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Abstract

This data-driven study seeks to predict the amplitude response of an elastically-mounted elliptical
cylinder by leveraging previous experimental investigations to train machine learning algorithms. The
elliptical cylinder used had an elliptical ratio of ε = b/a = 5, where a and b are the stream-wise and
cross-flow dimensions, respectively. Specifically, we evaluated the performance of k-nearest neigh-
bours, decision tree, gradient-boosted decision tree, and random forest models. Using the structural
damping ratio, Reynolds number, and reduced velocity as inputs, each method was optimised using
particle swarm optimisation with respect to the mean absolute error loss. The k-nearest neighbours
had the lowest loss value and was hence chosen as the best algorithm, with performance on the test
data indicating that it was able to capture the main trends of the amplitude response. This demon-
strates the ability of machine learning to predict the effect of structural damping on the flow-induced
vibration response of an elliptical cylinder, with potential applications in the field of renewable energy
where generator loads can be modelled as applied damping.

1 Introduction

Flow-induced vibration (FIV), arising from the coupled interaction between a fluid and a structure,
is an important phenomenon prevalent in various areas of engineering (Bearman, 1984; Naudascher
& Rockwell, 2005; Williamson & Govardhan, 2004). Notably, FIV can lead to catastrophic structural
failure or long-term fatigue, but it can also be potentially harnessed as a source of green energy
(Bernitsas et al., 1984; Lv et al., 2021).

FIV of an aeroelastic bluff body can often be manifested as two body-oscillator phenomena:
vortex-induced vibration (VIV) and galloping. Fundamentally, VIV is caused by the periodic or
quasi-perodic shedding of vortices in a vortex street pattern, while galloping is a movement-induced
instability characterised by a linear amplitude growth with flow speed past a critical value (Blevins,
1990). Depending on the flow conditions and geometric properties (e.g. the geometric shape, struc-
tural damping, and mass ratio), VIV and galloping may occur separately or simultaneously. As such,
previous studies have focused on circular and square cylinders since FIV exclusively manifests as
VIV and galloping, respectively, allowing both phenomena to be studied independently. However,
much less research has been conducted on the coupling between both forms of FIV that can occur
for symmetry-breaking geometries. Recent studies (see Nemes et al., 2012; Zhao et al., 2018c, 2014)
have shown that rich, complex, and non-linear dynamics can also be observed when both FIV phe-
nomena concurrently manifest. Although mixed-mode FIV occurs in many real-world scenarios, the
coupling of VIV and galloping makes traditional quasi-steady theory inapplicable for the prediction
and characterisation of the resultant dynamics.

One example of mixed-mode FIV relates to cylinders with elliptical geometries (Zhao et al.,
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Figure 1. A schematic defining the problem of interest: an elastically mounted elliptical cylinder constrained to
oscillated transverse (y) to the free stream flow of velocity U and in the positive x direction. Here, the geometry
is characterised by the elliptical ratio ε = b/a, where a and b are the stream-wise and cross-flow dimensions,
respectively. Additionally, m is the oscillating mass, k denotes the spring constant, c is the adjustable structural
damping, and Fx and Fy represent the respective drag and the transverse (lift) fluid forces acting on the body,
respectively.

2018b). Since the circular cylinder is considered a special case of the elliptical geometry whose FIV
response is only VIV due to the inherent rotational symmetry of the system, introducing deformation
through the eccentricity of the cross-section causes the profile to be susceptible to movement-induced
instability. A case in point is our recent and unpublished discovery of large-scale oscillations (oc-
curring in a regime coined the hyper-branch (Zhao et al., 2023)) for an elastically mounted elliptical
cylinder submerged in water. This system is modelled as a linear second-order damped harmonic
oscillator of form

mÿ(t)+ cẏ(t)+ ky(t) = Fy(t), (1)

which relates the total fluid force acting in the cross-flow direction (Fy(t)) to the system mass (m),
spring constant (k), structural damping constant (c), and cylinder displacement (y(t)). Figure 1 shows
the schematic of the cylinder where eccentricity of the elliptical geometry is defined by the elliptical
ratio, ε = b/a = 5. With observed amplitudes nearly eight times the cross-flow dimensions of the
cylinder, Lo et al. (2023) then demonstrated that the hyper-branch oscillations can be dampened and
eventually suppressed with increasing structural damping, as shown by the amplitude response in
figure 2. The amplitude (A), flow speed (U), and structural damping (c) are represented by their non-
dimensional forms: the normalised amplitude parameter A∗ = A/b, reduced velocity U∗ =U/( fnwb),
and the structural damping ratio accounting for added mass effects ζ = c/(2

√
k(m+mA)). Here, fnw

and mA denote the natural frequency of the elliptical cylinder when submerged in quiescent water and
potential added mass, respectively.

