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A study of the flow past an oscillatory rotating cylinder has been conducted, where the
frequency of oscillation has been matched to the natural frequency of the vortex street
generated in the wake of a stationary cylinder, at Reynolds number 300. The focus
is on the wake transition to three-dimensional flow and, in particular, the changes
induced in this transition by the addition of the oscillatory rotation. Using Floquet
stability analysis, it is found that the fine-scale three-dimensional mode that typically
dominates the wake at a Reynolds number beyond that at the second transition
to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of
rotation beyond a critical amplitude, in agreement with past studies. However, the
rotation does not suppress the development of three-dimensionality completely, as
other modes are discovered that would lead to three-dimensional flow. In particular,
the longer-wavelength mode that leads the three-dimensional transition in the wake
of a stationary cylinder (referred to as mode A) is left essentially unaffected at low
amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed
as the two-dimensional near wake changes in character from a single- to a double-
row wake; however, another mode is predicted to render the flow three-dimensional,
dubbed mode D (for double row). This mode has the same spatio-temporal symmetries
as mode A.
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1. Introduction
The wake of a circular cylinder immersed in a free stream goes through a series of

well-documented transitions with increasing Reynolds number Re = Ud/ν, where U

is the free-stream velocity, d is the cylinder diameter and ν is the kinematic viscosity.
The first of these transitions occurs at Re � 47 (Provansal, Mathis & Boyer 1987).
This is the primary Hopf bifurcation, where the wake transits from a steady flow
to periodic vortex shedding, forming the Kármán–Bénard vortex street. The second
transition occurs at Re � 190 (Barkley & Henderson 1996; Williamson 1996) when
this vortex street becomes three-dimensional.
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A number of researchers have focused their attention on the control of the
primary bifurcation; in the context of the study presented here, the results of Thiria,
Goujon-Durand & Wesfreid (2006) and Thiria & Wesfreid (2007) have shown that a
rotational oscillation can effectively suppress the global mode leading to synchronized
vortex shedding, depending on the frequency of oscillation.

However, it is the secondary bifurcation which really marks the beginning of
the route to turbulence in the wake. A large body of work has been completed,
isolating and identifying the modes involved in this transition to three-dimensional
flow. The seminal work of Williamson (1988) was the first to identify two distinct
three-dimensional modes (modes A and B) occurring in the cylinder wake. The wake
initially becomes unstable to mode A (Williamson 1988), which appears to be driven
by an elliptic instability of the vortex cores (Leweke & Williamson 1998b; Thompson,
Leweke & Williamson 2001; Julien, Lasheras & Chomaz 2003), although there has
been debate about associating such complex transitions with simple generic instability
mechanisms (Barkley & Henderson 1996; Henderson 1997). A second mode, mode B,
has been shown to become linearly unstable at Re � 260 (Barkley & Henderson 1996);
however, the presence of mode A is destabilizing on mode B (Barkley, Tuckerman &
Golubitsky 2000; Sheard, Thompson & Hourigan 2003a), and the first sign of mode
B is observed experimentally at Reynolds numbers closer to Re = 230 (Williamson
1996). Mode B eventually becomes dominant, with streamwise vortical structures
on the scale of this mode still present at Re = 1000 (Wu et al. 1996) and beyond.
A third mode exists, dubbed mode QP, due to the fact that it is quasi-periodic. It
becomes linearly unstable at Re = 377 (Blackburn & Lopez 2003). However, due to the
presence of mode A and B, clear identification of the influence of mode QP during
experiments has proven to be elusive. In fact, the wake appears to be essentially
chaotic for Reynolds numbers not much greater than 300 (Henderson 1997).

The group theory analysis of Marques, Lopez & Blackburn (2004) and Blackburn,
Marques & Lopez (2005) showed that certain symmetry properties need to be
respected by the three-dimensional modes that bifurcate from the two-dimensional
Kármán–Bénard vortex street. Only three generic bifurcation symmetries can exist;
these correspond to the spatio-temporal symmetries of modes A, B and QP.

