubic stiffness nonlinearity
A∗
y,max Maximum amplitude of cylinder oscillation

c Damping coefficient
CL Lift force along transverse direction (=2Fy/ρDU2

∞
)

D Cylinder diameter D = 1
fn Structural natural frequency based on k (undamped) (=

√
k/m)

fv Vortex shedding frequency of a non-oscillating cylinder
fy Transverse oscillation frequency of cylinder
fls Structural natural frequency of linear system consists of k, kn, c
fs Structural natural frequency of nonlinear system consists of (k, a), kn, c
k Equilibrium stiffness of the spring
kn Non Equilibrium stiffness of the spring
L Spanwise length of cylinder
m Mass per unit length of cylinder
m∗ Mass ratio (= 4m/πρD2)
R Ratio of Non Equilibrium stiffness to Equilibrium stiffness of the spring, kn/k
Re Reynolds number (= U∞D/ν)
U∞ Free stream velocity
Ur Reduced Velocity based on natural frequency of linear part of spring (= U∞/fnlD)
Ueq
r Equivalent Reduced Velocity based on natural frequency of nonlinear SLS system (= U∞/fsD)

Superscript ∗ represents non-dimensional quantity

m∗
= m/(πρD2/4) where m and ρ are the mass per unit length and the fluid density, respectively. The damping ratio is

iven as ζ = c/2
√
km, where k is the spring stiffness constant.

The problem of vortex-induced vibration of a cylinder, in particular, the case where a rigid circular cylinder is elastically
mounted and constrained to oscillate transversely to a free stream, has been well-studied in the literature, as can be seen
from comprehensive reviews of Sarpkaya (1979), Bearman (1984), Parkinson (1989), Sarpkaya (2004), Williamson and
Govardhan (2004, 2008), Bearman (2011) and Wu et al. (2012). The main features of the problem are summarized below.

Lock-in occurs when the non-dimensional structural period matches the shedding period, typically when Ur ∼ 5 for
a circular cylinder. The reduced velocity range over which the structure undergoes near-resonant vibration is referred
to as the lock-in range. The reduced velocity as defined by Sumer et al. (2006) is the ratio of the wavelength of the
cylinder trajectory to its diameter is given by Ur = U∞/fsD, alternatively, it can be thought of as a non-dimensional
structural period. The amplitude of cylinder vibration undergoes jumps as the reduced velocity is changed, which give
rise to different branches based on the synchronous response: the upper and lower branches (Khalak and Williamson,
1999). The combination of the upper and lower branches is called the lock-in region, where the vibration frequency locks
onto the natural frequency of the system. The lower branch in higher Re experiments is identified by the lower amplitude
of oscillation than the upper branch. The upper and lower branches are also characterized by the phase difference between
the lift force and displacement of close to 0

◦

and 180◦, respectively.
The current work focuses on VIV of a cylinder mounted on a nonlinear viscoelastic support. The studies on the VIV

system with nonlinear restoring forces have shown that such forces can either increase the vibration amplitude and
enhance the range of operational flow speeds, with possible application to energy harvesting, or to decrease vibration
amplitude when it is undesirable. Notably, Gammaitoni et al. (2009) have used a nonlinear oscillator for energy harvesting,
whereas Lee et al. (2008) have used nonlinear oscillator for vibration suppression. Amabili (2019) also investigated
nonlinear damping from viscoelasticity by using a single degree-of-freedom model based on the standard linear structural
model with geometric nonlinearity inserted in. Amabili (2018) undertook a similar investigation using a fractional
viscoelastic standard solid model with geometric nonlinearity. They have both shown experimentally a strong increase in
damping with the vibration amplitude during nonlinear vibrations. Amabili (2019) studied the purely structural system
with sinusoidal force whereas the current work focused on both, the nonlinear structure and VIV. The current work is
aimed at characterizing how VIV is affected when the structural system shows a nonlinear response due to nonlinear
viscoelastic support. In addition to this nonlinearity, as for VIV of linear structures, the oscillations modify the wake and
2
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Fig. 1. Schematic of the (a) SLS model with linear springs; (b) Extended SLS model with a nonlinear left spring and linear right spring.

give rise to a nonlinear interaction between the flow and structure. The understanding of the effect of the added structural
nonlinearity is of importance to the present study.

The stiffness force of the nonlinear spring is expressed in the form as fr = ky + ay3. Here k and a denote the linear
tiffness and nonlinear cubic stiffness parameters. If a and k both are positive, then the system has only one equilibrium
oint at y = 0, which is stable. This is identified as a hardening system, since the effective stiffness, given by the slope
f the restoring force curve, increases with increasing |y|. When k > 0 and a < 0, the system has one stable equilibrium
oint at y = 0 and two unstable equilibrium points at y = ±

√
k/|a|. In this case, the slope of the restoring force curve

ecreases with increasing |y|, and the system is referred to as softening. If k < 0 and a > 0, such an oscillator has one
unstable equilibrium point at y = 0 and two stable equilibrium points at y = ±

√
|k|/a. This system is referred to as a

bistable or double-well oscillator (Badhurshah et al., 2019).
Considerable research has made towards understanding the characteristics of bistable springs. Harne and Wang

(2013) has classified the potential methods to induce bistability, such as employing magnetic attraction or repulsion
on cantilever structures and imparting mechanical bistability into a piezoelectric structure. They observed an increase in
power generation due to large amplitude motion caused by the transition from one stable state to the other. Huynh et al.
(2017) have also considered the effects of bi-stable stiffness and hardening stiffness on the performance of VIV systems.
They found that bi-stable stiffness allows the system to operate at low-velocity water flows, while the hardening stiffness
can extend the operating range for high velocity flows. Mackowski and Williamson (2013) recently verified the nonlinear
effect of hardening springs on a VIV system experimentally. From that study, the hardening of the springs was represented
through cubic and quintic functions, confirming the possibility of high power efficiency. An alternative form of spring that
exhibited hardening was studied experimentally by Huynh et al. (2015). This utilized a cantilever support. Dai et al. (2017)
have used nonlinear elements – a nonlinear energy sink (NES) – to absorb vibration in VIV. NES is an essentially nonlinear
oscillator that promotes the one-way transfer of energy from the primary structure (the cylinder) to itself. In the present
work, we have investigated the effects of both the hardening springs and the softening springs, which may have possible
implications for energy extraction.

Previous studies have employed viscoelastic (Findley and Davis, 2013) supported VIV to suppress the vibration induced
by vortex shedding. The damping effect on VIV was studied using the Kelvin–Voigt model. In this model, the amplitude
response decreases with increasing damping due to an increase in the dissipation of mechanical energy of the cylinder
by the damper. de Lima et al. (2018) investigated the effect of viscoelastic-mounting of a cylinder on VIV, examining
flow characteristics at Re = 10000. They discussed the role of frequency and temperature on viscoelastic properties, and
proposed such a viscoelastic support to suppress the vibration induced by vortex shedding. In the current work, we have
employed the Standard Linear Solid (SLS) model instead of the Kelvin–Voigt (KV) model, since SLS is a more realistic
material model (De Haan and Sluimers, 2001; Findley and Davis, 2013). The Kelvin–Voigt (KV) model is able to describe
the creep behaviour but is unable to describe stress relaxation. The SLS model predicts both creep and stress relaxation.
More recently, Mishra et al. (2020) investigated the VIV response of a rigid circular cylinder mounted on a viscoelastic
support modelled using the Standard Linear Solid (SLS) model. The SLS model consists of one linear spring in series with
the damper and another linear spring is parallel with the damper (Fig. 1(a)). They showed that the higher damping ratio
(ζ > ζc) response is similar to that at lower damping ratios (ζ < ζc). The non-monotonic vibration amplitude response
with damping ratio was shown through a ‘‘Griffin Plot’’, commonly used to record the amplitude response as the damping
ratio is varied. The current paper is an extension of that work to numerically investigate the VIV response of a rigid circular
cylinder mounted on a nonlinear viscoelastic support. In this paper, the nonlinear viscoelastic support is modelled as an
extended SLS model with a nonlinear spring placed in parallel to a linear spring–damper element Fig. 1(b).

