
Journal of Fluids and Structures 105 (2021) 103325

F
U

e
p
m
t
l
a
H
(
o
s
n

h
0

Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Vibration reduction of a sphere through shear-layer control
Thomas McQueen ∗, Jisheng Zhao, John Sheridan, Mark C. Thompson
luids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash
niversity, Melbourne, VIC 3800, Australia

a r t i c l e i n f o

Article history:
Received 6 November 2020
Received in revised form 27 March 2021
Accepted 20 May 2021
Available online xxxx

Keywords:
Flow-induced vibration
Flow control

a b s t r a c t

To date, it has been shown that the vibration response of an elastically mounted
sphere undergoing vortex-induced vibration (VIV) can be controlled by imposing rotary
oscillations at frequencies close to the vibration frequency. Here, we demonstrate that
rotary oscillations imposed at significantly higher frequencies can be used to directly
influence shear-layer vortex shedding and consequently reduce vibration. This approach
contrasts with aiming to directly target the large-scale wake structures, using lower
frequency perturbations. The oscillation frequencies imposed were between 5 and 35
times the natural frequency of the system and the amplitude of the rotational velocities
were only 10% of the free-stream velocity. The effects of the rotary oscillations were
found to vary significantly across sphere vibration modes. In the mode III transition
regime significant attenuation of the vibration response was observed for a narrow band
of rotary oscillation frequencies. Time-resolved particle image velocimetry revealed that
the shear-layer vortex structures locked to the forcing frequency, where suppression of
the vibration response occurred. Optimal tuning of the oscillation frequency reduced the
vibration amplitude in the mode III transition regime by 84%, with a rotational velocity
amplitude of only 10% of freestream. These results show low-amplitude shear-layer
forcing is a promising method of more efficiently suppressing VIV of three-dimensional
geometries.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-induced vibration (FIV) arises frequently in a broad range of engineering situations. Without adequate consid-
ration of its effects, FIV can result in detrimental structural damage or complete structural failure. As a result, the
henomenon has been extensively studied. While there are multiple sources of excitation leading to FIV, perhaps the
ost extensively researched, and one often encountered in practice, is vortex-induced vibration (VIV). VIV occurs due

o a synchronisation between an object’s natural frequency and its associated vortex shedding frequency. Although to a
esser extent than cylinders, the VIV of spheres has also been studied. Work over the past two decades by Williamson
nd Govardhan (1997), Govardhan and Williamson (1997), Jauvtis et al. (2001), Govardhan and Williamson (2005), van
out et al. (2010), Behara et al. (2011), Eshbal et al. (2012), van Hout et al. (2013b), Krakovich et al. (2013), Lee et al.
2013), Behara and Sotiropoulos (2016), Rajamuni et al. (2018), Sareen et al. (2018c), and Eshbal et al. (2019), amongst
thers, on tethered and elastically mounted spheres, has shown that the complex three-dimensional sphere wake enables
ustained body vibration across a broad parameter space of reduced velocity, mass-damping parameter, and Reynolds
umber.

∗ Corresponding author.
E-mail address: thomas.mcqueen@monash.edu (T. McQueen).
ttps://doi.org/10.1016/j.jfluidstructs.2021.103325
889-9746/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jfluidstructs.2021.103325
http://www.elsevier.com/locate/jfs
http://www.elsevier.com/locate/jfs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2021.103325&domain=pdf
mailto:thomas.mcqueen@monash.edu
https://doi.org/10.1016/j.jfluidstructs.2021.103325


T. McQueen, J. Zhao, J. Sheridan et al. Journal of Fluids and Structures 105 (2021) 103325

d
a
h
m
E

c
s
b
r
t
r
i
t
t
a

t
s
v
v
i

v
i
R

S
F
d
p
a
a
d
t
d
h
w
t
f
t
h
f
r
h

a
t
c
a

Due to the aforementioned potential for severe structural damage, extensive research has also been conducted to
evelop both passive and active methods to reduce, or even eliminate, the occurrence of VIV. This has been primarily
imed at circular cylinders but also to a lesser extent for spheres. Furthermore, for active control strategies, researchers
ave demonstrated that control can not only be used to suppress vibration, but also to amplify it. Therefore, active control
ethods could enhance the energy generation potential of devices such as the Vortex Induced Vibration Aquatic Clean
nergy device (VIVACE) (see Bernitsas et al., 2008).
Recent work on controlling sphere FIV was conducted by Sareen et al. (2018a). That research examined the effect of

onstant rotation on the vibration response of a single degree of freedom (1-DOF) elastically mounted sphere. They could
uppress the vibration response across the mode I, mode II, and mode III transition regimes. Due to the force produced
y the Magnus effect, there was a mean offset of the sphere position from the centre, which increased with both rotation
atio and reduced velocity. van Hout et al. (2013a) implemented acoustic control (using speakers mounted to the wind
unnel walls) on a tethered sphere at frequencies higher than the shear layer instability. They were able to suppress the
esponse in the mode I and mode II regimes and amplify it in the mode III regime. Sareen et al. (2018b, 2019) found that
mposing rotary oscillations of the sphere at frequencies around that of the natural frequency of the system could alter
he magnitude of VIV. McQueen et al. (2020) implemented rotary oscillations by employing a feedback control system
hat used the sphere displacement as the controller input. The controller allowed the phase between sphere displacement
nd rotation to be adjusted.
The studies of Sareen et al. (2018b, 2019) and McQueen et al. (2020) implemented rotary oscillations at, or close to,

he vibration frequency of the sphere. The control was effective because they could lock the large-scale vortex shedding
een in the wake to the rotary oscillation frequency, or affect the phase between the large-scale vortex shedding and
ibration. This change to the large-scale vortex shedding altered the fluid force acting on the sphere, and in turn the
ibration response. While effective, the question remains whether it is more efficient to interact with this large-scale
nstability as opposed to other, smaller-scale flow structures found in the sphere’s wake.

For a fixed sphere, Sakamoto and Haniu (1990) collated previous results and conducted their own experiments on
ortex shedding in the wake. They described the existence of a large-scale instability of the wake (termed the low-mode
nstability), which has a Strouhal number of 0.2 over a broad Reynolds number range beginning from approximately
e = 300. Note that the Reynolds number is defined by Re = UD/ν, where U is the free-stream velocity, D is the

sphere diameter, and ν is the fluid kinetic viscosity. Concurrently, they described a high-frequency instability (termed
the high-mode instability) associated with vortex rings, formed in the shear layer separating from the sphere, beginning
at a Reynolds number of 800 and observed up to 6 × 104 by Kim and Durbin (1988), the highest Reynolds number they
tested. Unlike the low-mode instability, the high-mode instability frequency increases with Reynolds number.

In addition to quantifying the two instabilities, Sakamoto and Haniu also classified the wake patterns as a function
of Reynolds number. In the range of interest in this study (3900 ≲ Re ≲ 2.3 × 104), the flow separates from the
sphere just prior to 90◦, forming a vortex sheet that becomes unstable as the flow convects downstream. This results
in the eventual periodic shedding of vortex loops. The large-scale low-mode instability of the wake becomes apparent
further downstream, where a waviness of the wake is observable. Jang and Lee (2007) conducted flow visualisations
at Re = 5300 and Re = 1.1 × 104 showing where the unsteadiness in the separated vortex sheet begins. They
observed that the separated, laminar, vortex sheet remains axisymmetrically stable to a distance of approximately 1.2–1.3
diameters downstream of the rear of the sphere for Re = 5300, and only 0.5 diameters downstream for Re = 1.1 × 104.
imilarly, Bakic et al. (2006) conducted flow visualisations over a large Reynolds number range of 2.2×104 ⩽ Re ⩽ 4×105.
or Re = 2.2 × 104, their visualisations show distinct vortex structures forming in the separated shear layer just
ownstream of the rear of the sphere. For Re = 5 × 104, they noted that in addition to vortex roll-up, a vortex
airing process just downstream of separation occurred. Rodriguez et al. (2011) conducted direct numerical simulations
t Re = 3700 and described the dynamics of the shear layer in more detail. They outlined how initial random disturbances
re amplified and propagate downstream in the shear layer. This leads to the formation of vortices that end up being both
rawn into the recirculating zone behind the sphere as well as feeding the turbulent wake. Yun et al. (2006) examined
he wake of a sphere at Re = 1 × 104 and described how the vortices generated by the high-mode instability convect
ownstream to compose the large-scale waviness of vortical structures in the wake. They suggested a link between the
igh- and low-mode instabilities, observing that multiple cycles of vortex rings, composing about half of a large-scale
ake cycle, tilt in the same direction due to a difference in velocity around the sphere which is closely associated with
he wall-pressure distribution. For an elastically mounted sphere, or a tethered sphere at least, van Hout et al. (2013b)
ound a broad spectral peak in the shear layer centred around the frequency of the high-mode instability observed in
he shear layer of a fixed sphere at the same Reynolds number, indicating that the effect of the elastic mounting on the
igh-mode instability is minimal. Evidently, the shear-layer dynamics are a prominent feature of the fixed sphere wake
or the Reynolds number range of interest here. Past research has shown that the structure of the near wake is largely a
esult of the presence of the high-mode instability. However, whether there are any connections between the low- and
igh-mode instabilities remains an unanswered question.
To date, the studies implementing rotary oscillations (e.g., Sareen et al., 2018b, 2019; McQueen et al., 2020) have all