However, the aforementioned analysis places no restrictions on the order in which
these modes can become unstable. Henderson (1997) and Karniadakis & Triantafyllou
(1992) showed that varying the spanwise extent of the cylinder in a spatially periodic
simulation could vary the route to turbulence from a period-doubling cascade led by
mode B, to a transition to spatio-temporal chaos led by mode A. This implies that
suppression of one mode can influence the route to turbulence.

Leontini, Thompson & Hourigan (2007) showed that a transverse oscillation of
the cylinder close to the natural vortex shedding frequency could result in mode
B naturally leading the three-dimensional transition. In that case, the transverse
oscillation effectively suppressed mode A by influencing the size of the vortex cores.
Analogous to this, for elongated elliptical leading-edge plates, Ryan, Thompson &
Hourigan (2005) showed that a mode with the same spatio-temporal symmetry as
mode B undergoes transition before mode A, once the aspect ratio of the plate
becomes sufficiently large.

This raises the question: can the same control be effected on mode B? This is
an important question to answer, due to the dominant role that mode B plays in
the wake dynamics over a wide range of Re. The results of Poncet (2002) suggest a
rotational oscillation can achieve this goal.

The results presented in this paper show that a rotational oscillation, at the natural
shedding frequency, effectively suppresses mode B at Re = 300, confirming the result
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of Poncet (2002). However, the oscillation has a lesser effect on the other modes
present. This is shown using Floquet stability analysis. As well as this direct effect on
mode B, an interesting side effect is that at higher rotational oscillation amplitudes,
a new mode appears with the same symmetries as the ‘classic’ mode A, but with
a shorter characteristic wavelength. This new mode appears to be a kind of higher
spatial resonance, that obeys the symmetry laws of the analysis of Marques et al.
(2004). This suppression of mode growth, and the emergence of a new mode, has
been quantified, and the structure of the new mode is presented.

2. Numerical formulation
2.1. Flow field calculation

The three-dimensional stability of the wake is determined by whether, at any particular
Reynolds number, three-dimensional perturbations grow or decay on an imposed two-
dimensional wake (base) flow. The base flows for the present study were calculated
by solving the incompressible, time-dependent Navier–Stokes equations. For the
perturbation fields, the equations solved were formed by taking these same equations,
splitting the velocity and pressure fields into base and perturbation components,
subtracting the original equations for the base flow, and linearizing the result.

The discretization method employed was a spectral element method, using fifth-
order Lagrange polynomials as shape and weighting functions over each element,
associated with Gauss–Lobatto–Legendre quadrature points for efficient calculation
of the required integrals. The time integration was executed using a three-step splitting
scheme (Karniadakis, Israeli & Orszag 1991; Thompson et al. 2006a), employing an
explicit third-order Adams–Bashforth scheme for the convective substep, a centred
scheme for the pressure correction term and an implicit Crank–Nicholson method
with the theta-correction (Canuto et al. 1990) for the diffusion term. First-order
pressure boundary conditions result in second-order time accuracy for the predicted
velocity field.

A computational domain extending 25d downstream, 15d upstream and 15d to
either side of the cylinder was split into 518 elements, the majority of which were con-
centrated in the boundary layer and wake regions. The resolution, element distribution
and domain size are consistent with those used successfully in previous similar studies
(Thompson, Hourigan & Sheridan 1996; Thompson et al. 2001; Leontini et al. 2007).

Free-stream (Dirichlet) boundary conditions were enforced at the upstream and
lateral boundaries, while a Neumann-type boundary condition was employed at the
outlet, which is sufficient for vortices to freely exit the domain at the Reynolds
numbers under consideration in this paper. At the cylinder surface, a time-dependent
Dirichlet condition was utilized that varied sinusoidally in time according to a driven
rotational oscillation,

θ = Aθ sin(2πfθ t), (2.1)

where Aθ is the amplitude of rotation in radians, and the frequency (fθ ) and time
(t) are non-dimensional quantities using U and d . The frequency of oscillation was
selected to match the Strouhal frequency for a fixed cylinder at the same Reynolds
number according to the functional fit given by Williamson & Brown (1998), which
returns a frequency of fθ = 0.210453 for Re = 300. This tangential velocity at the
cylinder boundary needs to be taken into account with the implementation of the
pressure boundary condition to maintain second-order accuracy of the velocity field.