Finally, in relation to the current study, Mishra et al. (2019) used the Standard Linear Solid model (SLS) of viscoelasticity

to discuss the response of a viscoelastic thin plate attached to the lee side of the cylinder for Re = 100. The tip
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displacement amplitude was found to be a non-monotonic function of the structural damping. To the best of the authors’
knowledge, VIV of a cylinder mounted on a nonlinear viscoelastic support has so far received little attention in the
literature. It is envisaged that such supports can provide an effective means of tuning the nonlinearity for VIV suppression
or energy extraction applications.

The paper is organized as follows. In Section 2, the governing equations for the structure, fluid flow, and coupling of
he flow and structure solvers are provided. A numerical approach to solve the coupled system is then briefly described.
he simulation results are presented in Section 3 as a function of two governing parameters: (a) nonlinearity strength λ;
nd (b) damping ratio ζ . The effect of these parameters on the amplitude of vibration, frequency, and lift coefficients is
iscussed. Finally, the main conclusions of the work are presented in Section 4.

. Problem definition and methodology

.1. Governing equations

In the present work, a circular cylinder of diameter D is placed in a free-stream flow. The cylinder is mounted vertically
n a viscoelastic support as shown in Fig. 2, and is free to oscillate only in the transverse direction to the flow. The
low is assumed two-dimensional (2D) based on the considered Reynolds number (Re). The fluid is incompressible and
iscous, while the motion of the cylinder can be modelled as a spring–mass–damper system shown in Fig. 1. The fluid flow
s modelled in the moving reference frame attached to the cylinder. The governing equations are the non-dimensional
ontinuity and Navier–Stokes equations in an accelerated frame of reference, as follows

∂ui

∂xi
= 0, (1)

∂ui

∂t
+

∂ujui

∂xj
= −

∂p
∂xi

+
1
Re

∂2ui

∂x2j
+ ai, (2)

where ui and p are the non-dimensional fluid velocity and kinematic pressure, respectively, and ai is the acceleration
f the reference frame attached to the cylinder. The free stream velocity U∞ and the cylinder diameter D are used as
eference scales, respectively.

The coupled fluid–solid system is described by Eqs. (2) and (1), together with the motion of the cylinder in the
–direction governed by the following dimensionless equation (refer to Appendix):

...
Y

∗

+
Rπ f ∗

n

ζ
Ÿ ∗

+ 4π2f ∗

n
2(1 + R + 3λ2Y ∗2)Ẏ ∗

+
4π3Rf ∗

n
3

ζ
Y ∗

+
4π3Rf ∗

n
3λ2

ζ
Y ∗3

=
2Rf ∗

n CL

m∗ζ
+

2
πm∗

ĊL (3)

where Y ∗ and CL correspond to the displacement and hydrodynamic force in the transverse direction. Here,
...
Y

∗

, Ÿ ∗, Ẏ ∗ and
∗ are the non-dimensional jerk, acceleration, velocity and displacement of the cylinder respectively. The non-dimensional
requency is given by f ∗

n = Dfn/U∞, where fn =
1
2π

√
k/m, R = kn/k, ζ = c/2

√
km, and m∗ is mass ratio defined by

∗
= m/(πρfD2/4) per unit spanwise length of the cylinder of length L. In Eq. (3), CD = 2Fx/ρfU2

∞
D and CL = 2Fy/ρfU2

∞
D

are the corresponding drag and lift coefficients per unit length of the cylinder, respectively, where Fx and Fy are the forces
xerted on the cylinder in the in-line and transverse directions, respectively. Finally, λ is the nonlinearity strength defined

as the inverse of the non-dimensional position at which the force produced by the linear spring is equal to force produced
by nonlinearity (Mackowski and Williamson (2013)). For a hardening spring, λ = D/

√
k/a, while for a softening spring

= −D/
√

−k/a.

.2. Numerical approach

The simulations used a non-deformable mesh fixed to the cylinder with an extra non-inertial acceleration term added
o the right-hand side of the Navier–Stokes equation (Eq. (2)) to account for the acceleration of the cylinder across the
low. A spectral-element technique is employed for the spatial discretization (Karniadakis and Sherwin, 2013). A detailed
mplementation of the spectral element method can be found in Thompson et al. (1996), hence a only brief description
f the approach is given here.
The spatial domain is discretized into quadrilateral elements. Within each element, the velocity and pressure field, are

epresented by high-order tensor-product Lagrangian polynomial shape and weighting functions. The node points of these
olynomial functions are associated with Gauss–Lobatto–Legendre quadrature integration points. The time integration
f the spatially discretized equation was dealt with through a three-step time-splitting scheme that accounts for the
dvection, pressure, and diffusion terms of Navier–Stokes equation. First, the advection and cylinder acceleration are
ntegrated using the explicit Adams–Bashforth method to update the velocity field. The second step incorporates the
ffect of the pressure field on the velocity field. This proceeds by taking the divergence of the update step to form a
oisson equation for the pressure forced by the divergence of the velocity field after the advection step. Once the pressure
s evaluated through LU decomposition, the intermediate velocity is updated to produce a divergence-free intermediate
elocity field. Finally, the diffusion term is incorporated using the Crank–Nicolson scheme to correct the velocity over the
imestep. The final step preserves the divergence-free state of the velocity, if it was initially divergence-free at the start
f the step. The spectral-element code was recently validated for similar problems by Soti et al. (2017) and Mishra et al.
2020).
4
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Fig. 2. Schematic of the computational domain and the boundary conditions for the vortex-induced vibration flow problem.

2.3. Computational domain and boundary conditions

A schematic of the computational domain is shown in Fig. 2. The cylinder is constrained to move in the transverse
irection to the flow. We use the following parameters: Re = 150, and damping ratio ζ = [0.001−10], in the simulations
resented hereafter, where Re is based on the cylinder diameter, D, and uniform inflow velocity, U∞. The computational

domain as shown in Fig. 2, the inlet is a semicircle with a diameter 30D and the far-field extends 25D downstream.
The vibrating cylinder is kept at the centre of the semicircle. The flow boundary conditions are shown in Fig. 2 and are
described as follows. The fluid velocity prescribed at the inlet, top, and bottom boundaries is given by u = U and v = −vcyl,
where u and v are the x and y velocity components, respectively, and vcyl is the cylinder velocity in the absolute frame. At
the surface of the cylinder, the no-slip condition is imposed. At the outlet, the normal velocity gradient is set to zero and
the pressure is fixed. At no-slip boundaries and at the far-field boundaries, higher-order boundary conditions are used for
the pressure gradient (Karniadakis et al., 1991), maintaining mass conservation at boundaries.

2.4. Code validation

The spectral-element implementation has been previously extensively validated against experiments and other codes,
e.g., see Hourigan et al. (2001), Sheard et al. (2003), Leontini et al. (2006a) and references therein. This solver has also
been used to model closely related vortex-induced vibration problems e.g., for a cylinder: Leontini et al. (2006b,a, 2011);
and a sphere: Lee et al. (2013). In addition, for the current simulations, the domain and chosen resolution are based on a
previous study of VIV of a circular cylinder for the linear SLS model, where resolution and other validation studies were
reported (Mishra et al., 2020).