ttempted to directly influence the large-scale instability in the wake by using low-frequency oscillations up to 5 times
he natural frequency of the system. Here, we aim to determine if it is possible to suppress vibration by altering the
haracteristics of the high-mode shear-layer instability to in turn affect the large-scale, lift inducing, vortices using low-
mplitude rotary oscillations at much higher frequencies than previously implemented. We seek to do this using rotary
2
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Fig. 1. Low- and high-mode instabilities as observed by Achenbach (1974) ( ), Kim and Durbin (1988) ( ), Sakamoto and Haniu (1990) ( ), and Yun
t al. (2006) ( ). The vertical black line shows the range of rotary oscillation frequencies implemented for U∗

= 15 in this study. The orange circle
arkers indicate the low- and high-mode instabilities identified in the wake of the fixed sphere without rotation at the same Reynolds number as

or U∗
= 15.

scillations at 5 to 35 times the natural frequency of the system at an amplitude of, typically, only 10% of free-stream
elocity. First, the vibration response is characterised for select reduced velocities in the mode II and mode III transition
egimes. Time-resolved particle image velocimetry (TR-PIV) is then used to examine the effect of the oscillatory forcing
n the wake of both a fixed and an elastically mounted sphere for several control conditions.
A comparison to the work of Achenbach (1974), Kim and Durbin (1988), Sakamoto and Haniu (1990), and Yun et al.

2006) provides some context to the imposed forcing frequencies implemented here. These studies examined the flow
nstabilities in the wake of a fixed sphere. Fig. 1 shows the variation of the two instabilities observed in the wake of a
phere over 300 ≲ Re ≲ 7 × 104 using data collated from past studies. Furthermore, the range of rotation frequencies
mplemented here in the mode III transition regime (U∗

= 15) where significant attenuation of the vibration occurs, and
he instabilities identified for a fixed sphere at equivalent conditions are shown. The imposed rotation frequencies are in
he range between the two wake instabilities, with the most effective forcing frequency (f ∗

r = 21) being approximately
7% of the high-mode instability.
Throughout this paper, the effects of imposed rotation are often compared to the standard vibration response without

mposed rotation. Hereafter, the response of the sphere with no imposed rotation will be referred to as the ‘natural’
esponse.

. Experimental methodology

.1. Fluid–structure system modelling

The system studied here has an elastically mounted sphere that is free to vibrate only in the y-direction, transverse
o the free-stream flow. Rotation (for control) of the sphere is imposed about the z-axis perpendicular to the direction of
ree-stream flow and the free-vibration axis. Fig. 2 illustrates the fluid–structure interaction set-up looking down along
he rotation axis.

As the sphere was constrained to vibrate along one axis, the governing equation of motion of the system can be
xpressed as

mÿ + cẏ + ky = Fy, (1)

wherem is the total oscillating mass, c is the structural damping factor, k is the spring constant, y is the body displacement,
and Fy is the transverse fluid force (the transverse lift). The vibration response of the sphere can be characterised using
the non-dimensional parameters listed in Table 1.

Eq. (2) defines the rotation profile of the sphere and introduces the two parameters used to vary the rotary oscillations,
namely: rotation amplitude (Ω0) (peak angular velocity), and rotary oscillation frequency (fr ).

Ω = Ω0 sin (2π fr t). (2)

These two parameters are normalised as per Eqs. (3) and (4), and are referred to as the rotation ratio (α∗
r ) and forcing

frequency ratio (f ∗
r ), respectively.

αr
∗

=
DΩ0

2U
. (3)

fr∗ =
fr

. (4)

fn

3
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Fig. 2. Schematic of the experimental set-up highlighting the key parameters for the transverse VIV of a rotatory oscillating sphere. The hydro-elastic
system is simplified as a 1-DOF system constrained to move in the cross-flow direction. The axis of rotation is perpendicular to both the free-stream
flow direction (x-axis) and the vibration axis (y-axis). Here, U is the free-stream velocity, Fy is the transverse force, k is the spring constant, D is
the sphere diameter, m is the oscillating mass, c is the structural damping, and θ is the angular position of the sphere.

Table 1
Relevant non-dimensional parameters. Here, A∗ is the root-mean-square value of the
vibration amplitude in the y direction, D is the sphere diameter, c is the structural
damping, k is the structural stiffness, m is the oscillating mass, mA = CAmd is the added
mass, md is the displaced mass of the fluid, CA is the added mass coefficient (0.5 for a
sphere), fn is the natural frequency of the system in quiescent water, fvo is the equivalent
fixed-body vortex shedding frequency, f is the body oscillating frequency, and Fy is the
transverse fluid force acting on the sphere.

Amplitude ratio A∗
√
2ARMS/D

Damping ratio ζ c/
√
k(m + mA)

Frequency ratio f ∗ f /fn
Mass ratio m∗ m/md
Mass-damping parameter ξ (m∗

+ CA)ζ
Reduced velocity U∗ U/fnD
Reynolds number Re ρUD/µ

Strouhal number St fvoD/U
Transverse force coefficient Cy Fy/( 18ρU2πD2)
Transverse force frequency ratio f ∗

Cy fCy/fn

The rotation ratio was kept constant at α∗
r = 0.1, aside from Section 3.3, where it was varied between 0 ⩽ α∗

r ⩽ 1
to examine the efficiency of the control strategy. Likewise, the forcing frequency ratio was varied between 1 ⩽ f ∗

r ⩽ 35,
except in Section 3.3, where it was varied between 0.125 ⩽ f ∗

r ⩽ 35. The upper limit of these parameters was due to
torque limitations of the servo-motor.

2.2. Experimental set-up

The investigation was conducted in the recirculating free-surface water channel of the Fluids Laboratory for Aero-
nautical and Industrial Research at Monash University. The water channel has a working section of 600 mm in width,
800 mm in depth, and 4000 mm in length. The free-stream turbulence level was less than 1% over the flow-rate range
investigated. A schematic of the experimental set-up is shown in Fig. 3. A 70 mm diameter sphere, CNC precision machined
from modelling board (Renshape 460), was mounted by a 3 mm rod to a servo motor (Maxon Motor, EC-max 4-pole 22,
equipped with a rotary encoder with a resolution of 5000 counts per revolution). The servo-motor was mounted to a linear
air-bearing system that constrained the sphere to move with only 1DOF, transverse to the oncoming flow. The top of the
sphere was immersed one sphere diameter beneath the free-surface, a compromise between minimising the influence
of the mounting rod and free surface, as suggested by Govardhan and Williamson (2005) and Sareen et al. (2018c). The
transverse sphere position was measured using a digital linear encoder (RGH24, Renishaw, UK) with a resolution of 1 µm.
Both the transverse and angular positions of the sphere were measured at a sampling rate of 500 Hz for 300 s for each
data-set, which consisted of at least 80 vibration cycles. The transverse displacement measurements were filtered using a
fourth-order low-pass Butterworth filter with a cutoff frequency of 1 Hz to remove high-frequency noise. For more details
on the air-bearing system see Nemes et al. (2012) and Zhao et al. (2014). For more details on the experimental set-up
used here, see McQueen et al. (2020).

The mass ratio (the ratio of the total oscillating mass to the mass of displaced fluid) of the system was m∗
= 10.1.

The structural damping (with consideration of the added mass effect) and natural frequency of the system in quiescent
4



T. McQueen, J. Zhao, J. Sheridan et al. Journal of Fluids and Structures 105 (2021) 103325
Fig. 3. Schematic of the experimental set-up.

water were measured to be ζ = 4.22 × 10−3 and fn = 0.269 Hz. The free-stream velocity was varied from 56mms−1 to
336mms−1, corresponding to a Reynolds number range of 3.9 × 103 ⩽ Re ⩽ 2.3 × 104. The reduced velocity range was
3 ⩽ U∗ ⩽ 18. This Reynolds number range corresponds to the transitional Region C and Region IV identified by Sakamoto
and Haniu (1990). In these sub-critical regions, periodic vortex shedding occurs in the wake.