The description of the methodology is purposefully brief because of descriptions
given in previous papers. Details of the method in general can be found in
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Karniadakis & Sherwin (2005), and details of the implementation used here in
Thompson et al. (1996). The code employed has been well proven for use in bluff
body problems and Floquet stability analysis (Sheard, Thompson & Hourigan 2003b;
Ryan et al. 2005; Leontini et al. 2007).

2.2. Floquet stability analysis

Floquet stability analysis is a linear method designed to deduce the stability of periodic
solutions. Here, it is used to analyse the stability of a periodic two-dimensional flow to
three-dimensional perturbations. The stability is deduced by calculating the Floquet
multiplier μ which can be thought of as the ratio of growth in amplitude of a
perturbation from one period to the next, for a perturbation of a given spanwise
wavelength, λ. If this ratio is such that |μ| > 1, the perturbation grows each period,
and the two-dimensional base flow is said to be unstable. Conversely, if |μ| < 1, the
perturbation decays each period, and will eventually die away, meaning the base flow
is stable. Generally, this relies on the fact that a random perturbation of a given
wavelength can be decomposed into a summation of eigen or Floquet modes, each
of which grow or decay at a certain rate. It is the fastest growing or slowest decaying
Floquet mode – the dominant mode – which dominates asymptotically with time.
That is, after a long time, a perturbation decays to the dominant Floquet mode, with
the size of the Floquet multiplier relative to unity determining the stability of the
base flow. Details of the formulation can be found in Barkley & Henderson (1996),
Ryan et al. (2005) and Leontini et al. (2007).

The code employed has been used previously for Floquet stability analysis,
employing a power method to resolve the most dominant Floquet mode (and the
magnitude of the largest Floquet multiplier). While this method can be effective when
there is a single clearly dominant mode, it does not allow for the separation of two or
more modes that may have equal-amplitude Floquet multipliers for a given spanwise
wavelength. This happens if the dominant mode Floquet multiplier is complex, in
which case it occurs as a complex pair, in order to enable real perturbation fields
to be constructed. Therefore, a Krylov subspace method has been implemented,
using an Arnoldi decomposition to resolve the full complex Floquet multipliers. The
implementation used here is essentially the same as that used in Blackburn & Lopez
(2003).

The use of this implementation allows modes with similar growth rates to be
effectively separated, and the resolution of the real and complex components of the
Floquet multipliers associated with each mode. It should be noted that for this study,
the amplitude of the perturbation fields only within 10d of the cylinder are allowed
to contribute to the computed dominant Floquet multipliers, ensuring the Floquet
multipliers are computed on a region of the base flow that is periodic (or close
to periodic). Further downstream the wake is not necessarily periodic, or at least
not with the same frequency as the near wake due to vortex pairing and secondary
instabilities (Williamson & Prasad 1993; Johnson, Thompson & Hourigan 2004).

It is strictly true that Floquet stability analysis requires the base flow to be periodic.
However, even if the flow is only approximately periodic, a linear stability analysis
can provide valuable information about the nature of the modes that lead to the
flow becoming three-dimensional. The choice of limiting the downstream domain of
the perturbation field to 10d provided such an approximately periodic base flow for
all calculations for this study. Johnson et al. (2004) showed by Fourier analysis for
similar low-Reynolds-number wakes that upstream of the vortex pairing/remerging,
there is virtually no frequency content apart from the Strouhal frequency, consistent
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Figure 1. Moduli of the Floquet multipliers μ versus spanwise wavelength λ (spanwise
wavenumber k = 2π/λ) for the three-dimensional instability modes of the two-dimensional
wake of a circular cylinder at Re = 280. The current results (solid line) are compared with
those from Barkley & Henderson (1996) (open squares) and Blackburn & Lopez (2003) (open
circles).

with the picture that pairing has little effect on the upstream flow. Thus, this seems a
reasonable approach provided the perturbation field grows predominantly only within
the near wake. The veracity of this assumption will be examined in the results section.

2.3. Validation

For validation of the methods employed, the grid resolution, the domain size and
the Floquet stability analysis, the wake transitions for a fixed cylinder in a uniform
flow were analysed. Floquet multipliers were calculated for a range of wavelengths
at Re = 280. The results are compared with those from Barkley & Henderson (1996)
and Blackburn & Lopez (2003) in figure 1. The match is excellent, with |μ| and λ at
the peaks of the curves for each mode faithfully reproduced.