For the present study, we have undertaken further tests of the implementation of the nonlinear VIV module for a
cylinder with a single degree of freedom by considering parameter sets that effectively reduce to the standard elastically
mounted cylinder problem. The schematic of the computational domain is shown in Fig. 2, in which the cylinder is
mounted on a spring–dashpot viscoelastic model and is free to vibrate only in the transverse direction. The system
converts into a linear elastic system for nonlinearity strength λ = 0. To validate against existing elastic results available
in the literature, two viscoelastic cases were considered that reduce to simpler elastic cases: (1) ζ = 0 or R = 0; and (2)
ζ → ∞ for R = 1, as depicted in Fig. 3. For ζ = 0, the mounting system acts as single spring with frequency f1, whereas
for ζ → ∞, it act as two springs in parallel with an effective system frequency f2 =

√
2f1. The response curves for these

cases can be compared with previously reported results from the literature (Bao et al., 2012; Zhao, 2013), and are shown
in Fig. 4.

The validation for the nonlinear elastic case is done through a comparison with the numerical results of Wang et al.
(2019). The validation case is VIV of a circular cylinder at Re = 150,m∗

= 2.546, and for a non-dimensional frequency
f ∗
n = 0.22227. The nonlinearity strengths considered for two cases were λ = −1.6 and 4, the extreme cases for the current
study. Fig. 5 shows the comparison of the computed maximum displacement amplitude with the numerical predictions
of Wang et al. (2019). There is generally good agreement between two sets of predictions, with slight differences most
likely due to differences in the blockage ratio.
5
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R

m

Fig. 3. Schematic of the conversion of the nonlinear viscoelastic system into a nonlinear elastic one: (a) ζ = 0; and (b) ζ (= c/2
√
km) → ∞; for

(= kn/k) = 1. For linear system a = 0.

Fig. 4. Comparison of computed (a) Maximum displacement amplitude; (b) Root mean square(RMS) lift coefficients; (c) Mean drag coefficient; (d)
RMS drag coefficient; of an undamped cylinder supported on a linear elastic spring undergoing transverse VIV for a linear spring (λ = 0) with

∗
= 2.546 (Bao et al., 2012) at Re = 150.
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Fig. 5. Comparison of computed maximum displacement amplitude of an undamped cylinder undergoing transverse VIV on nonlinear spring for
m∗

= 2.546, f ∗
n = 0.22227 at Re = 150, (a) λ = 4, (b) λ = −1.6 (Wang et al., 2019).

2.5. Reduced velocity for the nonlinear system: equivalent reduced velocity

For a linear system, the reduced velocity is defined as:

Ur =
U∞

Dfsl
, (4)

ere, fsl represent the natural frequency of the linear system consisting of a damper (c) and linear springs with stiffnesses
and kn.
In contrast, according to vibration mechanics, nonlinear springs have no fixed natural frequency, and hence the

tandard definition of reduced velocity Ur is no longer valid. Since the natural frequency of nonlinear spring depends
n the vibration amplitude, the frequency cannot be calculated a priori. It can be calculated after the vibration amplitude
s obtained. Once the amplitude of vibration is known, the amplitude-dependent natural frequency of the nonlinear system
an be found (Kovacic and Brennan, 2011).
The motion of the cylinder in the y–direction is governed by the dimensionless equation Eq. (3). Here, Eq. (3) with the

RHS set to zero is solved using a fourth-order Runge–Kutta method to derive the natural frequency (fs(A∗
y,max)) of nonlinear

spring at each amplitude. The equivalent reduced velocity can be defined as (Mackowski and Williamson, 2013):

Ueq
r =

U∞

Dfs(A∗
y,max)

= 1/f ∗

s . (5)

Further, the different reduced velocities, Ueq
r and Ur , are related by:

Ueq
r =

U∞

Dfs
=

U∞fsl
Dfslfs

= Ur
fsl
fs

. (6)

Here f represents the natural frequency of the nonlinear system consisting of the damper and springs.
s

7
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Fig. 6. The effect of nonlinear springs for λ = [−1.6, 4] at R = 1 and ζ = 0.001. Amplitude, A∗ , versus the reduced velocity, Ur , for (a) softening;
b) hardening springs.

. Results and discussion

The VIV of a rigid circular cylinder supported by a nonlinear viscoelastic support, which is modelled as an extended SLS
odel, is simulated for various values of f ∗

n at Re = 150. There are six independent parameters in the study: mass ratio
m∗), damping ratio (ζ ), spring-stiffness ratio (R), reduced velocity (Ur ), Reynolds number (Re) and nonlinearity strength
λ). In this section, the effect of damping (ζ ) and nonlinearity strength (λ) on the vortex-induced vibration of a circular
ylinder is discussed for m∗

= 2.456, R = 1. For the analysis, we have considered range of: the nonlinearity strength,
= [−1.6, 4]; and damping ratio, ζ = [0.001, 10]. For a negative value of λ, the sign of restoring force (fr = ky + ay3) is
hanged and the nonlinear VIV system is unstable when λ is reduced to −1.8 (Wang et al., 2019). To avoid this system
nstability, the lowest λ value considered is λ = −1.6.

.1. Effect of nonlinearity strength

In this section, the effect of nonlinearity strength (λ) on the dynamic response of cylinder has been computed at five
alues of λ in the range −1.6 ≤ λ ≤ 4. First, the effect of nonlinearity on the vibration amplitude and oscillation frequency
s discussed. The amplitude of displacement and peak lift coefficients are determined, noting that the frequency response
elps to demarcate different VIV response branches. The branching of VIV is discussed in the subsequent subsection.
ustification for classifying the different branches is further elucidated by fluid–structure dynamics and hysteresis.

.1.1. Vibration amplitude and the frequency response
The effect of nonlinearity on the vibration amplitude of a circular cylinder is shown in Fig. 6(a) for a softening spring and

ig. 6(b) for a hardening spring. Fig. 6(a) shows that as the softening spring nonlinearity becomes stronger (i.e. λ is more
egative), Ay,max decreases compared to a linear spring (λ = 0). The maximum amplitude decreases from A∗

y,max = 0.58
or λ = 0 to A∗

y,max = 0.51 for λ = −1.6. The range of Ur over which large amplitude is obtained for a fixed λ decreases
rom Ur = 3.2–7.6 to Ur = 3.2–7.2, corresponding to λ = −1 and λ = −1.6 respectively.

Fig. 6(b) shows the amplitude variation with reduced velocity for a hardening spring. It shows that the maximum
mplitude is delayed with an increase in the nonlinearity parameter. The amplitude is maximum at Ur = 3.9 for λ = 0,
nd Ur = 8.3 for λ = 4. It is also observed that the range of Ur over which large amplitude is obtained for a fixed λ,
ncreases as λ is increased. The ‘‘high-amplitude" region shifts towards the right within the range 3.4 < Ur < 7.5 for
= 0, to 3.4 < Ur < 8.3 for λ = 4.
The displacement histories for λ = 0 and 4 at critical reduced velocities are presented in Figs. 7 and 8. The maximum

mplitude considered in Fig. 6 is the maximum displacement of the signal. To ensure the asymptotic dynamic state was
eached, the amplitude was taken over the time interval of 1050 ≤ t∗ ≤ 1250.
8
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Fig. 7. The displacement history for λ = 0 at R = 1 and ζ = 0.001 for (a) Ur = 3.2, (b) Ur = 3.5, (c) Ur = 5.0, (d) Ur = 6.0.