As a result of the highly accurate digital displacement measurements, the sphere’s velocity and acceleration can be
derived accurately. In turn, the lift force and phase between lift and displacement can be determined. Using the same air-
bearing system as used here, Zhao et al. (2018) and Sareen et al. (2018a) have verified this methodology for the circular
cylinder and sphere, respectively, by making comparison to independent measurements of lift force obtained using a force
balance.

To reveal the influence of the rotary oscillations on the wake dynamics for both a fixed and an elastically mounted
sphere, TR-PIV was acquired in the equatorial plane (x-y). The flow was seeded using hollow micro-spheres (model
Sphericel 110P8; Potters Industries Inc.) with normal diameter 13 µm and specific weight 1.1 g cm−3. A high-speed camera
(Dimax S4, PCO AG, Germany) with resolution 2016 × 2016 pixel2 was used in conjunction with a 5 W continuous laser
(MLL-N-532 mm, CNI, China) that produced a 3 mm thick laser sheet to capture the images. A 105 mm lens (Nikkon,
Japan) was used to obtain a magnification factor of 16.89 pixel mm−1. In-house cross-correlation software, originally
developed by Fouras et al. (2008), was used to correlate interrogation windows of size 32 × 32 pixel2 with an overlap of
50% to obtain the velocity fields. This corresponded to a velocity vector field of 125 × 125 vector2 with a vector spacing
of 0.014 D. For each experimental configuration, two sets of data, comprising 6297 images each, were acquired at 500 Hz.
Concurrently, the sphere transverse and angular positions were recorded at 4 kHz to enable the sphere to be accurately
located in the images.

3. The vibration response

3.1. The natural response

Due to a synchronisation between the forces induced on the sphere, primarily by large-scale vortex shedding in the
wake (Govardhan and Williamson, 2005), and the natural frequency of the fluid–structure system, an elastically mounted
sphere will experience vibration. The vibration can be characterised into a series of modes, initially identified by Jauvtis
et al. (2001). With increasing free-stream velocity, the vortex shedding frequency of the sphere approaches the natural fre-
quency of the system. Synchronisation or ‘lock-in’ then occurs, resulting in a relatively sudden onset of vibration (mode I).
Subsequently, the frequency of vortex shedding remains locked-in to the natural frequency of the system and vibration
continues over a broad reduced velocity range. Mode II is defined by a transition in the phase difference between the
sphere transverse displacement and fluid force (total phase) from near 0◦, through 90◦, to near 180◦.

Fig. 4 shows the mean vibration amplitude over the reduced velocity range investigated in this study. The vertical bars
show the mean of the top and bottom 10% of vibrations. A higher velocity mode of vibration (mode III) occurs above the
reduced velocity range investigated. Here, the vibration regime past mode II is termed the ‘mode III transition regime’.
Unlike for the circular cylinder, there is no distinct change in the wake patterns observed in the wake of the sphere with
varying reduced velocity. Rather, as mentioned, there is only a slow transition in the total phase. As such, it is more difficult
to define the range of the modes associated with sphere vibration. The modes of interest in this study are annotated in
Fig. 4 along with blue shading indicating the approximate range of the transition regions.
5
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Fig. 4. Natural vibration response of the sphere (black diamonds). The vertical bars show the mean of the top and bottom 10% of vibrations. The
orange circles show the maximum variation in the vibration amplitude observed for the range of forcing frequency ratios implemented. The forcing
frequency ratios shown are f ∗

r = 7 at U∗
= 6, f ∗

r = 34 at U∗
= 9, f ∗

r = 34 at U∗
= 10, f ∗

r = 6 at U∗
= 12, f ∗

r = 21 at U∗
= 15, and f ∗

r = 22 at
U∗

= 18. The blue shading indicates the approximate location of the transition regions between modes of vibration.

Fig. 5. Contour plot of the variation in vibration amplitude from the natural response across the U∗
− f ∗

r parameter space. The colour contours show
he percentage change in vibration amplitude from the natural response. The orange markers indicate conditions at which TR-PIV was acquired. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

.2. Effect of control on the vibration response

To characterise the effect of high-frequency low-amplitude forcing on the vibration response, rotary oscillations were
mposed over the range 5 ⩽ f ∗

r ⩽ 35, in ∆f ∗
r = 1 increments, at reduced velocities in the mode I, mode II, and mode III

ransition regimes with α∗
r = 0.1. The orange markers in Fig. 4 depict the maximum change in the vibration amplitude

cross the range of forcing frequency ratios investigated. As evident from Fig. 4, with imposed high-frequency oscillations,
t is more difficult to alter the vibration response in the mode I and mode II transition regimes, where the natural vortex
hedding frequency remains close to the natural frequency of the system. A similar observation was made by Sareen
t al. (2018b) for imposed rotary oscillations at much lower frequencies around the natural frequency of the system.
ast the peak of the mode II regime the vibration suppression is rapidly enhanced until approximately U∗

= 15. To
ummarise the effect of the imposed rotary oscillations on the vibration response of the sphere, a contour plot showing
he percentage change in vibration amplitude from the natural response over the f ∗

r − U∗ parameter space investigated
s shown in Fig. 5. Line contours in increments of 50% vibration amplitude alteration have been arbitrarily chosen to
ighlight significant amplitude variation. The orange markers indicate the conditions at which TR-PIV, to be examined
n Section 4, was acquired. This figure highlights the relatively narrow band of forcing frequencies for which significant
ibration suppression occurs in the mode III transition regime. The range of forcing frequencies for which significant
uppression occurs widens with increasing reduced velocity. It also appears that at low reduced velocities, high-frequency
scillations slightly increase the amplitude response. In this study we are particularly interested in determining the
onditions for which the imposed rotation significantly suppresses the vibration and any associated effects on the wake
tructures. Therefore, hereafter we focus on results obtained past the peak of the mode II response, where significant
ibration suppression was identified (Figs. 4 and 5).
In the mode III transition regime, at U∗

= 15, there is significant attenuation of the amplitude response (up to 81%) for
relatively narrow band of forcing frequency ratios centred around f ∗

≈ 22 (Fig. 6(a)). The vertical bars in Fig. 6(a), which
r

6
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n

Fig. 6. Response of the sphere with imposed rotation at U∗
= 15 as a function of forcing frequency ratio. For (a, b, e) the dashed lines show the

results for the natural response. (a) Variation of vibration amplitude, the vertical bars show the mean of the top and bottom 10% of vibrations.
(b) Variation of lift coefficient. (c, d) PSD contour plots of the vibration frequency (f ∗) and transverse force frequency (f ∗

Cy ), the spectral power is
ormalised by the maximum value at each f ∗

r and is presented on a log 10 scale. (e) Variation in total phase (black diamonds) and circular variance
of total phase (orange circles). Time series of sphere displacement for (f ) f ∗

r = 0, (g) f ∗
r = 16, (h) f ∗

r = 21, and (i) f ∗
r = 26. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

show the mean of the top and bottom 10% of vibrations, can provide an indication of the periodicity of the amplitude
response. Away from the suppressed regime, little variation in periodicity is seen. Within the suppressed regime though,
much larger variation in periodicity and a slightly broader range in the spectral power of the vibration frequency can
be observed (Fig. 6(c)), however, f ∗

≈ 1.05 remains dominant throughout. More generally, no significant variation in
vibration frequency with imposed forcing was observed across the f ∗

r − U∗ studied.
The lift coefficient decreases almost monotonically to f ∗

≈ 20 where-after it remains relatively constant. (Fig. 6(b)).
The magnitude of the lift coefficient by itself does not provide a good indication of the amplitude response in this regime.
Rather, examining the variation in the frequency of the transverse force and total phase provides greater insight. For
f ∗
r = 21, where the maximum reduction in vibration amplitude is observed, there is a distinct lack of spectral power
seen in the power spectral density (PSD) estimate of transverse force frequency at f ∗

Cy = 1 (Fig. 6(d)). The time series
of sphere displacement (Fig. 6(f − i)) shows that even where vibration is significantly suppressed, and large variation
in vibration amplitude is seen over the test duration, the vibration frequency remains close to f ∗

= 1.05. For f ∗
r = 21,

at times the vibration response was nearly completely suppressed before abruptly increasing over only a few vibration
cycles (Fig. 6(h)). This behaviour was repeatedly observed in the suppressed regime.
7
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w
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w
a

Fig. 7. Response of the sphere with imposed rotation at U∗
= 18 as a function of forcing frequency ratio. Time series of sphere displacement for (f )

f ∗
r = 0, (g) f ∗

r = 18, (h) f ∗
r = 21, and (i) f ∗

r = 30. See Fig. 6 for further details. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Where the vibrations are suppressed, there is significant variation in the instantaneous total phase measured. Therefore,
the arithmetic mean may not provide a reasonable indication of the mean total phase. For example, the arithmetic mean
of 0◦ and 180◦ is 90◦ which is not a useful measure for our purpose. A more suitable estimation may be obtained by
calculating the circular mean.