These results validate that the method is correctly implemented, and that the mesh
resolution is adequate to resolve the physics of the problem. Note, as mentioned
before, similar meshes, mesh resolutions and domain sizes have been used previously
for similar studies.

To further validate the choice of the current computational resolution at the
Reynolds number of the current study, a further resolution studied was performed, in
which the order (p) of the element interpolating polynomials was varied. This study
indicates that the choice of polynomial order selected for the simulations (p = 6)
resolves the mode B multiplier to within about 2 % at Re = 300.

3. Results and discussion
3.1. Effect of the amplitude of rotation on the base flow

Figure 2 depicts contours of vorticity of the two-dimensional base flow past
a rotationally oscillating cylinder at Re =300. For these wakes, there are three
downstream stages; single row, double row and a long-wavelength wake. Initially, by
increasing the amplitude of rotation, the distances downstream where the double-row
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Figure 2. Contours of vorticity of the two-dimensional base flow past a cylinder undergoing
several amplitudes of rotation at Re = 300. The flow is from left to right. The amplitudes of
the imposed rotation are expressed in radians. Amplitude of rotation (Aθ ) increases as: Aθ = 0,
0.20, 0.40, 0.60, 0.80, 1.00 from (a) to (f ), respectively. All the images are taken at θ = 0. White
(black) represents positive (negative) vorticity. For all the cases considered the near wake was
synchronized to the forcing frequency.

configuration and the long-wavelength configuration begin are decreased (Aθ < 0.60).
Conversely, as the amplitude of rotation is further increased, the distance downstream
where the long-wavelength wake configuration begins is increased. For all the cases
considered, the near wake (up to at least 10d) was synchronized to the forcing
frequency. The forcing frequency was the Strouhal frequency for a fixed cylinder at
the same Reynolds number according to the relationship of Williamson & Brown
(1998). Similar effects on the wake configuration for a different forcing mechanism
(e.g. forced crossflow oscillation) can be found in Leontini et al. (2006). For forcing
amplitude Aθ > 1 the base flow was not periodic on any sub-domain, precluding any
Floquet analysis.

3.2. Effect of the amplitude of rotation on the different modes

Figure 3 shows the moduli of the Floquet multipliers μ versus spanwise wavelength λ
for the three-dimensional instability modes at Re =300. The control case of the fixed
cylinder is shown in figure 3(a), and the results are certainly consistent with those at
Re = 280 shown in figure 1.

Figure 3 shows the dependence of the growth rate for each of the modes on
Aθ . Figure 3 also shows, indirectly, the dependence of the characteristic wavelength
for each mode (i.e. the wavelength at which the maximum growth rate occurs,
λchar = λ(|μ|max )) on Aθ . Of note, comparing figures 3(a) and 3(b) shows that as the
amplitude of rotation is increased from the control case of Aθ =0–0.2, the growth
rates of the modes are varied, but the same classic modes are present. However,
increasing the amplitude of rotation to Aθ = 0.4 sees mode B diminish to the point
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Figure 3. Moduli of the Floquet multipliers μ versus spanwise wavelength λ for the three-
dimensional instability modes of the two-dimensional wake of a rotationally oscillating circular
cylinder at Re = 300. The amplitude of rotation spans the range 0< Aθ < 1. Amplitude of
rotation (Aθ ) increases as: Aθ = 0, 0.20, 0.40, 0.60, 0.80, 1.00 from (a) to (f ), respectively. Filled
symbols (open symbols) represent modes with purely real (complex) Floquet multipliers. Filled
squares represent mode A; filled circles represent mode B; filled triangles represent mode D;
open circles represent mode QP. Oscillation suppresses mode B but does not suppress all
three-dimensional instabilities.

where it cannot be resolved, leaving only modes A and QP. Further increasing the
amplitude of rotation to Aθ = 0.8 sees both of these modes also disappear, and a new
mode (dubbed mode D) arise. Only mode D is resolved for Aθ � 0.8, and hence only
the curve representing this mode is shown in figures 3(e) and 3(f ).