Fig. 8. The displacement history for λ = 4 at R = 1 and ζ = 0.001 for (a) Ur = 3.6, (b) Ur = 4.6, (c) Ur = 6.0, (d) Ur = 8.3.

The variation of equivalent reduced velocity, Ueq
r , on VIV of a circular cylinder restrained by the extended SLS model

s shown in Fig. 9. This figure helps to understand the difference between a linear viscoelastic support and nonlinear
iscoelastic support. The predictions for the linear spring case (λ = 0) are included in Fig. 9 for comparison. This is
onsistent with the nonlinear variation between Ueq

r and Re, as observed by Mackowski and Williamson (2013). For a
oftening spring, as shown in the figure, the Ueq

r curves for λ = −1, −1.6, nearly collapse into a single linear curve for
= 0.1, 1, 10. For ζ = 0.001, Fig. 9(a) shows nonlinear changes of Ueq

r with Ur occur in the range of Ur = 3.2–7.5.
or a hardening spring (λ > 0), as shown in Fig. 9(a), deviation from linearity starts from Ur = 3.2. The end of the
onlinear change is shifted towards the right as the λ is increased; ending at Ur = 7.6 for λ = 1 and Ur = 8.3 for

λ = 4. The observed trend is due to variation of amplitude with Ur . Fig. 6 shows the variation of amplitude with Ur for
ζ = 0.001, λ = [−1.6, 4]. The higher the amplitude, the more the nonlinearity has an effect, and similarly for lower
amplitude, the nonlinearity effect reduces. As ζ is increased, the changes due to nonlinearity decrease up to ζ = 1. The
trend is reversed on further increasing the damping ratio beyond ζ = 1, as shown in Fig. 9. The non-monotonic trend
observed is due to the structural system (SLS) considered. Please observe that the nonlinear viscoelastic system under
consideration and the nondimensionalization scheme that has been followed, the current model collapses to a purely
elastic system for the cases ζ → 0 and ζ → ∞ with stiffness constant k and k + k respectively (Fig. 3).
n
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Fig. 9. Equivalent reduced velocity, Ueq
r , versus the linear reduced velocity, Ur , for (a) ζ = 0.001, (b) ζ = 0.1, (c) ζ = 1, (d) ζ = 10; corresponding

to R = 1 and λ = [−1.6, 4].

Fig. 10 show the peak lift coefficient variation with reduced velocity. The softening spring response is similar to the
linear system and the peak value decreases from CL,max = 2.8 for λ = 0 to CL,max = 1.2 for λ = −1.6. For the hardening
spring, the range of Ur over which the lift coefficient attains a near maximum (plateau) value for a fixed λ, increases
as λ is increased. The peak values also increased with the introduction of nonlinearity from CL,max = 2.8 for λ = 0 to
CL,max = 3.0 for λ = 4, although there is slight variation in peak values with nonlinearity. It shows that the effect of the
hardening spring on the maximum amplitude is stronger than the softening spring.

The effect of nonlinearity on the branching behaviour of the VIV response is indicated through the frequency plot shown
in Fig. 11. The branching behaviour for the linear SLS system was examined at low Re by Mishra et al. (2020). The upper
branch in higher Re experiments is characterized by a higher oscillation amplitude than the lower branch Williamson
and Roshko (1988). However, at low Re, the beginnings of the upper/lower branch response are not apparent through
the amplitude response curve alone, but they are revealed through the lift coefficient and oscillation frequency response
variations with reduced velocity. Previously it has been noted that the upper branch shows multiple frequencies in the
frequency response spectrum (Leontini et al., 2006b). Fig. 11 shows the normalized frequency, f ∗

= f ∗
y /f ∗

s , as a function
of reduced velocity. Note that f ∗

s is computed using Eq. (3) after simulations are performed, since the frequency depends
on the amplitude. Here, f ∗

y represents the dominant component of the vibration frequency. As illustrated in Fig. 11, in the
initial branch, 2 < Ur < 3.2, the vibration frequency is almost the same as the vortex-shedding frequency for a stationary
cylinder for all values of λ. As demonstrated by Mishra et al. (2020) for a linear system (i.e. λ = 0), 3.3 ≤ Ur ≤ 3.9
shows multiple frequency components, and was identified as an upper(-type) branch, followed by 4.0 ≤ Ur ≤ 7.5 as a
lower(-type) branch.

Figs. 11(a) and 10(a) show that the trends obtained for λ = 0 agree with VIV under linear viscoelastic support. The
strong softening results into an early departure from the lower branch to the desynchronized (Fig. 11(a)) region. The
departure at λ = −1 from λ = 0 occurs at Ur = 7.5, whereas it occurs at Ur = 7.3 for λ = −1.6. Fig. 11(b) shows the
frequency response for a hardening spring. With an increase of λ, the frequency response departs from the linear system
frequency response. The ranges of Ur for the initial branch corresponding to λ = 1, 1.6, 2 are the same as for λ = 0,
which is limited to 2 < Ur < 3.2. For λ = 1, in the range 3.4 ≤ Ur ≤ 4.2, the normalized frequency (f ∗) is constant
and lower than f ∗

≈ 1. In the range 3.4 ≤ U ≤ 4.2, (see Fig. 10(b)) large values of the peak lift coefficient that form
r
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Fig. 10. Peak lift coefficients, for R = 1, ζ = 0.001, λ = [−1.6, 4].

Fig. 11. The effect of nonlinear springs on frequency; Normalized frequency, f ∗ , versus the reduced velocity, Ur , corresponding to R = 1, ζ = 0.001
nd λ = [−1.6, 4] for (a) softening spring, (b) hardening spring. The blue dotted line represent the vortex-shedding frequency for the stationary
ylinder.

lateaus in the curves are seen, indicating the presence of the upper branch (Leontini et al., 2006b). Further, in the range
.4 ≤ Ur ≤ 7.6, f ∗

≈ 1 (see Fig. 11(b)) and the lower lift amplitude indicates the lower branch. For Ur > 7.7, f ∗ varies
inearly with Ur and runs parallel with the line representing the vortex-shedding frequency for the stationary cylinder.
his indicates the desynchronization region.
As illustrated in Fig. 11(b), the initial branch is extended to 2 < Ur < 3.8 for λ = 4. Referring to Fig. 10(b) , we observe

he upper branch range is increased for higher values of λ. The upper branch range 3.4 ≤ U ≤ 5.8 for λ = 2, increases to
r
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3.9 ≤ Ur ≤ 8.4 (see Fig. 11(b)) for λ = 4. Fig. 11(b) also illustrates as the hardening of the spring increases, the departure
from the lower branch to the desynchronization region is delayed. For λ = 0, the lower branch ends at Ur = 7.5, while
or λ = 4, it ends at Ur = 8.4. It is interesting to note (see Fig. 11(b), Fig. 10(b)) that for λ = 4, the initial branch, upper
ranch and desynchronization regime are present, while the lower branch is absent.