For a circular quantity such as total phase, the mean resultant vector of the total phase distribution can be
expressed as

ρ̄ =
1
n

n∑
j=1

eiφtotal j , (5)

here n is the total number of samples in a data-set. The resultant vector can be used to obtain a mean phase angle,

φtotal = Arg(ρ̄), (6)

nd an indication of the variance of the angles,

Var(φtotal) = 1 − |ρ̄|, (7)

here the minimum possible variance, 0, indicates that all angles are equal and the maximum, 1, indicates that the angles
re spread over 0◦ to 360◦ and that there is no useful indication of a mean phase angle.
8
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Fig. 8. Variation of vibration amplitude across the α∗
r − f ∗

r parameter space for U∗
= 15. Colour-bar shows A∗ . (For interpretation of the references

o colour in this figure legend, the reader is referred to the web version of this article.)

For forcing frequencies outside of the suppressed regime there is no appreciable variation in the total phase and only a
light variation in the variance of the total phase. In the suppressed regime, while there appears to be a significant change
o the mean total phase, the variance is very close to one indicating that the total phase is continuously varying and that
here is no practical representation of a mean total phase.

At the highest reduced velocity investigated, U∗
= 18, a step change in the amplitude response at f ∗

r = 20 was
observed, resulting in a vibration amplitude reduction of up to 84% (Fig. 7(a)). Whilst a broader power spectrum of
vibration frequency is observed for forcing frequencies above the step change in amplitude response, once more, the
dominant vibration frequency remains fixed for all forcing frequencies at f ∗

≈ 1.05 (Fig. 7(c)). A similar trend in the lift
coefficient variation to that seen for U∗

= 15 is observed. For low forcing frequencies, the lift coefficient is above the value
seen for the natural response. A steady decrease in lift coefficient up-to forcing frequencies higher than the step change in
the amplitude response occurs. Beyond the step change, the peak in spectral power seen in the transverse force at f ∗

Cy ≈ 1
is no longer visible, with most of the power situated at lower frequencies. Note that even for the natural response, the
vibrations are noticeably less periodic at this high reduced velocity. Fig. 7(g, h) highlights the rapid change in amplitude
response seen between f ∗

r = 18 and f ∗
r = 21. At f ∗

r = 18, there is only slight variation in the vibration amplitude from
he natural response. At f ∗

r = 21, however, the vibration is significantly suppressed and a low frequency ‘pulsing’ in the
ibration response can be observed (Fig. 7(h)). For very high forcing frequencies, there is large scatter in the amplitude
esponse. Examining the time series of sphere displacement at f ∗

r = 30 (Fig. 7(i)), a characteristic response for very high
orcing frequencies, reveals periods of almost complete vibration suppression followed by relatively large vibration. This
ransition from nearly completely to only minimally suppressed vibration appears to happen sporadically. As for U∗

= 15,
he total phase correlates well with the changes in the amplitude response. Where there is minimal vibration suppression,
here is no appreciable change to the total phase. Between f ∗

r = 5 and f ∗
r = 20, where the step change in the amplitude

esponse occurs, the variance of the total phase steadily increases. Beyond the step change the variance remains close to
ne, indicating once more that in the suppressed regime there is no practical mean total phase.

.3. Effect of rotary oscillation amplitude

The intent of this study is predominantly to examine the effect of high-frequency rotary oscillations on the vibration
esponse for a rotation amplitude much smaller than the free-stream speed (α∗

r = 0.1). However, examining the effect
f varying the rotation amplitude is of additional interest as it allows us to gain an understanding of both the potential
fficiency of the control method and an indication of the sensitivity of the method to small variations in control conditions.
herefore, the effect of varying rotation amplitude in the mode III transition regime (U∗

= 15) over the α∗
r − f ∗

r parameter
space of 0 ⩽ α∗

r ⩽ 0.75 and 5 ⩽ f ∗
r ⩽ 35 was examined (Fig. 8).

For rotation amplitudes below α∗
r = 0.075, there is minimal vibration suppression at any forcing frequency. By

α∗
r = 0.1, the vibrations are significantly suppressed over the regime 20 ≲ f ∗

r ≲ 25, as analysed in detail. By α∗
r = 0.3,

the sphere vibration is significantly suppressed for all forcing frequencies. Thereafter, the amplitude response remains
relatively insensitive to an increase in velocity ratio. This suggests that the effect of the imposed rotary oscillations on the
vibration response becomes saturated and that any further increase in energy input, at least over the range of rotation
amplitudes investigated, will only serve to reduce control efficiency.

3.4. Variation of instantaneous vortex phase

Sareen et al. (2018b, 2019) found that by imposing rotary oscillations at frequencies close to the natural frequency

of the system, the large-scale streamwise vortex structures that have been shown to be the primary contributor to
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Fig. 9. Histograms of vortex phase for U∗
= 15 and α∗

r = 0.1. The polar angle shows vortex phase. The radius shows the probability density. The
in width is 2◦ . The orange line indicates the circular mean vortex phase angle.

ustained VIV (Govardhan and Williamson, 2005) lock to the imposed oscillation frequency, uncoupling the fluid forcing
rom the natural frequency of the system and suppressing vibration. Evidently, the phase difference between the sphere
isplacement and the force on the sphere due to vortex dynamics (vortex phase, φvortex) is an important indicator of the
ibration response. The significantly higher forcing frequencies imposed in this study were not expected to cause a lock-on
o the large-scale structures if the vibration was suppressed. Fig. 6 shows that where the vibration was suppressed, the
ariance of the total phase significantly increased, suggesting that the transverse fluid force acting on the sphere became
ess ‘locked’ to the sphere vibration. The peaks in the fluid force appear to occur more sporadically over a vibration cycle.
o examine the variance in more detail, histograms of the vortex phase at U∗

= 15 and α∗
r = 0.1 are shown in Fig. 9. For

he natural response, the vortex phase is highly consistent and centred close to 180◦. Similarly, with imposed rotation
t f ∗

r = 16, and to a lesser extent f ∗
r = 26, the vortex phase is centred close to 180◦ and varies only slightly from the

ean phase angle. For f ∗
r = 21 however, the histogram shows a wide spread in the vortex phase. The phase angle is

redominantly in the range 90◦ < φvortex < 270◦ with two broad peaks centred around 150◦ and 225◦. This suggests that
he imposed rotation causes the large lift-inducing vortex structures to form either earlier or later in the vibration cycle,
ut not regularly at the position in the cycle seen for the natural response. In the suppressed regime, while some variation
n the frequency of transverse force acting on the sphere was observed, the dominant vibration frequency of the sphere
emained constant at the value observed for the natural response. The variation of vortex phase and consistent vibration
requency suggests that the imposed rotation does not induce any lock-on behaviour of the large-scale wake structures.
et significant differences in the vibration response were observed, suggesting that the high-frequency oscillations interact
ith the sphere wake in a different manner to that seen previously (Sareen et al., 2018b; McQueen et al., 2020). To reveal
ow the imposed rotary oscillations interact with the wake to suppress vibration, the wake structure was examined.
10
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Fig. 10. Top: Mean streamlines and streamwise velocity determined from two sets of TR-PIV data for U∗
= 15 and (a) f ∗

r = 0, (b) f ∗
r = 16, (c)

f ∗
r = 21, and (d) f ∗

r = 26. The orange cross indicates the wake closure (WC) point. Bottom: Ry′y′ for (e) f ∗
r = 0, (f ) f ∗

r = 16, (g) f ∗
r = 21, and (h)

∗
r = 26. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

. Influence of rotary oscillations on the wake structure

To elucidate why the high-frequency rotary oscillations suppress VIV in the mode III transition regime for a narrow
and of frequencies, TR-PIV data was acquired in the equatorial (x-y) plane of both a fixed and an elastically mounted
phere. Measurements were conducted for the imposed control conditions indicated by the orange markers in Fig. 5.
hile the sphere wake is inherently three-dimensional, the equatorial plane provides a cut through the vortex structures

manating from the sphere in the location at which the effect of rotation is likely highest, due to the maximum
ircumferential velocity of the sphere at the equator. In addition to the natural response in the mode III transition regime,
articular focus was given to the three imposed forcing frequencies indicated by the markers with black outline in Fig. 5.
s shown in Fig. 5, these three imposed forcing frequencies should provide a good indication of any changes to the wake
tructures observed in, and on either side of, the suppressed regime. Due to the difficulty associated with dynamic analysis
n the wake of a moving object, the wake of a fixed sphere is first examined, as it is hypothesised that any significant
ariations to the near wake would likely be observed regardless of the mounting condition.