Because mode D forms on a base flow that is not strictly periodic, the approach
adopted to obtain Floquet multipliers (where only the near wake is considered in
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10d

Figure 4. Perturbation energy field for mode D for Aθ = 0.8 and λ/d = 0.9, showing that
the perturbation field is of high amplitude mainly in the region prior to pairing. Greyscale
contours show perturbation energy, solid lines show base flow vorticity at ±0.5.
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Figure 5. (a) The maximum magnitude of the Floquet multiplier |μ|max as a function of
the amplitude of oscillation Aθ for each of the four modes described. (b) The characteristic
wavelength λchar as a function of the amplitude of oscillation Aθ for each of the four modes
described. The Reynolds number is Re =300. For both plots, filled squares represent mode A,
filled circles represent mode B, open circles represent mode QP and filled triangles represent
mode D.

the calculation of the growth rate) perhaps requires further justification. Importantly,
figure 4 shows that the perturbation field is mainly restricted to the near wake, prior to
pairing. If the full domain is used to determine the (approximate) dominant Floquet
multiplier using Arnoldi decomposition with the Krylov subspace approach, it is
found to be constant to within less than ±1 % compared to the case of truncating the
domain at 10d , and therefore agrees with the approach using the truncated domain.

To ensure consistency, a similar validation study was carried out for mode A at
Aθ =0.6. In this case, the approximate dominant Floquet multiplier was calculated
over: the full domain; the domain truncated at 10d; the domain truncated at 6d .
The multipliers calculated on the whole domain and on the domain truncated at 6d

were then compared to the multiplier calculated on the domain truncated at 10d . In
both cases, the variation was within ±5 %. It should also be noted that the growth
rate and characteristic wavelength for mode A vary smoothly with Aθ all the way to
Aθ =0.6, as shown in figure 5. These facts provide a high level of confidence in the
truncated domain method.

These results shown in figure 3 are summarized in figure 5(a) for the maximum
growth rates and in figure 5(b) for the associated characteristic wavelengths.
Figure 5(a) demonstrates the rapid suppression of mode B with increasing Aθ , and
that mode A is suppressed, but not as effectively. The growth rate of mode QP is
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Figure 6. Streamwise perturbation vorticity for (a) Mode A when λ= 3.5 (k =1.80) at Aθ = 0;
(b) Mode A when λ=3.2 (k = 1.96) at Aθ =0.1; (c) Mode A when λ= 3.0 (k =2.09) at Aθ = 0.2;
(d ) Mode A when λ=2.5 (k = 2.51) at Aθ = 0.4; (e) Mode A when λ= 2.2 (k = 2.85) at Aθ = 0.5;
(f ) Mode A when λ= 1.9 (k = 3.31) at Aθ = 0.6; (g) Mode B when λ=0.8 (k = 7.85) at Aθ = 0;
(h) Mode B when λ=0.8 (k = 7.85) at Aθ =0.1; (i ) Mode B when λ= 0.7 (k =8.97) at Aθ = 0.2.
White (black) represents positive (negative) streamwise vorticity. Solid lines represent base flow
vorticity at ω = ±1. The basic structures of the modes are unaffected by the forcing amplitude.

relatively unaffected by the oscillation, and the amplitude of the multipliers remains
less than unity for the entire range of rotational amplitudes at this Reynolds number.
Figure 5(b) demonstrates that the amplitude of oscillation has a marked effect on the
characteristic wavelength of modes A and QP, with almost a 50 % reduction in the
mode A wavelength as the rotational amplitude is increased to 0.6. This presumably
reflects the decreasing length scales in the wake as the shed vortices become more
compact. Both plots show that for Aθ � 0.65, only the new mode can be resolved,
and it has a Floquet multiplier greater than unity. It is proposed to call this mode
D, because it occurs when the rotational oscillation is sufficiently strong to force the
occurrence of a double-row vortex street almost from the beginning of the wake.
In effect, this also explains the seemingly sudden change in the three-dimensional
wake stability between Aθ < 0.6 and Aθ > 0.8. This is consistent with the near wake
changing from a single-row to a double-row wake as the two-dimensional vortices
grow in strength because of the increased vorticity flux into the forming vortices
caused by the rotational oscillation.