.1.2. Multi-frequency response, hysteresis and displacement–force phase
The nonlinearity of the system mounting leads to more complex frequency content in the amplitude and force

esponses than for a linear structural system. The normalized frequency ratio behaviour in the branches is shown in
ig. 12. This shows the power spectral density (PSD) of cylinder displacement (left) and the PSD of lift force signal (right)
or λ = 0, 1, 2, 3, 4, shown as coloured contour plots. For all λ, in the initial branch, only one frequency component
is present in the displacement and lift force signals. This corresponds to the vortex-shedding frequency of a stationary
cylinder, which overlaps with the straight line representing St = 0.19. The wake vorticity contours shown in Fig. 14(a)
show that the vortex shedding pattern is 2S and purely periodic. With a further increase in Ur , in the upper(-type) branch,
multiple frequency components are present in the displacement signals, with the frequency band increasing as structural
nonlinearity is increased. This emergence of multi-frequency content is clearly due to the structural nonlinearity. The
PSDs of Figs. 15 and 16 show that multiple frequencies are observed in displacement (Y ∗) signals in the upper branch.
For the linear spring mounting, both the upper branch and lower branch are observed. For the displacement signal, the
upper branch shows the presence of additional frequency content, while the lower branch shows the presence of only
a single frequency. On the other hand, for the nonlinear mounting, the lower branch is absent, and increased frequency
content is observed in the upper branch. It is also observed that the upper-branch Ur range is extended for the nonlinear
case (3.9 ≤ Ur ≤ 8.4) as compared to the linear case (3.3 ≤ Ur ≤ 3.9). These differences can be attributed to the
nonlinear structural mounting. The wake vorticity contours shown in Fig. 14(b) show the evolving wake in the upper
branch (Ur = 4.6 for λ = 4 and Ur = 3.5 for λ = 0). Furthermore, in the lower branch (f ∗

= 1), the strong third harmonic
for λ = 0 becomes weaker as λ is increased. At Ur = 4.6, Figs. 13 and 14 (and Figs. 7 and 8) show evidence of frequency
modulation for the nonlinear mounting. Indeed, the instantaneous period – the time-difference between consecutive
amplitude maxima (not shown) – varies by approximately 20% with displacement amplitude. This is reasonable to expect
because the effective spring frequency for a nonlinear spring depends on the oscillation amplitude, which varies with time
for the reduced velocity under consideration. On the other hand, for the linear spring system at Ur = 3.5 (see Fig. 14(a)),
the amplitude modulation appears to be consistent with beating, with little variation of the instantaneous period over a
beating cycle.

Figs. 15 and 16 highlight the power spectral density (PSD) for λ = 0 and λ = 4 respectively, for displacement and lift
force. In the initial branch, both show strong narrow fundamental frequency content for displacement (see Figs. 15(a) and
16(a)), whereas the lift force for λ = 4 shows a weak but not negligible third harmonic. The upper branch shows a band
of frequencies for both displacement and lift force. We observe the lift force for λ = 4 (Fig. 16(b)) shows a third band of
frequencies approximately three times the first mode (f ∗

3 ≈ 3f ∗

1 ). As mentioned in the previous section, the upper-type
branch is categorized with f ∗ constant but lower than f ∗

= 1. The third frequency band beyond the fundamental exists
in the lift signal for λ = 0 and 4, centred at approximately three times that of the fundamental mode. The band centre
for λ = 4 is lower than for λ = 0, but maintains the ratio between harmonic and fundamental frequencies of f ∗

3 ≈ 3f ∗

1 .
Higher harmonics in the force signal have been observed in previous VIV studies with a linear structural support (e.g.,

Mishra et al., 2020), indicative that the forcing is not purely sinusoidal. The results presented in the current paper are
consistent with these observations (see Fig. 15). These harmonics (f ∗

3 = 2.89, 2.99) are present only in the lower branch
(Ur = 5.0, 6.0). Additional frequencies centred about the fundamental, f ∗

1 = 0.77, are also observed (Ur = 3.5, upper
branch). Note that higher harmonics are not present in the upper branch. In contrast, for the nonlinear structural support,
we observe higher harmonics in the upper branch (see Fig. 16, Ur = 4.6, 6, 8.3). Moreover, there are also additional
frequencies, centred about the fundamental (f ∗

1 = 0.71) and third harmonic (f ∗

3 = 2.25). The increased frequency content
is significant for Ur = 4.6, and it decreases as Ur increases.

The displacement spectra for the linear structural mounting does not show any significant higher harmonic content.
We do see a few additional frequencies centred about the fundamental (f ∗

1 = 0.77) in the upper branch, but these are
absent in the lower branch. The displacement spectra for the structure with a nonlinear support also does not show any
appreciable higher harmonics but we do see additional frequency content centred around the fundamental in the upper
branch. This additional frequency content is significant for Ur = 4.6 but reduces as Ur increases. Hence, it is clear that the
presence of the structural nonlinearity causes an appreciable change in both the displacement and force spectra. However,
beyond this, perhaps the most significant difference between the response for the linear and nonlinear structure mounting
is the absence of a lower branch in the latter case.

The cylinder response may exhibit hysteresis due to a delay in mode-switching during a transition. Hysteresis may
be caused by the nonlinearity of the system, flow, or structural components. As shown in Fig. 17, the present simulation
results display hysteretic behaviour. Brika and Laneville (1993) have observed that the cylinder response is sensitive to
changing the reduced velocity in small increments, ∆Ur . As the reduced velocity is defined as the inverse of the oscillator
natural frequency, computations of hysteresis have been carried out with decrements of the structural natural frequency,
∆f ∗

n . For the increasing-velocity curve, the reduced velocity is increased from Ur = 2 in small increments with the
initial condition at each U being the saturated response at the previous increment. The reduced velocity is increased by
r
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Fig. 12. Contour of the power spectral density of displacement(left) and lift force(right) plotted against the normalized frequency and reduced
elocity Ur for ζ = 0.001. The spectral power is normalized by the respective maximum value at each Ur . A log10 scale is used to better highlight
he variation from 0 (black) to −3 (white).

Fig. 13. Time-dependent lift coefficients (CL) plot for (a) λ = 0,Ur = 3.5; (b) λ = 4,Ur = 4.6.

ecreasing the non-dimensional linear structural natural frequency, f ∗
n , with the decrement size taken is ∆f ∗

n = 0.001. For
he decreasing velocity-curve, the reduced velocity is decreased from Ur = 12 by increasing f ∗

n , with the initial condition
gain corresponding to the fully saturated state for the next level of Ur . A very small hysteretic loop is observed at the
nset of the upper-type branch in the range of 3.2 ≤ Ur ≤ 3.3. Hysteresis for the transition between the upper branch and
esynchronization regime is shown in Fig. 17. This occurs over a much wider reduced velocity range for the nonlinear
ase (8 ≤ U ≤ 12) than in the linear case (7.35 ≤ U ≤ 8.58) . Since both the structural and fluid components are
r r
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Fig. 14. Vorticity contours (scale −2 to 2) for ζ = 0.001 at Ur representing response branches. For λ = 0 (a) Ur = 3.2 (Initial branch), (b) Ur = 3.5
Upper-type branch), wake evolution over time,(c) Ur = 5.0 (Lower branch), (d) Ur = 6.0 (Lower branch). For λ = 4 (a) Ur = 3.6 (Initial branch),
b) Ur = 4.6 (Upper-type branch), wake evolution over time, (c) Ur = 6.0 (Upper-type branch), (d) Ur = 8.3 (Upper-type branch).

onlinear, hysteresis originates from both and the loop is wider than the corresponding linear VIV system where only the
luid component contributes to the nonlinearity.