.1. Fixed sphere

Fig. 10 shows mean streamlines of the time-averaged wake and principle Reynolds stresses, Ry′y′ . Some asymmetry of
he wake is noticeable due to the small number (∼ 10) of low-mode shedding cycles in each TR-PIV data set. Separation
ccurs at approximately 90◦, in good agreement with past studies: Yun et al. (2006), 90◦ at Re = 1 × 104; Tomboulides
1993), 88◦ at Re = 2 × 104; Constantinescu and Squires (2003), 84◦ at Re = 1 × 104; and Grandemange et al. (2014),
0◦ at Re = 1.9 × 104. The time-averaged separation angle is not noticeably affected by the imposed rotation. The wake
losure distance is shortened for all imposed rotation frequencies, by up to approximately 15% for f ∗

r = 21 and f ∗
r = 26.

lthough the wake closure distance is the same for f ∗
r = 21 and f ∗

r = 26, the vortex cores are located closer to y/D = 0
i.e., further inboard) for f ∗

r = 21, indicating a narrower wake. Ry′y′ increases with imposed forcing close to the sphere
n the shear-layer region, where the vortex structures are shed and convect downstream for the natural response. For
ll forcing frequencies, high Ry′y′ is also seen in the centre of the wake for x/D > 1, where the shear-layer structures
egin to noticeably break down and the low-mode instability becomes dominant for a stationary sphere at this Reynolds
umber.
To quantify the narrowing of the wake, the width of the reverse flow region (i.e., u < 0 m s−1) was calculated for

all streamwise velocity vector locations between the rear of the sphere and wake closure (Fig. 11). At all downstream
locations prior to wake closure the reverse flow region was narrowest for f ∗

r = 21, the most effective forcing frequency
in suppressing vibration of the control conditions analysed.
11
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Fig. 11. The width of the wake (Yww), defined as the time-mean streamwise reverse flow region.

For the natural response, close to the sphere in the shear layer, a distinct spectral peak in the cross-stream (y-direction)
elocity at the high-mode instability (St = 3.87) is observed. However, only slightly further downstream, the sub-
armonic of the high-mode instability (St = 1.93) becomes dominant. Fig. 12(a) shows the spatial distribution of spectral
ower for these two dominant frequencies seen in the shear layer for the natural response. Fig. 12(b − d) shows PSD
stimates for the three locations indicated by the markers in Fig. 12(a). At P1, the location closest to the sphere the
igh-mode instability is dominant for the natural response, with a broader peak observable around the sub-harmonic
f the instability. By P2, while the high-mode instability remains visible for the natural response, the sub-harmonic has
ecome dominant. Lastly, by P3, the spectral power of both frequencies is reduced for the natural response, with an almost
onotonic decrease in power from the sub-harmonic frequency.
Fig. 12(b− d) also shows the PSD estimates for the three imposed rotation conditions of particular interest. Evidently,

imposed rotation at all three forcing frequencies significantly affects the power spectrum. For the three imposed rotation
conditions there are distinct, sharp peaks in the power spectrum at the forcing frequency at all three locations in the
shear layer (Fig. 12(b − d)). The spatial distribution of spectral power of the forcing frequencies is shown in Fig. 13. The
pectral power of the forcing frequencies is distributed across approximately the same spatial region as the combination
f both the high-mode instability and its sub-harmonic observed for the natural response, with the region of peak power
t approximately x/D = 0.4 for all three forcing frequencies. The large spatial domain over which the imposed forcing
requencies are dominant in the wake, along with the lack of a spectral peak at the natural instability frequency, suggests
hat the high-mode instability is suppressed, with the shedding of vortex structures predominantly locked to the forcing
requency, and that no subsequent reduction of the dominant frequency to the first sub-harmonic, as seen for the natural
esponse, occurs. As will be discussed in the following, the strength of this lock-on varies with the imposed forcing
requency. For substantially lower or higher forcing frequencies, no lock-on behaviour was observed.

In an effort to link the effect of forcing observed in the power spectra to any changes in the wake structures, the
volution of vortical structures near separation was tracked over time. Fig. 14 shows contours of both the out-of-plane
orticity component, ω∗

z = ωzD/U , and vortex boundaries identified using the Γ2 criterion (Graftieaux et al., 2001) at
/D = 0.35 (location shown in Fig. 13(a)). For the natural response, vortex structures can be observed convecting past
/D = 0.35 at the high-mode instability frequency. It is worth noting once more, that the TR-PIV provides a ‘cut’ through
he strongly three-dimensional sphere wake and that positive and negative regions of rotation indicated in Fig. 14 are
nlikely to be unconnected structures. Yun et al. (2006) showed that for a fixed sphere, without rotation at a similar
eynolds number (1 × 104), vortex rings shed from the sphere with the central axis of the ring initially parallel to the
ree-stream flow. From Fig. 14(a), showing the natural response, the phase between regions of positive and negative
otation convecting past x/D = 0.35 appears intermittent.

The shedding of periodic vortex structures remains visible for all three forcing conditions implemented at U∗
= 15

Fig. 14). For f ∗
r = 21 and f ∗

r = 26, distinct structures shedding at the imposed forcing frequency can be observed. There
s no indication that coherent structures are shedding at the natural high-mode instability frequency, as observed for the
atural response. This indicates that the high-mode instability in the wake is suppressed by the forcing. For f ∗

r = 16
owever, the wake is less periodic, structures form at both the forcing frequency and the natural high-mode instability
requency. This suggests that the high-mode instability is only intermittently suppressed by the forcing for f ∗

r = 16. For
∗
r = 21 and f ∗

r = 26, where structures are consistently shed at the imposed forcing frequency, it can be seen from Fig. 14
hat regions of positive and negative rotation are consistently convecting past x/D = 0.35 alternately on either side of
the sphere. Lastly, for f ∗

r = 21 and f ∗
r = 26 in particular, it is apparent that the structures shed are significantly larger

than for the natural response.
Further downstream at x/D = 0.9, the spatio-temporal plots of Γ2 still show periodic structures convecting

downstream, albeit less distinctly (Fig. 15). For the natural response, structures around the sub-harmonic of the high-
mode instability are visible. This observation concurs with the spatial distribution of the power spectra shown in Fig. 12
and suggests that vortices are pairing. Vortex pairing in the wake of a sphere has been observed both at lower and
12
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Fig. 12. (a) Spatial distribution of spectral power for St = 3.87 and St = 1.93 for the natural response. (b, c, d) PSD estimate of cross-stream velocity,
averaged over two TR-PIV data sets and the two symmetric locations indicated by the grey circles. Each PSD estimate is separated by three decades.
The dashed lines indicate the two frequencies shown in (a). The coordinates of the markers are (b) x/D = 0.3 and y/D = ±0.55, (c) x/D = 0.5 and
y/D = ±0.575, (d) x/D = 0.7 and y/D = ±0.60. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

higher Reynolds numbers previously (e.g., Rodriguez et al., 2011; Bakic et al., 2006). With imposed rotation, distinct vortex
structures can be seen convecting downstream periodically at the forcing frequency. Interestingly, for f ∗

r = 16 the forcing
frequency has now become more evident, whilst for f ∗

r = 26 the structures have become less periodic. It appears that
for f ∗

r = 16, although the high-mode instability was only intermittently locking to the forcing frequency at x/D = 0.35,
the natural process by which the dominant frequency is reduced to the sub-harmonic still occurs here and by x/D = 0.9,
more structures are visible at a wave length close to the forcing frequency. Results for f ∗

r = 10, not shown here, indicate
that no lock-on behaviour occurs for the lower forcing frequency.