Figure 6 presents the streamwise vorticity of the three-dimensional modes A and B
for increasing rotational amplitude. These modes for Aθ = 0 are identical to those of
Barkley & Henderson (1996) and Blackburn et al. (2005). From inspection of figure 6
it is clear that the structure of these modes is essentially unaffected by the rotational
oscillation.
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(a) (b) (c)

Figure 7. Contours of streamwise perturbation vorticity for (a) λ= 0.9 (k = 6.98) mode D at
Aθ = 0.8; (b) λ= 0.8 (k = 7.85) mode D at Aθ = 1.0; (c) flat plate transition mode. White (black)
represents positive (negative) streamwise vorticity. Solid lines represent base flow vorticity at
ω = ±1. The general mode structure is unaffected by the forcing amplitude. This previously
undocumented mode possesses the same symmetries as mode A, yet has a finer spatial scale.
Some similarities on the mode topology also occurs for a normal flat plate wake (c), which
also has a double-row vortex street. In the latter case λ= 2 plate heights and Re = 126.

Mode A presents a spatio-temporal symmetry (spatial reflection and half-period
evolution), (U, V, W )(x, y, t) = (U, −V, W )(x, −y, t + T/2). It has been proposed
that the underlying mechanism is a cooperative elliptic instability (Thompson
et al. 2001; Leweke & Williamson 1998a ,b; Julien et al. 2003) of the vortex
cores in the near wake. Mode B breaks the latter symmetry, instead obeying
(U, V, W )(x, y, t) = (U, V, −W )(x, −y, t + T/2) as can be seen in figure 6(g). The
dominant physical cause of mode B has been proposed to be due to various instability
types such as a hyperbolic instability of the braids (Leweke & Williamson 1998a)
or a centrifugal instability of the forming vortex cores amplified in the braids (Ryan
et al. 2005).

3.3. Mode D

Figure 7 presents the previously unreported mode associated with high amplitudes
of rotation. This mode possesses the same symmetries as mode A, however it has
additional features on a shorter length scale, notably in the cores of the vortices.

A mode with some similar features to mode D occurs for a flat plate wake
(Thompson et al. 2006b), and this is represented in figure 7(c). This flow also has the
double-row vortex street due to the stronger and more compact wake vortices. The
figure represents the mode behind a flat plate at Re = 126.

From the figure it is clear that this flat plate mode and mode D share some of
the same basic shape structure and spatio-temporal symmetries. However, a close
inspection of the mode behind the flat plate reveals that the initial growth is located
between the second and third wake vortices, whereas mode D (as shown in figure 8)
grows predominantly between the first and second vortices. Despite this difference, it
is possible that the underlying instability mechanism for the two modes is the same.
The local flow in the region of high growth for both modes is at least qualitatively
similar; in both cases the modes are most energetic in the region of high strain
between two wake vortices. Further study is required to fully compare these two
modes, and to try to identify the physical mechanism that causes them.

Figure 8 shows the variation of the near wake topology with increasing Aθ . The
longitudinal spacing of the vortices is reduced as the rotational amplitude is increased.
The boundary layer at the rear of the cylinder becomes much thinner as Aθ is
increased. However, mode D grows predominantly in the region between the first and
second wake vortices, approximately 1d away the centre of the cylinder. This suggests
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Figure 8. Variation of the near wake topology with increasing Aθ : 0.4, 0.5, 0.6, 0.7, 0.8, 1.0
from (a) to (f ), respectively. Represented are the base flow vorticity (solid lines) and the
perturbation energy for mode D (black and white contours). Note that mode D could only
be resolved for Aθ � 0.65. Images (d ), (e) and (f ) show that mode D is the most energetic in
the area between the first and second wake vortices.

that the inter-vortex spacing is the critical topological factor concerning the rapid
destabilization of mode D as Aθ is increased beyond 0.65.