The phase difference between fluid force and cylinder displacement is an important quantity to describe the nature
f the vortex-induced vibration. Fig. 18 shows the effect of nonlinearity on the total phase difference, φtot , and the phase
ifference between vortex force (lift component) and the displacement, φvort . The total phase difference, φtot , is given
rom the mean value of the instantaneous total phase difference between the lift and displacement, obtained using a
ilbert transform (Khalak and Williamson, 1999; Mishra et al., 2020), whereas for φvor , the vortex force (Williamson and
ovardhan, 2004) is considered. The jump in φtot occurs between the upper and lower branches, whereas there is a jump
n φ at the initial to upper branch transition.
vor
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Fig. 15. Power spectral density (PSD) for R = 1, ζ = 0.001 and λ = 0, indicating the modes of frequencies of displacement and lift force representing
he response branches, for (a) Ur = 3.2 (Initial branch), (b) Ur = 3.5 (Upper-type branch), (c) Ur = 5.0 (Lower branch), (d) Ur = 6.0 (Lower branch).

Fig. 16. Power spectral density (PSD) for R = 1, ζ = 0.001 and λ = 4, indicating the modes of frequencies of displacement and lift force representing
he response branches, for (a) Ur = 3.6 (Initial branch), (b) Ur = 4.6 (Upper-type branch), (c) Ur = 6.0 (Upper-type branch), (d) Ur = 8.3 (Upper-type
ranch).

Fig. 18(a) reveals that as the softening spring nonlinearity increases, the change in phase difference from φtot = 0
◦

to φtot = 180
◦

, corresponding to the transition from upper to lower branch, occurs earlier, from Ur = 5 for λ = −1 to
Ur = 3.1 for λ = −1.6. Fig. 18(c) shows the jump in φvort = 0◦ to 180

◦

, corresponding to the transition from initial to
upper branch, advances from Ur = 3.4 for λ = −1 to Ur = 3.2 for λ = −1.6. Fig. 18(b) and (d) show the effect of the
hardening spring nonlinearity on the phase difference. Fig. 18(b) reveals as the nonlinearity grows from λ = 1 to λ = 4,
the change in φtot , corresponding to the transition from upper to lower branch, is delayed from Ur = 6.2 for λ = 1 to
Ur = 8.4 for λ = 4. The jump in φvort is also delayed from Ur = 4.4 for λ = 1 to Ur = 8.4 for λ = 4, corresponding to
transition from the initial to the upper branch.
15
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Fig. 17. Amplitude response of the cylinder. Variation of amplitude versus reduced velocity for ζ = 0.001, for (a) λ = 0, (b) λ = 4, R = 1, showing
he effect of slowly increasing and decreasing the reduced velocity.

Fig. 18. Phase difference between displacement and lift force, φtot , for ζ = 0.001, for (a) λ = −1.6, −1, 0 and (b) λ = 1, 1.6, 2, 3, 4. Phase difference
etween displacement and vortex force, φvor , for (c) λ = −1.6, −1, 0 and (d) λ = 1, 1.6, 2, 3, 4. All variables are plotted against reduced velocity
or parameters ζ = 0.001 and R = 1.

.2. Effect of damping ratio

This section presents the effects of damping on VIV of the cylinder, supported by an extended SLS system. The dynamic
esponse of cylinder has been calculated at six values of damping ratio for 0.001 ≤ ζ ≤ 10, for the two extreme nonlinear
ases previously considered: λ = −1.6 and 4.

.2.1. Vibration amplitude response
Fig. 19 shows the amplitude versus reduced velocity for the softening spring. Fig. 19(a) shows the amplitude and peak

ift coefficient response is similar to the linear VIV system as observed by Mishra et al. (2020). For the softening spring,
he characteristic are similar to the linear system. Mishra et al. (2020) explained the effect of damping ratio on amplitude
nd lock-in for the linear SLS system. The vibration amplitude Fig. 19(a) decreases with an increase in the damping ratio
ntil reaching ζ = 1. On further increasing the damping, the amplitude increases. Fig. 19(c) shows the lock-in region is
16
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Fig. 19. The effect of damping on softening (nonlinear) springs: (a) amplitude, (b) peak lift coefficient, (c) normalized frequency. All plots are w.r.t.
inear reduced velocity, Ur , for R = 1, ζ = [0.01, 10] and λ = −1.6. The blue dotted line in (c) represents the vortex-shedding frequency for the
tationary cylinder. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. The effect of damping nonlinear springs. Equivalent reduced velocity, Ueq
r , versus the linear reduced velocity, Ur , for R = 1 and ζ = [0.01, 10]:

a) λ = −1, (b) λ = −1.6..

on-monotonic with damping ratio. The departure for desynchronization is shifted towards the left from ζ = 0.001 to
= 1. The end of the initial branch is shifted towards the right for ζ = 0.001 to ζ = 1. Beyond ζ = 1, desynchronization

is shifted towards the right, and the end of the initial branch is shifted towards the right, for ζ = 1 to ζ = 10.
In Fig. 20(a), the equivalent reduced velocity, Ueq

r is plotted against the reduced velocity, Ur , for the softening spring.
Fig. 20(a) clearly shows the effect of damping is not prominent at R = 1. As observed that for different values of ζ , the
ffective nonlinearity is very close to the linear (λ = 0) curve. Also the curve lies above that for a linear spring for a

softening spring (see Fig. 20(a)), and below that for a linear spring for a hardening spring (see Fig. 20(b)). The contrast in
behaviour of the softening and hardening systems is shown in Fig. 20. This shows the stronger effect of hardening on the
VIV system than softening for the same nonlinearity parameter magnitude. The curve for a nonlinear spring has also been
reported in the experimental study of Mackowski and Williamson (2013); however, they considered Ueq

r versus Re instead
f Ueq

r versus Ur . They presented results that for a linear spring Ueq
r and Re are proportional, given the experimental setup

here the flow velocity changes both proportionally. However, for a nonlinear spring system studied here, Ueq
r can vary

ndependently of Re.
17
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Fig. 21. (a) Amplitude of displacement A∗
y,max; (b) peak lift coefficient CL,max; (c) normalized frequency f ∗ . All are plotted versus reduced velocity,

r , for λ = 4, ζ = [0.001, 10] and R = 1. The blue dotted line in (c) represents the vortex-shedding frequency for the stationary cylinder. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 21 shows the amplitude of vibration, peak lift coefficient and frequency response with Ur for λ = 4. The cylinder
isplacement, A∗

y,max increases continuously up to a maximum value and subsequently suddenly drops with increasing Ur .
t depicts the location of the peak amplitude non-monotonically varies with ζ . Fig. 21(a) shows the peak amplitude for
= 0.001 occurs at Ur = 8.4, decreases to Ur = 7.2 for ζ = 1, and further increases to Ur = 8 for ζ = 10. This is in

ontrast to λ = −1.6 (Fig. 19(a)), where the peak amplitude decreases with Ur in the synchronization region. Fig. 21(b)
hows the plateaued peak lift coefficient, CL,max, and the range of Ur corresponding to the plateau varies non-monotonically
ith ζ . The peak lift corresponding to the plateau is limited to 4.6 < Ur < 8.4 for ζ = 0.001, decreases to 5.3 < Ur < 6.2

for ζ = 1, and then the limit further increases to 4.4 < Ur < 6.8 for ζ = 10. In contrast to a softening spring, with
λ = −1.6, (Fig. 19(b)), the peak lift decreases with Ur in the synchronization region.