To indicate of the phase of the cross-stream velocity across the spatial domain a technique similar to spectral proper
orthogonal decomposition (SPOD) was used. SPOD is a space–time formulation of proper orthogonal decomposition (POD),
where the analysis is conducted on data in the frequency domain. Towne et al. (2018) provide a thorough description of the
technique. Here, the following process was conducted for each control condition. Using two data-sets, the velocity at each
spatial location was first decomposed into a series of Hanning windows. The fast Fourier transform of the combined set of
windowed data was then determined. Lastly, a singular value decomposition was used on the frequency-domain data. This
technique provides a series of modes that oscillate at a single frequency. As for spatial- only POD, the first mode provides
the best first-order reconstruction of the flow field. Each subsequent mode accounts for progressively less variance in
the data. Here, the first mode accounted for 31% of the variance for the natural response, and the majority of variance
13
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Fig. 13. Spatial distribution of spectral power of the forcing frequency. The two dotted lines in (a) indicate the location of sampling in Figs. 14 and
15. The dotted rectangle in (c) indicates the spatial domain of Fig. 17.

Fig. 14. Spatio-temporal distribution of (a − d) Γ2 and (e − h) ω∗
z at x/D = 0.35 (location shown in Fig. 13(a)). (a, e) f ∗

r = 0, (b, f ) f ∗
r = 16, (c, g)

f ∗
r = 21, (d, h) f ∗

r = 26. Single level contours of Γ2 = ±2/π are shown. Contour limits of ω∗
z are [−0.6, 0.6]. Blue contours show clockwise and

red contours show anti-clockwise ω∗
z and Γ2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

for the three imposed control conditions: 78% for f ∗
r = 16, 75% for f ∗

r = 21, and 62% for f ∗
r = 26. An indication of the

dominant phase distribution of the cross-stream velocity across the spatial domain is evident in the phase reconstructed
from the Fourier coefficients of the first mode as shown in Fig. 16. Since for the three imposed control conditions the
majority of variance is contained in the first mode, the reconstruction should provide a good indication of the spatial
phase distribution. A comparison of the spatial phase modes obtained for the flow structures observed in the raw velocity
fields was made to ensure that the phase indeed exemplifies the actual flow structures.

Fig. 16 shows the phase distribution of the cross-stream velocity for the sub-harmonic of the high-mode instability
for the natural response, and for the imposed forcing frequency for the three control conditions. In addition to colour
14
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Fig. 15. Spatio-temporal distribution of (a − d) Γ2 and (e − h) ω∗
z at x/D = 0.9 (location shown in Fig. 13(a)). (a, e) f ∗

r = 0, (b, f ) f ∗
r = 16, (c, g)

f ∗
r = 21, (d, h) f ∗

r = 26. Single level contours of Γ2 = ±2/π are shown. Contour limits of ω∗
z are [−0.6, 0.6]. Blue contours show clockwise and

red contours show anti-clockwise ω∗
z and Γ2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 16. Phase of the first mode for: (a) St = 1.93; (b) St = 1.07; (c) St = 1.40; and (d) St = 1.74. Transparency is set based on the spectral power
f the frequency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ontours depicting phase, the transparency across the spatial domain was set based on the spectral power of the depicted
requency. The phase maps indicate that the vortex structures on either side of the shear layer remain close to 180◦ out of
hase for f ∗

r = 21 and f ∗
r = 26 up to x/D ≈ 1.2, where-after the phase becomes less distinct. For f ∗

r = 16, the dominant
ode of the phase is closer to 90◦ between either side of the shear layer. For the natural response, whilst the phase
etween either side of the shear layer appears to be approximately 180◦, there is significantly less energy associated with
he first mode indicating that there is a less stationary coherent phase pattern.

.1.1. Phase-averaged wake and comparison to circular cylinder geometry
For f ∗

r = 21, it was observed that the generation of coherent structures in the shear layer is locked to the forcing
requency, with a structure shedding each rotatory oscillation cycle. In an attempt to reveal the process by which these
tructures are generated and shed downstream, phased averaged particle image velocity (PIV) over the spatial region
15
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Fig. 17. Phase averaged vorticity and Γ2 for f ∗
r = 21 at U∗

= 15. (a) t/T = 0, (b) t/T = 0.25, (c) t/T = 0.5, (d) t/T = 0.75. The reduced spatial
domain shown here is indicated in Fig. 13(c). Black lines show contours of Γ2 = 2/π . Colour contours show ω∗

z , the limits are [−0.6, 0.6]. Blue
ontours show clockwise and red contours show anti-clockwise ω∗

z . The vertical orange line on the sphere indicates θ = 0◦ and the white lines
show phase averaged θ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

near separation on one side of the sphere (region shown in Fig. 13(c)) is analysed (Fig. 17). For a rotary oscillating circular
cylinder, Shiels and Leonard (2001) examined the vorticity generation and subsequent shedding of vortex structures. Their
two-dimensional computational simulations were conducted at Re = 1.5 × 104, where it was noted that the flow would
be three dimensional. However, the simulations appear to provide a good representation of the critical flow physics in
the boundary layer and near wake. Clearly there are significant differences between the two studies, especially in their
not modelling the three-dimensional effects and the fact that, here, the high frequency oscillations are predominantly
interacting with small-scale shear-layer structures as opposed to large-scale wake structures. However, there appear to
be similarities in the generation process of the vortex structures. Shiels and Leonard (2001) noted that the generation
and subsequent shedding of a vortex structure occurs at a counter-intuitive time in the cylinder oscillation cycle. They
observed that a vortex structure is generated and separates from the cylinder on the side of the cylinder that is moving
with the free-stream flow. This process was attributed to the transient effects of the rotary oscillations combined with
advection effects, causing the existence of opposite-signed vorticity layers near the cylinder wall. For a fixed sphere, it
appears that the formation of a distinct vortex structure also predominantly occurs during the phase of oscillation where
that side of the sphere is moving with the free-stream flow (Fig. 17(a − c)). This is due to an interaction of the ‘natural’
generation of vorticity over the surface of a sphere, driven by the pressure gradient in the fluid, coupled with the forced
oscillatory acceleration of the boundary (Morton, 1984). Like for the cylinder, subsequent advection and interaction of the
generated vorticity results in the formation of the distinct vortex structures observed to move outwards from the surface
and move downstream. Unlike for the circular cylinder though, there is minimal variation in the location of separation
over an oscillation cycle and there does not appear to be the generation of a multipole vortex structure. Rather, during
the phase of oscillation when the side of the sphere is moving against the free-stream, it appears that flow is drawn
back towards the separation point from the re-circulation region, further strengthening the recently generated vortex
and aiding its liftoff from the surface and convection downstream (Fig. 17(d− a)). Where the high-mode instability locks
o the forcing frequency, this pattern is highly periodic and explains why the vortex structures emanating from the shear
ayer shed out of phase on either side of the sphere as the sphere oscillates. Lastly, the equatorial plane phase averaged
IV presented here shows the maximum tangential acceleration between the sphere and fluid. Moving away from the
quatorial plane, the tangential acceleration decreases, and likely the associated generation of vorticity along with it.
Fig. 17 also highlights that with imposed rotation, vortices are generated by a different mechanism than for the natural

esponse. For the natural response, a Kelvin–Helmholtz-like instability results in the growth of disturbances, in an initially
aminar shear layer, that results in the formation and roll-up of distinct vortex structures some distance downstream
f separation. With imposed control, the oscillatory tangential acceleration between the body and fluid results in the
eneration of vortex structures near separation very close to the body.
While the imposed rotary oscillations significantly alter the characteristics of the high-mode instability, it has been

hown that in the case of an elastically mounted sphere, the large-scale, low-mode instability primarily produces the
16
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force that sustains VIV. At the furthest downstream position (x/D = 1.5), albeit still relatively close to the sphere, in
the wake centre (y/D = 0) the low-mode instability frequency is discernible for all conditions examined. The spatial
distribution does not change significantly with imposed rotation. As discussed in Section 1, Yun et al. (2006) proposed that
the large-scale waviness of the wake (i.e., low-mode instability) is formed by a periodic tilting of the shear-layer vortices
(i.e., high-mode instability) due to differing convection velocities around the sphere. Here, it would seem that given the
lock-on of the shear layer vortices to the imposed rotation, that the natural tilting of the vortices would be suppressed
leading to a suppression of the large-scale wake waviness. From analysis not shown here, with imposed rotation, the
low-mode instability was indeed slightly suppressed. In the current literature, a thorough explanation of the relationship,
if any, between the high- and low-mode instabilities in the wake of a fixed, stationary sphere remains elusive. Clearly, the
addition of imposed rotation has not simplified the matter, with no obvious pattern emerging unlike for the high-mode
instability. Nonetheless, the relationship between the two instabilities will be discussed further in Section 4.3.