3.4. Stabilization of mode B

Of the three-dimensional modes described, mode B is the most heavily influenced
with regard to its growth rate by the rotational oscillation amplitude. This is clear
from inspection of figure 5(a), despite the fact that the base flow is almost unaffected
in basic structure in the near wake for small amplitudes of rotation. This is most
likely due to the fact that mode B is an instability of the braid shear layer between
the forming and shed vortices (see figure 7g) or at least relies on amplification in
the braids. While the wake structure appears essentially the same at small amplitudes
of oscillation, it is clear from the sequence in figure 2, and the sequence in figure 8,
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Aθ λ |μ|2 D/E′ P/E′ D/E′ + P/E′ |D/P|

0 0.83 4.00 −8.97 11.97 3.00 0.75
0.10 0.80 2.64 −7.76 9.40 1.64 0.83
0.20 0.74 0.99 −4.82 4.81 −0.01 1.00

Table 1. Perturbation energy dissipation (D/E′) and production (P/E′) over a cycle of
oscillation (both scaled by the initial perturbation energy E′) over a range of amplitude of
rotation for mode B. Note that |μ2| gives the energy growth over the period. With increasing
amplitude, the relative importance of the dissipation increases.

that rotational oscillation does make the vortices increasingly compact and reduces
the wake formation length. Thus, an effect of the oscillation is to reduce the length
scale of the vortex cores of the base flow and, in turn, the braid length scale.
This is important because whether an instability mode decays or grows depends
on the balance between the inviscid growth mechanism and viscous damping. For
example, mode A growth depends on whether an elliptic instability of the cores can
overcome viscous damping at a particular spanwise wavelength linked to the core size
(Leweke & Williamson 1998b). These two effects can be considered linearly additive
(e.g.see Landman & Saffman 1987; Leweke & Williamson 1998b). Viscous damping
depends on the reciprocal of the square of the selected wavelength (Landman &
Saffman 1987). This can be qualitatively understood because the viscous term in the
Navier–Stokes equations depends on the local curvature of the velocity field. Thus,
reducing the length scales of base flow features such as the braid shear layer, which
in turn determine the selected wavelengths of instability modes, will have a much
greater influence on shorter wavelength instabilities; so mode B will be damped more
efficiently than mode A as the oscillation amplitude is increased.

Support for this hypothesis can be found by looking at the perturbation energy
balance. Integrating the perturbation energy over the entire domain for a cycle gives

�E = −
∫

T

∫
Ω

ûiûj

∂Ui

∂xj

dΩ dτ − 1

Re

∫
T

∫
Ω

∂ûi

∂xj

∂ûi

∂xj

dΩ dτ, (3.1)

where T defines a period of oscillation, Ω is the computational domain, ûi is the
perturbation velocity field and Ui is the base velocity field. Here, �E is the energy
change, and the first and second terms on the right-hand side are the production
(P) and the dissipation (D), respectively. These quantities have been calculated over
a range of amplitudes for mode B, for the fastest growing wavelength. The results
are presented in table 1. The results indicate that as the rotation rate increases
both the production and dissipation decrease strongly, but that dissipation decreases
less slowly. Notice that the change in the preferred wavelength from Aθ = 0.2–0 is
approximately 12 %. Given the dissipation varies with the square of the length scale,
this indicates that the percentage change in the dissipation between these two cases
should be 2 × 12 = 24 %, consistent with the observed change of 25 % shown in the
last column of the table. Thus, the suppression of mode B appears to be due to the
substantial reduction in the controlling length scale as the rotation rate is increased.

4. Conclusions
A study of the flow past a rotationally oscillating cylinder was undertaken, where the

frequency of oscillation was matched to the natural vortex-shedding frequency from
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a fixed cylinder at the same Reynolds number. It was found that, for Re = 300,
the primary frequency of the near wake remained synchronized to the driving
frequency for amplitudes of rotational oscillation where Aθ � 1. The effect of rotational
oscillation on the two-dimensional base flow is substantial, changing the wake from
a single-row to a double-row vortex street in the near wake at high amplitudes of
oscillation.

The three-dimensional modes that grow on these periodic base flows were
investigated using Floquet stability analysis. It was found that the rotational
oscillation dramatically suppressed mode B, even for small amplitudes of oscillation.
Mode A was also damped, but not as significantly as mode B. This is due to the
reduction of wake length scale and the much larger effect of viscous damping at
smaller scales. When the double-row wake occurs in the near wake for high rotational
oscillation amplitudes, a new three-dimensional transition mode has been identified,
which has been dubbed mode D and has the same symmetries as mode A.
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