However, understanding the effect that parameters (e.g. ζ and U∗) have on the amplitude response
of elastically mounted elliptical cylinders using first principles and equation-based models is made
difficult by the multi-scale and non-linear nature of the FIV. To address this issue, data from previous
studies could be leveraged by machine learning algorithms to gain further insights into the amplitude
response arising from FIVs. Although the review by Brunton et al. (2020) has shown the success
of machine learning in many fluid dynamics applications, few studies have applied this data-driven
approach to FIV research (Lin et al., 2021; Ma et al., 2020; Mei et al., 2021) and none in predicting,
from experimental parameters, the hyper-branch response of elliptical cylinder FIV.

This study presents a comparison of machine learning models for the amplitude response predic-
tion of an ε = 5 elliptical cylinder based on the applied structural damping of the system. The article
proceeds with the methodology in § 2, providing an overview of the data and models used. The per-
formance of the trained and optimised models were then discussed in § 3, with the conclusions of this
study drawn in § 4.
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Hyper-branch

Figure 2. Amplitude response (A∗) of the elliptical cylinder as a function of reduced velocity (U∗) for various
applied structural damping (ζ) values over a Reynolds number range of 980 ≤ Re ≤ 4410. Using decreasing
U∗ increments, the amplitude responses corresponding to the presence and suppression of the hyper-branch are
shown in (a) and (b), respectively. Markers with cyan edges indicate data points that have been set aside as the
test data.

2 Methodology

2.1 Data Collection for Model Training

Figure 2 shows our unpublished dataset (Lo et al., 2023) on which the models will be trained, opti-
mised and tested. The experiments were conducted within the free-surface recirculating water channel
of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash University. To
implement free transverse vibration, the elliptical cylinder was mounted on a low-friction air-bearing
rig (Zhao et al., 2018c) and was elastically constrained by high-precision extension springs. The
structural damping of the air-bearing rig was controlled using an electromagnetic damper system
(Soti et al., 2018).

The preliminary results demonstrated that the FIV response of the elliptical cylinder as a function
of U∗, both in shape and in amplitude, is dependent on ζ. The body vibration was observed to
be strongly associated with a fluid-structure synchronisation, where the vortex shedding frequency
”locks” onto the body oscillation frequency. For the hyper-branch, additional higher order harmonic
components in the lift force were also observed, suggesting that the large-scale oscillations were
associated with a combined effect of VIV and galloping. It was found that increasing ζ reduces the
magnitude of the body vibration, with the hyper-branch suppressed for ζ≥ 1.92×10−2. The presence
of hysteresis was also observed, with the FIV response depending on the direction of U∗ increments
used to construct the response curves. Due to the water channel limits, measurements could not be
taken at all U∗ values of interest for increasing U∗ and, as such, the focus of this study is only on data
from decreasing U∗ increments.

Eighteen damping values were tested in order to investigate the effect of damping on the observed
hyper-branch phenomenon, with a total of 1613 points in the dataset. To have an unbiased and ac-
curate measurement of model accuracy after training and optimisation, two damping values were
taken as the 182-point test data set. Shown by the cyan marker edge in figure 2, ζ = 9.38× 10−3

and 4.98×10−2 were chosen as they respectively represent the two main FIV responses — with and
without the hyper-branch. As such, the training/testing split is approximately 90-10%. In this study,
training data are used for training (§ 2.3), model optimisation (§ 2.4), and model selection. The test
set is withheld and only used to provide an unbiased evaluation of the accuracy of the final model at
the end of the study.