Fig. 21(c) shows the normalized frequency ratio of the vibration frequency to the natural frequency of the nonlinear
damped system, f ∗

y . The range of Ur showing a constant value of f ∗
y is known as the lock-in region. The figure depicts, for

the plateau range of f ∗
y , although constant, the value is less than 1. For ζ = 0.001, f ∗

≈ 0.7 for 4.6 < Ur < 8.4, the range
where the peak lift is approximately constant. For ζ = 0.1, f ∗

≈ 1 in 5.2 < Ur < 7.7, and the peak lift is continuously
increasing. For ζ = 10, f ∗

≈ 0.8 in 4.0 < Ur < 6.8 where the peak lift is constant. Further f ∗
y ≈ 1 for 7.0 < Ur < 7.9

where the lift coefficient is decreasing. The results show that the maximum amplitude, peak lift coefficient and region of
constant frequency are non-monotonic with damping. For ζ = 0.001, A∗

y,max = 0.53, CL,max = 2.75, f ∗
y ≈ 0.7. For ζ = 0.1,

the amplitude and peak lift decrease to A∗
y,max = 0.43 and CL,max = 2.2, and the normalized frequency increases to f ∗

y = 1.
On further increases of ζ , the amplitude and peak lift increase; these values for ζ = 10 are A∗

y,max = 0.59, CL,max = 2.55
and the normalized frequency decreases to f ∗

y = 0.8.
For the nonlinear viscoelastic support, the VIV results can be explained by understanding the relationship between the

reduced velocity, Ur , and the equivalent reduced velocity, Ueq
r . The plot of Fig. 9 shows the equivalent reduced velocity,

Ueq
r , versus the reduced velocity, Ur , for different damping ratios for the hardening spring. For a linear spring, Ueq

r and Ur
are the same and hence the plot is linear; however, for a system with nonlinear springs the quantities are different and
vary independently within a range. Of course, this is attributed to the ability of a system with nonlinear spring to change
its natural frequency with amplitude. Fig. 9 shows the effective nonlinearity is non-monotonically varying with ζ . Fig. 9(a)
shows that at a very low value of damping ratio (ζ = 0.001), the effective nonlinearity is high as the curve departs from
the linear curve (λ = 0). As the damping is increased (Fig. 9(b,c)), the effective nonlinearity decreases, since the curve
then moves closer to the λ = 0 curve. On further increases of damping ratio beyond ζ = 1, at ζ = 10 (Fig. 9(d)), the
effective nonlinearity increases as the curve is again moved away from λ = 0. We also observe the range of nonlinearity
is non-monotonic with ζ . It shows that the nonlinearity range is 3.4 < Ur < 8.4 for ζ = 0.001, and the range shortens
to 3.9 < Ur < 7.3 for ζ = 1. On further increasing ζ , the range further widens to 3.5 < Ur < 8 for ζ = 10. The effect of
damping is more prominent for higher values of λ, but at low values of λ the curve is very near to linear. Fig. 9 clearly
18
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shows for different value of ζ the effective nonlinearity is very close to that of the linear (λ = 0) curve. The observed
non-monotonic behaviour with respect to ζ is due to the structural system considered. As discussed, it can be observed
that if ζ → ∞, the extended SLS model collapses to a spring–mass system with two parallel springs with one of them
being nonlinear (see Fig. 3(b)). Again for ζ = 0, the extended SLS model collapses to a spring–mass system with a single
nonlinear spring (see Fig. 3(a)).

3.2.2. Branching behaviour and lock-in regimes as a function of damping
The effect of damping (ζ ) on synchronization of the vibration response of a cylinder supported by the nonlinear spring

combination is shown in Fig. 21. In the initial branch, 2.2 ≤ Ur ≤ 4.2, for ζ = 0.001 the vibration response is influenced
by the vortex shedding frequency for a stationary cylinder. In the lower branch, 4.4 ≤ Ur ≤ 8.4, the vibration frequency
locks to the natural frequency of the system (see Fig. 21(c)) and the amplitude increases continuously (see Fig. 21(a)). The
amplitude jumps down to small values for Ur > 8.5 — the desynchronization region.

The higher amplitude response of the system takes place in the lock-in or resonance range. To explain the lock-in
regimes over different ζ and Ur , and to delimit the different branches in VIV, a normalized frequency plot is used. As
previously indicated, Fig. 21(c) represents the normalized frequency: the ratio of the vibration frequency to the natural
frequency of the nonlinear system (fs). The vibration frequency (fy) corresponds to the peak of the power spectrum of
the displacement. Note that the natural frequency of the nonlinear system is computed using Eq. (3) after simulations
are performed since the frequency depends on the initial conditions. Fig. 21 shows the lock-in regime for the hardening
spring for a low value of damping ratio, ζ = 0.001, where the vibration frequency is lower than the natural frequency
of the system. As the damping ratio increases, the vortex shedding frequency approaches to the natural frequency up
to ζ = 0.1. On further increases of ζ , the vortex shedding frequency again moves away from the natural frequency.
The range of lock-in is also non-monotonic with ζ . For ζ = 0.001, it lies in the range 3.8 ≤ Ur ≤ 8.3, shifting to
5.4 ≤ Ur ≤ 7.8 for ζ = 0.1. The range again increases to 3.8 ≤ Ur ≤ 7.9 for ζ = 10. For ζ = 0.001, Fig. 21(c)
shows for range 2 ≤ Ur ≤ 3.8, f ∗ coincides with the vortex shedding of a stationary cylinder, corresponds to the initial
branch. For the range 3.9 ≤ Ur ≤ 8.3, f ∗ is constantly lower than f ∗

≈ 1, and the peak lift coefficient has a higher value,
which corresponds to the upper branch. For Ur ≥ 8.4, the curve of f ∗ is parallel to the vortex shedding frequency of a
stationary cylinder, indicating the desynchronization region. The normalized frequency plot and peak lift force variation
clearly indicate the missing lower branch for ζ = 0.001. For ζ = 0.1, there is an initial branch, 2 ≤ Ur ≤ 5.4, lower
branch, 5.5 ≤ Ur ≤ 7.8 and desynchronization for Ur > 7.8, but the upper branch is absent. Further increasing the
damping to ζ = 10, we observe the initial branch in the range 2 ≤ Ur ≤ 3.8, the upper branch between 3.9 ≤ Ur ≤ 6.8,
the lower branch in 6.8 ≤ Ur ≤ 7.9, and desynchronization for Ur ≥ 8.0. Once again, this non-monotonic characteristic
for the existence of the standard response branches is due to the structural system (SLS) considered.

Fig. 22 depicts the phase difference between the lift force and the displacement against Ur for different values of ζ at
λ = 4. Fig. 22 shows the jump in the phase difference changes from φtot ≈ 0◦ to φtot ≈ 180◦. There is non-monotonic
variation in the reduced velocity at which the jump occurs with ζ . For ζ = 0.001, the jump occur at Ur = 8.4, indicating
the switch from the upper to the desynchronization branches. The jump decreases to Ur = 7.3 for ζ = 1, marking the
change from the lower to desynchronization branches. On further increasing ζ beyond ζ = 1, the jump increases to
Ur = 8.0 for ζ = 10. This change in the phase difference at the transition between the lower and desynchronization
branches is in contrast to the change of phase difference at the upper to lower transition observed by Khalak and
Williamson (1999). This difference in phasing is presumably due to the low Reynolds number and high nonlinearity
investigated. The non-monotonic variation of the jump with ζ is not visible for φvor . The jump occurs at Ur = 8.4 for
ζ = 0.001, indicating transition from the upper branch to desynchronization. The jump in φvor decreases to Ur = 6.8 for
ζ = 1, 5, 10, at the switch from the upper branch to the lower branch. This jump in the vortex phase was observed in
high Reynolds number experiments of Govardhan and Williamson (2000) at the initial to upper branch transition.