4.1.2. Comment on the likely effects of imposed forcing on drag
As discussed in Section 4.1, a narrowing and shortening of the wake, along with an increase in Reynolds stresses near

separation was observed for forcing conditions that minimised VIV. Both the reduction in wake size and increased shear
stresses will likely lead to increased base suction and pressure drag (Roshko, 1993). Using surface pressure measurements
and smoke flow visualisation, Kim and Durbin (1988) observed that for a fixed sphere exposed to acoustic excitation at
frequencies near the shear-layer instability, a reduction in the size of the separation bubble and a corresponding 40%
reduction in base pressure and 18% increase in form drag occurred. Therefore, it is expected here that the reduction in
VIV is achieved at the cost of increased drag.

In Section 4.1, an examination of a few select control conditions (i.e., f ∗
r = 16, f ∗

r = 21, and f ∗
r = 26) for a fixed

sphere at a Reynolds number equivalent to an elastically mounted sphere in the mode III transition regime (U∗
= 15)

was conducted. A correlation between VIV suppression and a suppression of the high-mode instability and associated
lock-on of shear-layer structures to the imposed rotary oscillations was shown. To confirm that the lock-on behaviour
occurs when the mounting is changed to an elastic configuration, we now examine a sphere undergoing VIV.

4.2. Elastically mounted sphere

Less work has been conducted on the presence of the high-mode instability for an elastically mounted sphere. van
Hout et al. (2013b) used TR-PIV to investigate the near-wake of a tethered sphere over the range 493 ⩽ Re ⩽ 2218. At the
highest Reynolds number investigated, they observed a weak, broad peak in the power spectrum close to the high-mode
instability observed for a fixed sphere. Due to the lower Reynolds number investigated (i.e., approximately an order of
magnitude lower than the results examined here for U∗

= 15), they did not observe the shedding of distinct periodic
structures close to the sphere, like those observed for the fixed sphere in Section 4.1 and that might be expected with
elastic mounting in the mode III transition regime.

Here we again focus on results for U∗
= 15, where the vibration response was suppressed, and examine imposed

forcing for f ∗
r = 16, f ∗

r = 21, and f ∗
r = 26. Fig. 18 shows instantaneous snapshots of velocity vectors, along with out-

of-plane vorticity and Γ2 contours over a single vibration cycle for both the natural response and f ∗
r = 21. This figure

highlights the difficulty in comparing the wake between control conditions for an elastically mounted body. Specifically,
whilst similarities in small-scale wake structures are evident, the difference in vibration amplitude significantly alters
the overarching wake structure in relation to sphere position. Importantly though for the comparison between fixed and
elastic mounting, with imposed rotation small-scale structures do appear to shed periodically from the sphere, with similar
size and frequency to the equivalent fixed configuration.

Fig. 19 shows the evolution of Γ2 and ω∗
z past x/D = 0.55. As for the fixed sphere, the high-mode instability appears

suppressed for both f ∗
r = 21 and f ∗

r = 26, particularly on the trailing side of the sphere (i.e., between approximately 0
and 2 s for f ∗

r = 21). Unlike the natural response (Fig. 19(a, e)), with imposed rotatory oscillations, shear-layer structures
convect past x/D = 0.55 relatively consistently over the entire vibration cycle. While clearly interesting, it is difficult to
ascertain whether distinct structures are more observable where suppression occurs because of the inherent effect of the
rotary oscillations on the flow, or merely because the vibration is more suppressed and as such, the wake more resembles
that of the fixed sphere.

To quantify the frequency and periodicity of the shear-layer shedding in the wake of an elastically mounted sphere, a
technique similar to that used by van Hout et al. (2013b) was employed to track the shear-layer position. The y-direction
position of maximum out-of-plane vorticity at x/D = 0.6 was determined for each time-step where ω∗

z > 0.4. Where
ω∗

z < 0.4, the shear-layer position was interpolated. A 15 Hz low-pass filter was then applied to the tracked shear-layer
position. The cross-stream velocity at the tracked shear-layer position at each time-step was then used to obtain an
estimate of the power spectrum in the moving shear layer. Using Γ2 to track the shear layer position gave similar results.

Fig. 20 shows the resultant power spectra at x/D = 0.6. For the natural response, a peak in the power spectrum is
observed at the same frequency as the high-mode instability identified for the fixed sphere. A second less distinct peak,
slightly higher than the sub-harmonic of the high-mode instability can also be observed. For f ∗

r = 16 and f ∗
r = 21, a strong

peak at the forcing frequency is visible. For f ∗
r = 26 on the other hand, there is no strong peak evident in the spectrum

at the forcing frequency. This observation is in line with the results from Fig. 12 where there was a larger reduction in
17
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Fig. 18. Instantaneous snapshots of velocity vectors (every fifth vector shown for clarity), vorticity colour contours, and Γ2 line contours for (a)
∗
r = 0, and (b) f ∗

r = 21. Blue (clockwise) and red (anti-clockwise) lines show contours of Γ2 = ±2/π . Colour contour limits of ω∗
z are [−0.7, 0.7].

or (b), the vertical orange line on the sphere indicates θ = 0◦ and the white lines show phase averaged θ . (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Spatio-temporal distribution of (a − d) Γ2 and (e − h) ω∗
z at x/D = 0.55. (a, e) f ∗

r = 0, (b, f ) f ∗
r = 16, (c, g) f ∗

r = 21, (d, h) f ∗
r = 26. Single

level contours of Γ2 = ±2/π are shown. Contour limits of ω∗
z are [−0.6, 0.6]. Blue contours show clockwise and red contours show anti-clockwise

ω∗
z and Γ2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
18
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Fig. 20. PSD estimate of cross-stream velocity in tracked shear layer at x/D = 0.6. (a) Each PSD estimate is separated by three decades. (b) No
eparation between PSD estimates. Blue dashed lines shows the high-mode instability and its sub-harmonic for the natural response of the fixed
phere.

he spectral power of the forcing frequency for f ∗
r = 26 between x/D = 0.3 and x/D = 0.7 than for the other control

conditions. From Fig. 20(b), it is evident that forcing at f ∗
r = 21 results in the most distinct spectral peak, suggesting that

periodic shedding from the shear layer is strongest for this control condition.
TR-PIV measurements acquired at U∗

= 12 and U∗
= 18 indicated that lock-on of vortex shedding in the shear layer

to the forcing frequency also occurred at these conditions.
It was shown in Section 4.1 that while the high-mode instability is dominant immediately downstream of separation,

the sub-harmonic of the instability quickly dominates downstream. While it was difficult to ascertain whether the same
behaviour happens for an elastically mounted sphere, evidence of distinct shear-layer structures persisting to at least
x/D = 1.2 were observed when the lock-on phenomenon occurred. With elastic mounting, it is difficult to determine the
effect of forcing on the low-mode instability due to the coupled sphere movement and lock-in behaviour. Some further
discussion on this is presented in Section 4.3.

In summary, as for the fixed sphere, a suppression of the high-mode instability and a lock-on of vortex shedding to
the imposed forcing was observed for control conditions where VIV is suppressed. In particular, lock-on, and suppression
of the natural high-mode instability, was observed for forcing frequencies slightly lower than the sub-harmonic of the
high-mode instability. Forcing at frequencies close to and lower than the high-mode instability sub-harmonic appeared
to result in the generation of vortices which persisted the furthest downstream resulting in the greatest influence on the
larger-scale lift-generating streamwise vortex structures.

4.3. Discussion on the effects of imposed forcing on wake instabilities

With the combination of a highly three-dimensional wake, transverse body vibration, and imposed rotary oscillations,
it is difficult to isolate and analyse particular aspects of the flow for the elastically mounted, rotary oscillating sphere.
To reduce this complexity, an effort was made to study the effects of forcing on a fixed sphere. This enabled various
characteristics of the spatial dynamics and flow instabilities in the equatorial plane to be determined. To understand the
effects of the strong three-dimensional aspects of the flow and the characteristics of the instabilities observed in relation
to existing literature, we found it valuable to compare the results obtained here to those found for a two-dimensional
circular cylinder.