Three experimental parameters are chosen as the inputs for the machine learning algorithms of
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interest: structural damping ratio (ζ), reduced velocity (U∗), and Reynolds number (Re = (Ub)/ν,
where ν is the kinematic viscosity of the water). Although the aim of the study is to predict the
amplitude response as a function of reduced velocity based on a given damping ratio, the Reynolds
number was also included to account for variations in the natural frequency ( fn,w) that arises from
different damping.

2.2 Machine Learning Implementation

Model Optimised Hyper-parameters Lowest Loss Value

k-Nearest Neighbours Algorithm: Ball Tree, Weight: Distance, Leaf size: 84,
Neighbours: 2, Metric power: 1 (1.06±0.02)×10−1

Decision Tree Tree Depth: 27, Min. samples before split: 4, Min. samples
in leaf node: 1 (1.29±0.02)×10−1

Random Forest Tree Depth: 56, Min. samples before split: 5, Min. samples
in leaf node: 1, Trees: 156 (1.30±0.02)×10−1

Gradient-Boosting
Decision Tree

Tree Depth: 37, Min. samples before split: 6, Min. samples
in leaf node: 4, Trees: 41, Learning Rate: 1.622e-1 (1.22±0.02)×10−1

Table 1. The hyper-parameter values corresponding to the lowest mean absolute value loss for each machine
learning model were obtained via particle swarm optimisation. The loss for each model was estimated as the
mean of 8-fold cross validation repeated 100 times, and presented along with their 95% confidence intervals.

All machine learning components of this study were implemented in Python, with the Scikit-Learn
library utilised to build the models. Chosen due to their popularity and robustness in many applica-
tions, table 1 shows the architectures tested in this study for the amplitude prediction of elastically
mounted elliptical cylinders undergoing FIV. In contrast with popular deep machine learning methods
such as neural networks, all the architectures tested in this study are considered to be shallow learners
due to their limited representation spaces. The amplitude response predictions made by the models
utilise the existing experimental data to find relationships between the inputs and outputs. Aside from
the k-nearest neighbours algorithm which performs regression directly from searching the data and
taking the majority vote of k nearest data points, the input-output relationship for the other models are
determined by the model parameters that are learned during training.

The principle of this process is to find the aforementioned parameters that maximise the model
accuracy through the minimisation of a predefined function known as the loss. Given the existence
of instantaneous amplitude transitions in the data, the mean absolute error (MAE) was chosen as the
loss function over the more popular mean-squared error (MSE). This is due to the latter’s bias towards
accurately fitting the amplitude jumps at the expense of the entire response curve. To compare the
performance between models, k-fold cross-validation is often used to provide an estimate of loss. For
this approach, the training data are split into k sets, where one set is selected for validation and is used
to evaluate the performance of a model trained on the remaining k−1 sets. This process is repeated
k times such that each set is the validation set once, with the resultant k performance scores averaged
to provide the final estimate. As the purpose of this study is predict the amplitude response based on
the structural damping, 8-fold cross validation was utilised with the splits conducted across the ζ axis
of the {ζ, U∗, Re} input space.

Beyond the aforementioned parameters of the machine learning algorithms, hyper-parameters also
have an effect on model performance. Defined as a parameter whose value is used to control the
learning process, hyper-parameters are model-dependent and must be optimised outside of the training
process. § 2.3 will briefly discuss the algorithms investigated in this study, while further details on
how their hyper-parameters were optimised can be found in § 2.4.
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2.3 Machine Learning Models

This subsection discusses each of the four machine learning methods tested in this study. It should
be noted that with the exception of the k-nearest neighbours model, the other algorithms utilise the
decision tree as the base estimator.

The method of k-nearest neighbours is an algorithm that performs regression by interpolating
between the labels of the k nearest samples of the training data to a given input. The hyper-parameters
that govern this prediction process include the number of neighbours k, the Minkowski metric power
parameter, the weights (either uniform or weighted by the inverse distance from sample to input), and
the algorithm and leaf size used to determine the nearest points (either KD or Ball tree).