The vortex shedding patterns spanning the jump in phase difference are shown in Fig. 23. In all cases, a 2S vortex
shedding mode is observed. At the jump of φtol, the shedding pattern changes from a double-row configuration to a
single-row configuration (Leontini et al., 2006b). For ζ = 0.001, 1, and 10, the jumps occur at Ur = 8.4, 7.3 and 8.0
respectively. We also observed at the jump of φvor , a double-row 2S configuration, but with a slight variation in the
positioning of vortices in the wake.

4. Conclusions

The effects of a nonlinear viscoelastic support on the response of cross-flow vortex-induced vibration of a circular
cylinder have been investigated numerically, for the mass ratio of m∗

= 2.546 at Re = 150. The spring–damper system
used to provide viscoelastic support is similar to the Standard Linear Solid (SLS) model and is referred to as the extended
SLS model. It consists of two springs and one damper, where the two springs are in parallel, and the damper is in series
with one of the springs. The spring in series with damper is linear, and that parallel to the damper is nonlinear. The
nonlinear structural system is governed by the following three parameters: (a) the ratio of spring constants (R), (b) the
damping ratio (ζ ), and (c) the nonlinearity strength (λ). The focus of the present study is to examine the response of the
cylinder to VIV by changing ζ and λ. The dimensionless nonlinearity strength (λ) is varied from −1.6 to 4. We observe
that the peak amplitude decreases in comparison to the linear spring, as spring softening (λ < 0) is increased. In contrast,
19
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Fig. 22. (a) Phase difference between displacement and lift force; (b) Phase difference between displacement and vortex force; All variables are
lotted against reduced velocity for λ = 4, ζ = [0.001, 10], R = 1.

Fig. 23. The wake evolution for λ = 4, representative of the variation in the wake observed for transformation of branch. (a) ζ = 0.001; (b) ζ = 1;
c) ζ = 10.

he peak amplitude for the hardening spring (λ > 0) increases with λ. The equivalent reduced velocity is affected by
damping, showing a non-monotonic variation with ζ . We also observed that for a high value of λ ≥ 3, the peak lift force
coefficient is constant over a range of reduced velocity for both very low and high values of damping.

The softening spring (λ < 0) shows response regimes consisting of initial, upper, lower, and desynchronized branches.
The behaviour of the system with λ = −1 is similar to a linear system. For a softening spring with λ = −1.6, the
lock-in region becomes narrower and there is an early departure to the desynchronized region. The hardening spring
with weaker hardening (λ ∈ [1, 3]) shows the initial, upper, lower, and desynchronized branches, whereas for λ = 4, the
lower branch is absent. As the nonlinearity parameter increases, the lock-in region becomes wider and a late departure to
the desynchronized region occurs. This trend is observed for a very high value of the nonlinear parameter. The response
is the same for very low and high values of the damping ratio (ζ = 0.001, 10). For a system with a high nonlinearity
parameter at (λ = 4) at ζ = 0.001, 10, the lower branch is missing. This is confirmed by the consideration of the peak
lift coefficient, the existence of multiple frequencies, and the normalized frequency response.

The vibration amplitude and lift force also show a non-monotonic variation with increasing damping for systems with
hardening and softening springs. A similar trend is observed for the total phase difference, where the jump of φ from
tot

20



R. Mishra, R. Bhardwaj, S.S. Kulkarni et al. Journal of Fluids and Structures 100 (2021) 103196

i
U
V
o

a
t
h
i

C

W
D

D

a

A

i

I
d

w

E
F

0◦ to 180◦ is delayed for ζ = 0.001. As damping is increased, an early arrival of the jump occurs up to ζ = 1. On further
ncreasing ζ beyond ζ > 1, a delayed jump is observed. The vortex phase difference also shows a jump of 0◦ to 180◦. The
r for the jump is decreased with increases in damping, whereas the jump does not change for ζ ≥ 1. This study shows
IV is more influenced by a hardening spring than a softening spring. This study also shows a non-monotonic variation
f amplitude with the damping ratio.
A system with a hardening stiffness element has a varying natural frequency that depends upon its excitation

mplitude. This results in a potential way to widen the lock-on range as evident from the observed plateau value of
he peak lift coefficient. This could be a useful method to extract energy for a wider range of reduced velocity in energy
arvesting applications. In the present study, the structural nonlinearity is due to the nonlinearity of the spring. The
nfluence of nonlinear damping will be explored in a future study.
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ppendix. Equation of motion for a nonlinear SLS supported system

Considering the spring in series with the dashpot is linear whereas that parallel to the dashpot is nonlinear, as shown
n Fig. 1, the force versus displacement relation is given by

f1 = kx + ax3, (A.1)

f2 = knx1. (A.2)

n parallel, forces are added while displacement remains the same, whereas in series, forces remain the same while
isplacements are added. The above arguments together with the structure force (F = Fstruct ) is given by

Fstruct +
c
kn

dFstruct
dt

= kx + ax3 +
c
kn

(k + 3ax2 + kn)
dx
dt

(A.3)

If we combine the structure equation with the dynamic equation:

m
d2x
dt2

= Fext − Fstruct , (A.4)

e get

c
kn

m
d3x
dt3

+ m
d2x
dt2

=
c
kn

dFext
dt

+ Fext − (
c
kn

dFstruct
dt

+ Fstruct ). (A.5)

Now substituting the expression for ( c
kn

dFstruct
dt + Fstruct ) from Eq. (A.3) in Eq. (A.5), gives

mc
kn

d3x
dt3

+ m
d2x
dt2

+ c(1 +
a
kn

3x2 +
k
kn

)
dx
dt

+ kx + ax3 = Fext +
c
kn

dFext
dt

. (A.6)

q. (A.6) is the third-order differential equation governing the motion of cylinder under the nonlinear spring support.
urther using R =

kn
k , ζ =

c
2
√
km

and ωn =

√
k
m , we get c

k =
ζ2

√
km

k =
ζ

π fn
and c

m =
2ζ

√
km

m = 2ζ
√

k
m = 4πζ fn. Here

2π fn = ωn. On substituting in the above equation, we get

ζ

Rπ fn

d3x
dt3

+
d2x
dt2

+ 4πζ fn(1 +
3a
kR

x2 +
1
R
)
dx
dt

+ 4π2f 2n x + 4π2f 2n
a
k
x3 =

Fext
m

+
ζ

π fnmR
dFext
dt

(A.7)

To non-dimensionalize the above equation, the following non-dimensional variables are used:

x∗
=

x
D

, t∗ =
Ut
D

, f ∗

n =
Dfn
U

,m∗
=

m
π ρD2 . (A.8)

4
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On substituting into the above equation, together with using fluid force, CL =
Fext

(1/2)ρDU2 and λ =
D

√
k/a or λ2

=
aD2

k gives

d3x∗

dt∗3
+

Rπ f ∗
n

ζ

d2x∗

dt∗2
+ 4π2f ∗

n
2(1 + R + 3λ2x∗2)

dx∗

dt∗
+

4π3Rf ∗
n
3

ζ
x∗

+
4π3Rf ∗

n
3λ2

ζ
x∗3

=
2Rf ∗

n CL

m∗ζ
+

2
πm∗

dCL

dt∗
. (A.9)

Note: Here λ is the nonlinearity strength defined as the inverse of non-dimensional position at which the force produced
by the linear spring is equal to force produced by nonlinearity (Mackowski and Williamson, 2013). For a hardening spring,
λ = D/

√
k/a, while for a softening spring λ = −D/

√
−k/a. Hence, to account for both, λ2 should be replaced by |λ|λ.
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