As discussed in Section 1, low- and high-mode instabilities exist in the sphere wake. Kim and Durbin (1988) found a
scaling between the high-mode (fHM ) and low-mode (fLM ) instabilities of approximately fHM/fLM ∝ Re0.75 over the range
103 < Re < 104 and approximately fHM/fLM ∝ Re0.66 over the range 104 < Re < 105. Comparing these results to
the relationship identified between the Bloor–Gerrard shear-layer instability (fSL) and Kármán vortex shedding (fK ) in
the wake of a circular cylinder reveals interesting similarities. Thompson and Hourigan (2005) proposed that the two
instabilities observed in the circular cylinder wake, scaled as; f /f ∝ Re0.57 over the range 1.5×103 < Re < 5×103, and
SL K
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fSL/fK ∝ Re0.52 over the range 1 × 104 < Re < 5 × 104. The similarity between the Reynolds number ranges for the two
eometries is interesting as is that both the magnitude of scaling and percentage reduction in scaling from the low to high
eynolds number ranges are also similar (i.e., 9% reduction for the circular cylinder and 12% reduction for the sphere).
hompson and Hourigan (2005) presented the distinct reduction of the wake formation length between Re = 4×103 and

Re = 1×104 and the associated enhanced interaction between the Kármán vortices and the shear layers at high Reynolds
numbers as a reason for the change in scaling between the instabilities. Similarly, for the sphere a striking change in
formation length can be seen between Re = 3.7 × 103 and Re = 1 × 104 in the large eddy simulations of Yun et al.
(2006) (this change in formation length has also been observed over similar Reynolds number ranges in other studies such
as Jang and Lee (2007)). They found that the re-circulation bubble approximately halves in size between Re = 3.7 × 103

nd Re = 1 × 104. Therefore, it seems reasonable to postulate that, as suggested by Thompson and Hourigan (2005) for
he circular cylinder, above Re ≈ 1 × 104, there is enhanced interaction between the low- and high-mode instabilities of
he sphere. Here, vibration suppression was observed for U∗ ⩾ 10 where Re ⩾ 1.3 × 104.

Tokumaru and Dimotakis (1991) examined the effect of rotary oscillations on the wake of a fixed circular cylinder
over a broad forcing frequency range at Re = 1.5 × 104. They identified four wake modes. The flow visualisations they
presented are for rotation amplitudes at least an order of magnitude larger than implemented here, and the majority are
closer to two orders of magnitude larger. So it is not expected that the rotations imposed here will have the same large-
scale effects seen by Tokumaru and Dimotakis (1991). Yet, similarities are again evident between the two geometries.
The forcing frequencies for which vibration suppression was found in the mode III transition regime in this study, fall
into the mode III wake regime of Tokumaru and Dimotakis (1991). In this regime for the circular cylinder, the imposed
oscillations suppress both the shear-layer and Kármán instabilities, with vortex structures only being shed at the forcing
frequency. The wake is also significantly narrowed. For the sphere, likely due to the lower rotation amplitudes imposed
rather than a global modification of the wake, only localised suppression of the high-mode instability in the shear layer
was observed. Yet a narrowing of the wake, most significant for the most effective forcing frequency was observed. In
addition to the similarities between wake width, it appears that like for the circular cylinder, as a result of the imposed
forcing the onset of the low-mode instability is delayed.

Tokumaru and Dimotakis (1991) also conducted flow visualisation at a lower Reynolds number of Re = 3.3 × 103.
They found very similar results, but noted that the effects at higher forcing frequencies were more pronounced. Shiels and
Leonard (2001) also found the effects of imposed forcing strongly Reynolds number dependent over the range investigated
here. Evidently, the variation in interaction between the Kármán and shear-layer instabilities described by Thompson and
Hourigan (2005), over the Reynolds number range used here, and by Tokumaru and Dimotakis (1991) and Shiels and
Leonard (2001), affects the ability of the imposed rotary oscillations to influence the wake at lower Reynolds numbers.

In addition to the effect of forcing on the natural instabilities of the sphere wake, the mechanisms leading to sustained
vibration are also likely play an important role in vibration suppression. Govardhan andWilliamson (2005) identified mode
III as a ‘movement-induced excitation’ mode, whereby initial perturbations of the sphere lead to the generation of self-
sustaining vortex forces. Any disruption to the timing of vortex generation or small disturbances to sphere displacement
are more likely to lead to significant vibration suppression in this regime. The mode III transition regime, where vibration
was suppressed in this study, is the beginning of the movement-induced excitation regime for the sphere mounted with
1-DOF transverse to the oncoming flow.

4.4. Vibration suppression mechanism

Drawing together these comparisons to past work on the instabilities and forcing of a circular cylinder along with
the results analysed in this study, some likely causes of vibration suppression in the mode III transition regime can be
identified. In this regime, vibration has been attributed to a movement induced instability where the trailing vortices
self-propel to one side and then the other in sync, on average, with the system oscillation frequency leading to significant
resonant amplitude. The formation of these large-scale trailing vortices is controlled by the realignment of azimuthal
vorticity in the streamwise direction in the near-wake region.

Where suppression of vibration was observed, the imposed rotation generates strong persistent vortex structures
that shed at the forcing frequency and predominately convect downstream in the shear layer. The excitation is strong
enough to bypass the formation and pairing of the initial shear-layer vortices (high-mode instability) with only vortex
structures convecting at the forcing frequency being observed. The vortex structures generated are larger and persist
further downstream than for the natural response, with the forcing frequency remaining dominant over a large spatial
domain. Furthermore, there is no consistent phase between the sphere displacement and vortex force acting on the sphere
for the most effective forcing frequency. Rather, vortex structures are predominantly shed in phase with the imposed
oscillations. It appears that with imposed oscillations, the generated vortex structures persist far enough downstream
to interfere with the formation and timing of the large-scale structures (low-mode instability) which are important to
sustained mode III vibration.

The TR-PIV results along with the comparison to the circular cylinder suggest that, in addition to the imposed oscillation
frequency and amplitude, both Reynolds number and vibration mode are important in determining the vibration response.
While it is likely to always be difficult to suppress vibration in the mode I and mode II regimes, in this study the difficulty
is compounded by the low Reynolds number (Re < 1 × 104) and associated reduced interaction between the high- and

low-mode instabilities, which reduces the control effectiveness in the mode I and the beginning of mode II regimes.
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5. Conclusions

Low-amplitude rotary oscillations have been imposed on an elastically mounted sphere at much higher frequencies
han previously investigated. It was found that, with careful frequency selection, it was possible to substantially suppress
IV in the mode II and mode III transition regimes with rotation ratios as low as α∗

r = 0.1. At U∗
= 18, the highest

reduced velocity investigated, a reduction in the amplitude response of up to 84% for a rotation ratio of only α∗
r = 0.1

was observed. Across the parameter space investigated, no appreciable deviation in the vibration frequency from the
natural response occurred. In regard to the amplitude of oscillations, it was found that no further significant suppression
of the vibration occurred for rotation ratios above α∗

r = 0.3, at least up to the maximum rotation ratio tested (α∗
r = 1).

Above α∗
r = 0.3, vibration suppression was not sensitive to rotation frequency.

To examine the effect of the imposed rotation at a low rotation ratio (α∗
r = 0.1) on the wake dynamics, three forcing

conditions, in addition to the natural response, were studied in detail for U∗
= 15 for an elastically mounted sphere as

well as a fixed sphere at an equivalent Reynolds number. For the natural response, it was found that while the high-mode
instability was dominant immediately down-stream of separation, the sub-harmonic of the instability quickly becomes
dominant. The high-mode instability could be suppressed by imposed rotation, with shedding of distinct, periodic vortex
structures at the forcing frequency evident. Moving downstream, no reduction in dominant frequency was observed with
imposed rotation, unlike the natural response. While a direct connection between the altered high-mode instability and
the large-scale motions of the wake was not formally established, it appears that with imposed oscillations, the vortex
structures generated persist far enough downstream to interfere with the large-scale vortex-shedding process (low-
mode instability), which in-turn disrupts the movement-induced vibration mechanism leading to significant vibration
suppression. Where the vibration was suppressed, significant variation in the instantaneous phase between the sphere
displacement and vortex force acting on the sphere was also observed.

This investigation shows promise for suppression of VIV of three-dimensional geometries through sinusoidal rotation
at frequencies many times higher than the natural frequency of the system and at lower amplitudes than implemented
in previous studies. It also demonstrates that VIV may be suppressed through direct interaction with the high-mode
instability as opposed to the low-mode instability as performed in previous studies. Due to limitations of the servo-motor
used, it was not possible to impose rotary oscillations at the expected shear-layer instability frequency when testing at
high reduced velocities. It may prove interesting to investigate the effect of rotary oscillations at frequencies at and above
the initial shear-layer instability, at the reduced velocities where suppression of the vibration was observed.
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