The decision tree is constructed using the Classification And Regression Trees (CART) algorithm
to recursively and greedily split the data (predicated on their location in the input parameter space)
with the aim of minimising the loss at each split. The total data initially forms a single set (root node),
with each rule-based decision splitting the node into subsequent child nodes that are then further split
as part of a recursive process. The last nodes of the decision tree are known as leaf nodes, and are
used by the model to make the final prediction. The hyper-parameters considered in this study for the
decision tree include the maximum depth of the tree, the minimum number of samples required to be
at a leaf node, and the minimum number of samples required to split an internal node.

Gradient-boosted decision trees are an ensemble technique built upon numerous weak learners
(i.e. decision trees) as the base estimator. The first weak learner is trained directly on the data whilst
subsequent trees are trained to predict the residual loss for each sample of the previous trees. While
increasing the number of learners generally reduces the model error, this may introduce over-fitting.
As such, along with the hyper-parameters of the decision tree as the base learner, additional hyper-
parameters considered for this algorithm include the number of learners and the learning rate. The
learning rate minimises over-fitting by reducing the contribution of each subsequent learner to the
overall prediction.

The random forest is another ensemble technique also utilising the decision tree as the weak
learner, with the random output taken as an average of the multiple learners. To improve accuracy
and reduce over-fitting, bootstrapping aggregating (also known as bagging) is used to ensure that each
learner is trained on a random subset of the training data. Here, the bagging process involves drawing
n (total number of observations in the data set) samples from the dataset with replacement to train
each tree. Along with the hyper-parameters of the base estimator in the decision tree learner, the
number of learners is an additional hyper-parameter of the random forest.

2.4 Hyper-parameter Tuning with Particle Swarm Optimisation

To maximise the accuracy of each algorithm tested in § 2.3, their hyper-parameters must be care-
fully chosen to optimise the performance for a given data set. Often, the model is trained multiple
times in a grid search through the hyper-parameter space to find the combination that yielded the
best performance as measured by the minimisation of the loss. However, with the success by Lin et
al. (2021) in utilising the particle swarm optimisation to fine-tune their machine learning models, a
similar process will also be used to optimise the architecture of each model in this study.

Particle swarm optimisation is an algorithm belonging to a sub-field of artificial intelligence known
as swarm intelligence. Defined as “the emergent collective intelligence of groups of simple agents” by
Bonabeau et al. (1999), swarm intelligence is biologically inspired and mimics the self-organisation
and division of labour that is commonly found in social creatures (e.g. ants, bees, bats, etc. ). Particle
swarm optimisation will be used in this study due to its popularity (Slowik & Kwasnicka, 2017) and
its success by Lin et al. (2021) in optimising their machine learning models. Inspired by the behaviour
of bird flocks, particle j = 1,2, ...,J at the (i+1)th iteration of particle swarm optimisation with a total
of J agents is mathematically defined as (Shi & Eberhart, 1998)
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Figure 3. (a-b) The amplitude response curves predicted by k-nearest neighbours for ζ = 9.38× 10−3 and
ζ = 4.98×10−2 in the test data set. The MAE for both cases are shown in the top left of the both plots, with
the absolute error between the true and predicted response as a function of U∗ presented in (c-d).

v⃗ i+1
j = ω v⃗ i

j + c1 r1 (P⃗ i
best, j − x⃗ i

j)+ c2 r2 (G⃗ i
best − x⃗ i

j) (2)

x⃗ i+1
j = x⃗ i + v⃗ i+1, (3)

where x⃗ i
j and v⃗ i

j is the position and velocity of particle, respectively, with x⃗0 and v⃗0 initialised as
random values in the multi-dimensional parameter space. Here, r1 and r2 are outputs of an uniform
random number generator between 0 and 1, introducing randomness into the system. P⃗ i

best, j and G⃗ i
best,

are the personal best position of particle j up to the current iteration and the global best position of
the entire swarm, respectively, as measured by the function the algorithm seeks to minimise. The
hyper-parameters of this algorithm are the inertia factor ω and the acceleration constants c1 and c2,
which affect how the particles explore the solution space and the convergence of the algorithm (Shi
& Eberhart, 2001).

For this study, particle swarm optimisation was implemented via the Pyswarms library using
200 particles evolving over 200 iterations. The hyper-parameters were chosen to be {ω = 0.729,
c1 = c2 = 1.49445}, in line with the values suggested by Shi & Eberhart (2001) for better conver-
gence. The function to minimise in this study is the MAE loss as estimated by 8-fold cross validation.
To account for uncertainty in our estimate with 95% confidence intervals, the loss of the optimised
models reported in table 1 were taken as the mean of 100 repeated 8-fold cross validations with ran-
domly generated folds. However, by assuming that the ideal hyper-parameters for a given model is
approximately invariant to fold choice, computing time is decreased during particle swarm optimisa-
tion by using a single 8-fold cross validation with constant folds for each “particle” evaluation.

3 Results

Table 1 shows the optimal hyper-parameters and the corresponding lowest MAE (estimated using
8-fold cross validation repeated 100 times) achieved for each model as identified with particle swarm
optimisation. Accounting for the 95% confidence interval associated with each estimate, only the
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difference in loss between decision tree and random forest (whose confidence intervals overlapped)
was not statistically significant. Interestingly, the k-nearest neighbours was the simplest yet the best-
performing out of all the algorithms tested with the lowest MAE estimate of 1.06 × 10−1. This
conclusion was in contrast to that drawn by Lin et al. (2021) who showed that the gradient-boosted
decision tree was better than the random forest, decision tree, and k-nearest neighbours models. This
difference could be due to their larger input parameter space of four variables as compared to that in-
vestigated by our current study (three input variables of which two, the Reynolds number and reduced
velocity, are closely related). Additionally, the nature of the data and the use of a different loss (MSE
in the case of Lin et al. (2021)) might also affect the accuracy of each model differently.

As such, the optimised k-nearest neighbours model was hence taken as the final chosen model and
evaluated on the previously-unseen test data set to obtain the generalised error. Figures 3(a-b) shows
the resultant k-nearest neighbours-predicted amplitude responses, while figure 3(c-d) shows the the
absolute error as a function of U∗. For the hyper-branch test case (ζ = 9.38× 10−3), the response
curve was well predicted as shown by the MAE of 0.105. However, the main sources of error were
found between U∗ ∈ [5,6] and U∗ ≈ 8, which corresponds respectively to underestimating the hyper-
branch regime and overestimating the U∗ at which the step-wise transition to negligible amplitudes
occur. For the second test case, where the hyper-branch is suppressed (ζ = 4.98×10−2), the k-nearest
neighbours was able to predict the main trends of the curve as demonstrated by the MAE of 0.060,
but finer features such as the amplitude transitions between U∗ ∈ [6.5,7] were lost. Additionally, the
k-nearest neighbours also incorrectly predicted step-wise amplitude transitions in the response curves,
which are non-existent in the true response. The cause of these errors may be due to the nature of the
prediction mainly being an interpolation between the two adjacent damping ratios (ζ = 3.58× 10−2

and 6.3×10−2) and does not include knowledge from other parts of the data set.
To improve the results obtained in this study, future work may include using amplitude responses of

more structural damping ratios as part of the training data which would help increase model accuracy.
In addition, extending the study to also include data from increasing U∗ increments will allow the
resultant models to account for the role that hysteresis plays in the amplitude response of elliptical
cylinder FIV. Finally, as the models tested in this study are considered “shallow” due to the small
representation spaces, including deep learning algorithms (such as neural networks) for comparison
in the future would elucidate whether more complex models can improve predictive accuracy.

4 Conclusions

The performance of four different machine learning algorithms for the prediction of the amplitude
response pertaining to ε = 5 elliptical cylinder FIV has been investigated. Utilising the damping ratio,
reduced velocity and Reynolds number as the input parameters and optimising each tested architecture
using particle swarm optimisation, we found that the lowest MAE loss (estimated using 8-fold cross
validation) was achieved by the k-nearest neighbours model. As this performance over the other
algorithms was considered statistically significant when accounting for 95% confidence intervals, the
k-nearest neighbours was chosen as the final model. When evaluated on the test data, the MAE was
0.105 and 0.060 for ζ = 9.38× 10−3 and 4.98× 10−2, respectively. Since structural damping is an
analogue for the loads applied by a generator, it is hoped that a robust approach to predicting the
effects of structural damping on the FIV amplitude response of elliptical cylinders will assist in the
development of devices that employ this geometry for efficient renewable energy generation.
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